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Abstract 

Visual based location recognition of a mobile device is an important problem in many 

applications, such as visual navigation, auto-piloted driving and augmented reality. In 

this paper, a visual location recognition system based on the Coarse-to-Fine image 

retrieval and the epipolar geometry constraint is proposed. The basic idea of this system 

is to match a user captured image against some geo-tagged images in the database, and 

then estimate the user's location by the epipolar geometry constraint. The process of the 

Coarse-to-Fine image retrieval is necessary to select some database images in the same 

scene with the user captured image. The epipolar geometry constraint is utilized to 

determine the refined location using the geographical location information of the 

database images. The specific experiments for the visual location recognition are 

performed and the results show that this system can achieve the excellent performance of 

the location recognition. 
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1. Introduction 

Location recognition is an important problem with many civilian and military 

applications, such as vehicle navigation and path planning. The most commonly 

used device is the GPS in the outdoor environment in recent years. The point is that 

the information provided by the GPS device is not stable sometimes, especially in 

the business district where tall buildings block the satellite view and the multi-path 

effects are severe. Therefore, an effective location recognition method is required as 

an alternate approach of the GPS device. Visual localization is a great choice. 

Visual localization methods derive from the field of robotics control. The 

computer vision groups have researched visual location recognition for a long time, 

mainly in the field of mobile robots [1-3]. In recent ten years, visual localization 

researchers mainly focus on the image retrieval for location recognition using 

mobile terminals, such as smartphones and tablet PCs. Recent advances in the field 

of the content-based image retrieval (CBIR) have made it facilitative to quickly 

search large image databases using pictures or video sequences captured by the 

user's smartphone as a query. With appropriately tagged images of precise location 

information, the CBIR technique is able to be applied to the visual location system. 

Some of these works focus on the outdoor environments. The authors in [4-5] 

propose the localization approaches based on street view images. When the user 

takes a picture of an unfamiliar place, the proposed algorithm can recognize the 
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user’s current location by the means of the images retrieval from an image database. 

Location recognition methods based on the CBIR technique continue to develop and 

evolve. A rapid image retrieval method used in location recognition is proposed in 

[6], the process of the image retrieval based on Bag-of-Feature achieves low query 

time. The Multiple Hypothesis Vocabulary Tree is introduced to reduce the 

complexity of the feature quantization. The authors in [7] present a completed image 

retrieval based pipeline for the visual location recognition. 

In the location recognition methods based on the CBIR technique, the location of 

query image is usually assigned to the most neighboring location of the database 

image. However, the performance of the location recognition based on the CBIR 

technique is restricted to the density of the database images. That is to say, the more 

densely database images are captured, the more exactly user’s location can be 

determined. But in most cases, it is inconvenient to collect a great number of 

database images. What is more, sometimes the query image and the database image 

contain common objects while query image is far away from the database image. In 

this case, the location errors are magnified. 

Inspired by these problems, we propose a visual location system based on the 

Coarse-to-Fine image retrieval and the epipolar geometry constraint which achieves 

a higher location precision in a scene of relatively sparse database images, and the 

location errors are effectively limited. The basic idea of the epipolar geometry-

based method for location recognition is proposed in [8] by Sadeghi for the indoor 

environment. But in Sadeghi's paper, only the indoor environment is considered and 

the timeliness of the image retrieval is not mentioned. For the urban environment, 

the image databases usually are very large, and the operation time of the database 

searching is long. So in this paper, an efficient image retrieval called the Coarse-to-

Fine image retrieval is proposed. Combined with the Coarse-to-Fine image retrieval 

and the epipolar geometry-based approach, an integrated visual location recognition 

system in the urban environment is presented. In our system, the Coarse-to-Fine 

image retrieval is used to select the database images in the same scene with the 

query image. In this phase, the database images which contain common objects with 

the query image are selected. Subsequently, the epipolar geometry constraint is 

utilized to refine the location of the query image. In this phase, a precise location of 

the query image can be determined in the situation with relatively sparse database 

images.  

The reminding parts of this paper are organized as follows. We explain the database 

generation in Section 2, and describe the Coarse-to-Fine image retrieval in Section 3. 

Section 4, presents the visual location recognition method in detail. We evaluate our 

experiment results in Section 5, and conclude in Section 6. 

 

2. Database Generation Analysis 

This section provides a detailed description of the database generation. We mount three 

CCD cameras, a laser scanner, a GPS device (sub-meter precision) and an inertial 

measurement unit (IMU) onto our mobile data acquisition platform which is carried by a 

human operator. Figure 1 shows the schematic diagram of the mobile data acquisition 

platform. Using the mobile data acquisition platform, the database images are captured by 

the CCD cameras. At the same time, the geographical location information and the 6 DOF 

information of the database camera are measured separately by the GPS device and the 

IMU.  

In this paper, we consider the focus lengths of the each database camera are same, and 

the focus lengths are always fixed. All the cameras have been calibrated already. The goal 

of calibration is to measure the intrinsic and extrinsic parameters of the camera. We also 

assume that the query image plane and the database image plane are perpendicular to the 
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ground plane. The calibration process between the CCD camera coordinate and the IMU 

device coordinate has already been done. The relation of translation and rotation between 

the world coordinate system (IMU device coordinate system) and the database camera 

coordinate system can be described as: 

w w c w X R X t
                                                                                                  (1) 

where wR  and wt  are the rotation matrix and the translation vector between the world 

coordinate system and the database camera coordinate system. The 3D points coordinates 

in the world coordinate system and the database camera coordinate system are denoted by 

wX  and cX . 

Left CCD 

Camera

Right CCD 

Camera

Laser Range Scanner

Middle CCD 

Camera

GPS Device

Inertial Measurement Unit

 

Figure 1. Schematic Diagram of Mobile Data Acquisition Platform 

There are 5 scenes have been selected in the Harbin Institute of Technology (HIT) 

campus. For the each scene, 20 database camera locations are chosen uniformly. In the 

each camera location, six database images are captured in different orientations. At the 

same time, the database camera locations (the longitude and latitude values in the 

direction of WX  and WY ) in the world coordinate system are recorded. In addition, 18 

query images are also captured in the each scene. The query camera locations are 

recorded for the experiments. Figure 2, shows an example of the database generation in 

the Harbin Institute of Technology Main Building Scene. In this scene, the green circles 

denote the database camera locations and the yellow squares denote the query camera 

locations. There are some locations of the query camera are selected, and only one query 

image is captured to test the location recognition accuracy in the each location. 

 

20 m
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YW

       Database Camera Location

       Query Camera Location
 

Figure 2. Description of Database Generation in HIT Main Building Scene 
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3. Coarse-to-Fine Image Retrieval 

The aim of image retrieval is to select the matching images which contain the 

same object with the query image from the database. The image retrieval based on 

the global features (such as gist features) is fast, but not accurate enough. Whereas 

the image retrieval based on the local features (such as sift, surf or ORB features) is 

relatively slow, but more accurate. The integration of the global features and the 

local features makes fast and reliable retrieval possible. So a Coarse-to-Fine image 

retrieval is proposed in this paper.  

In the Coarse image retrieval stage, the gist features [9] are utilized to select the 

database images which are similar with the query image. The gist features are 

extracted from every database images, and then we put these gist features into a kd -

tree [10]. After that, we extract the gist features from the query image. For the gist 

features extracted from the query image, we find its top N  neighbors in the kd-tree. 

In this paper, N  is defined as 10. That means ten database images which are most 

similar to the query image are selected as the result for the Coarse image retrieval. 

But indeed, there may be some result images are not in the same scene with the 

query image. So the Fine image retrieval is needed to remove the database images 

which do not contain the same object with the query image. 

The Fine image retrieval stage is carried out based on the results of the Coarse 

image retrieval. The top ten database images computed by the Coarse image 

retrieval are filtered in this stage by ORB features matching [11]. Specifically, we 

exact the ORB features from the query image and the database images. Next, the 

query image and the top ten database images are matched by the Euclidean standard 

metric in the ORB feature space, and the sum-of-squared pixel differences (SSD) is 

utilized. Using the procedure of the PROSAC [12] for random sampling of 

correspondence, we can obtain the inliers of the feature matching. Let MR  denote 

the matching rate between the query image and the database image. 

i

k

N
MR

N
  (2) 

where iN  denotes the number of the inliers of the feature matching, and kN  denotes 

the number of the ORB features of the query image. MR  reflects the similarity 

between the query image and the database image. In this paper, the matching 

threshold   is set to 0.52 . If MR  , we consider that the database image in the 

Coarse image retrieval result is in the same scene with the query image (the query 

image contains the same object with the database image). Otherwise, we consider 

the database image is in the different scene with the query image.  
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Figure 3. The Result of Coarse-to-Fine Image Retrieval 
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Figure 3, shows the result of the Coarse-to-Fine image retrieval result in the 

scene of the HIT Main Building. In this scene, the image of front door is captured as 

the query image by the user. By means of the Coarse image retrieval, ten most 

similar database images are selected. But some of these database images do not 

contain the same object with the query image. So after the Fine image retrieval, only 

four database images are remained as the image retrieval result. The database 

images in the image retrieval result contain the common objects with the query 

image. 

 

4. Visual Location Recognition 

By the Coarse-to-Fine image retrieval, the database images which are in the same 

scene with the query image are selected. In this stage, we try to determine the 

location of the query image by the database images in the retrieval result. The 

geographical locations of the database cameras are also used to calculate the 

location of the query image. Since the database images in the same scene contain the 

same object, the corresponding ORB features obey the epipolar geometry constraint. 

In this paper, the database image camera and the query image camera have 

already been calibrated. The matrices 1K  and 2K denote the database camera 

calibration matrix and the query camera calibration matrix, respectively. The ORB 

feature points databasex  and 
queryx exacted from the database images and the query 

image can be normalized by the following form [13]: 

1

1
ˆ

database database

x K x
                (3) 

1

2
ˆ

query query

x K x
                (4) 

The relations between the ORB feature points of the query image and the 

database image can be described as Equation (5): 

ˆ ˆ 0database query x Ex                 (5) 

The essential matrix E  is first proposed by Longuet-Higgns [14] for the 

structure-from-motion. The essential matrix is determined completely by the 

rotation matrix and the translation vector. In this paper, the essential matrix is used 

to present the location relationship between the database camera and the query 

camera. E  contains the camera translation parameters between the database camera 

coordinate and the query camera coordinate in the following form: 

E EE t R                  (6) 

where Et  denotes the translation vector and ER  denotes the rotation matrix. In 

Equation (6), 1[ , , ]E x y zt t t t  and 

0

0

0

z y

E z x

y x

t t

t t

t t

 
 

  
  

t                (7) 

The essential matrix E  can be computed from the ORB feature correspondences 

of the query image and the database image. One efficient method to compute the 

essential matrix is Nister's five point algorithm proposed in [15] . According to the 

essential matrix E , the translation vector Et  and rotation matrix ER  can be 
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extracted using the singular value decomposition (SVD). The decomposition of E  

into ER  and Et  is described in Nister's paper. 

In this paper, the essential matrix E  is computed by the feature correspondences 

of the query image and the database image. The translation vector Et  and the 

rotation matrix ER  decomposed from the essential matrix E  reflect the relationship 

of translation and rotation between the database camera coordinate and the query 

camera coordinate, which is shown in Figure 4. As shown in Figure 4, the epipolar 

geometry constraint is the intrinsic projective geometry between the database 

camera and the query camera. The database image and the query image  are in the 

same scene, and they contain the same object P . In the epipolar geometry constraint, 

the object P , the feature point 1x  (in the database image) and the feature point 2x  

(in the query image) are in the same epipolar plane. The form of the epipolar plane 

is a triangle. The object P , the database camera center 1o  and the query camera 

center 2o  are vertexes of the epipolar plane. 

P

O1

x1 x2

e1 e2

Database Image 

Camera

Query Image 

Camera
,E ER t

X1 Z1

Y1

X2

O2

Z2

Y2
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Figure 4. The Result of Coarse-to-Fine Image Retrieval 

Under the condition of the epipolar geometry constraint, the 3D points in the 

database camera coordinate and the query camera coordinate systems are denoted by 

qX  and dX  respectively. dX  and 
qX  give a constraint of the following form: 

q E d E X R X t                 (8) 

Then, we can obtain the translation vector between the database camera center 

and the query camera center by Equation (9): 

1( )q E d E E

 X R X R t                (9) 

where 
1

E E


R t  is the translation vector in the database camera coordinate system. If 

we project database camera center and query camera center to the ground plane, 
1

E E


R t  is the slope factor of the connection line between the projection point of the 

database camera center and the projection point of the query camera center on the 

ground plane [8].  

According to the Equation (1), we can transfer 
1

E E


R t  to the world coordinate 

system. The relation between the database camera coordinate system and the world 

coordinate system can be described as: 

 1

w E E w

 T R R t t               (10) 

We assume 1 1 1X O Y , 2 2 2X O Y , and 3 3 3X O Y  planes (in camera coordinates) are 

parallel to the W W WX O Y  plane in the world coordinate, as shown in Figure 5. In the 

2D situation (ground plane), we consider  1

w E E

R R t  as the slope factor of the 
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connection line (such as line 13l or 23l  in Figure 5) which connects the projection 

points of the database camera center and the query camera center [8]. Since we 

know the locations of database cameras (such as location point 
1O   and 

2O   in 

Figure 5, we can determine the connection lines with the slope factor and the 

database camera locations. 

Each pair of the database image and the query image can determine a connection 

line (we call it the projection connection line). Consequently, the projection point of 

the query camera center should be on every projection connection line. Therefore, if 

we obtain two projection connection lines, the projection point of the query camera 

center should be determined in the intersection of two projection connection lines. 

By two database images and their locations, we can obtain two projection 

connection lines, such as 13l and 23l  in Figure 5. The 13l  connects the projection 

points of database camera 1 center and the query camera center, and 23l  connects the 

projection points of database camera 2 center and the query camera center. The 

intersection of 13l and 23l  is the projection point of the query camera center. We 

consider this projection point of the query camera center is the location of the query 

camera on the ground plane. 
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Figure 5. An Explanation of Location Recognition Principle 

By the Coarse-to-Fine image retrieval, usually more than two database images are 

in the retrieval result, so there are more than two projection connection lines we can 

obtain. But these projection connection lines sometimes cannot intersect on one 

point due to the locating errors. So there may be more than one possible location of 

the query camera. In this paper, the mean value eL  of the possible locations is 

considered as the location of the query camera. 

1

1 sN

e i

is

L L
N 

                 (11) 

where eL  donates the location coordinates of the query camera, and iL  donates the 

possible location (intersection of any two projection connection lines) coordinates. 

sN  is the number of the projection connection line intersections. 

 

5. Implementation and Performance Analysis 

The potential of the proposed location recognition system is evaluated through 

comprehensive experimental tests conducted on a wide variety of dataset collected 

by the mobile data acquisition platform in the urban scene. In each scene, 30 
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database images and corresponding locations are captured. In order to test our 

location recognition system, query images and corresponding locations are also 

captured. In the process of capturing query images, the user walks in the region 

including database camera location marks, and the true locations of the query 

camera are recorded by the GPS device to compare with the estimation locations. 

The estimation locations are determined by our visual location recognition system.  

In the world coordinate system, we consider that W WX Y  plane coincides with 

the ground plane, and the directions of WX  and WY  are same as the directions of the 

longitude and the latitude, respectively. The location coordinate values on W WX Y  

plane are the longitude and latitude values. In our experiment, the location of the 

query image is represented by the longitude and latitude values. To better reflect the 

location errors of our system, we also transform the longitude and latitude values to 

the distance values to present the location errors on the ground plane.  

Figure 6, shows the location result of the HIT Main Building scene. In this scene, 

30 locations (blue dots) of the database camera are captured uniformly and 18 

locations (green squares) of the query camera are selected. Using the database 

images and the corresponding locations, we can determine the estimation locations 

(red rhombuses) of the query camera by our visual location recognition system. In 

this experiment, the estimation locations are presented by the longitude and latitude 

values. Comparing with the true locations and the estimation locations, we can 

clearly find out the performance of our visual location recognition system.  

126.6382 126.6384 126.6386 126.6388 126.6390 126.6392 126.6394

45.7534

45.7535

45.7536

45.7537

45.7538

45.7539

45.7540

45.7541

45.7542

Location of database camera

True location of query camera

Estimation location of query

camera

Longitude (degree)

L
a
ti
tu

d
e
 (

d
e
g
re

e
)

 

Figure 6. The Result of Coarse-to-Fine Image Retrieval 

In order to show the location errors clearly, we transform the longitude and 

latitude values to the distance values. Figure 7, shows the location errors for the 

query images in different scenes. For 90 query images, the mean location errors in 

direction of the longitude and latitude are 3.2607 m and 3.2793 m, respectively. The 

Euclidean distances between the true locations and the estimate locations of the 

query images are also calculated. The mean location error for the Euclidean distance 

is 4.8194 m for 90 query images. 
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Figure 7. Location Errors for Query Images 

The cumulative probability curves of the location errors are shown in Figure 8. 

The cumulative probabilities of our visual location recognition system within 3 m 

errors in the direction of the longitude and latitude reach 35.56% and 43.33%, 

respectively. The cumulative probabilities within 6 m errors in the direction of the 

longitude and latitude reach 98.89% and 94.44%, respectively. For Euclidean 

distance location errors, the cumulative probabilities within 4 m and 8 m are 26.67% 

and 96.67, respectively. These results demonstrate that our visual location 

recognition system can achieve high location accuracy in urban environment.  
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Figure 8. Cumulative Probabilities for Location Errors. (a) Cumulative 
Probabilities for Location Errors in Directions of Latitude and 
Longitude; (b) Cumulative Probabilities for Location Errors for 

Euclidean Distance 

6. Conclusion 

In this paper, a visual location recognition system based on the Coarse-to-Fine 

image retrieval and the epipolar geometry constraint is proposed. First, we present a 

database generation process which contains two aspects, the database images 

capturing and the corresponding location collection. Secondly, a Coarse-to-Fine 

image retrieval method is introduced. By image retrieval, the database images which 

are familiar to the query image are selected. Third, a visual location recognition 

algorithm is utilized. Based on the geometry constraint, the query camera location 

can be estimated by the database images and the corresponding positions. Different 

from existing researches focusing on the image retrieval for visual location 

recognition, the epipolar geometry constraint is used to refine the location of the 

query camera in the urban environment. The performance analysis and experiments 

in different scenes show the promising results for the location accuracy. The 

average error for the Euclidean distance between the true locations and the 
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estimation locations of the query images is 4.8194 m, which satisfies the most 

requirements of the location based service. Compared with other localization 

methods, our method needs less localization infrastructures, but achieves 

satisfactory location accuracy. Future work is needed to extend the pose estimation 

algorithms which can precisely determine the user's orientation. Combing location 

recognition and pose estimation algorithms, an integrated state of user's location and 

orientation can be obtained. 
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