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Abstract 

Ultrasonic guided wave detection technology has numerous advantages compared with 

body waves. Accurately obtaining the time-of-arrival (TOA) or time-of-flight (TOF) of the 

ultrasonic guided wave signal is critical for the detection and location of defect because 

of the frequent use of the low frequency guided wave probe in testing. Thus, guaranteeing 

the propagation over a long distance and increasing the resolution of defect detection 

become the key points. This study adds the weighted nonlinear transformation functions to 

the minimum entropy deconvolution (MED). By adjusting the corresponding parameters, 

it can enhance a weak signal of small defects and suppress the noise signal. The 

experimental results indicate that this method can accurately obtain TOA to enhance the 

resolution of defect detection and can improve the speed of convergence effectively 

compared with MED. 
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1. Introduction 

In the past few decades, ultrasonic guided wave testing has made significant progress, 

which is widely applied in the non-destructive test and evaluation of tubes, rods, pressure 

vessels and other structures [1-3]. Ultrasonic guided wave is a kind of ultrasonic wave 

that is restricted by its structure boundary in the transmission of bounded structural, for 

the reason, it is called guided wave. Although both the body wave and the guided wave 

are controlled by the same set of partial differential equations, the latter is controlled by 

the additional boundary conditions. An ultrasonic guided wave has the advantage of long 

distance propagation and detected complex structure. In the ultrasonic guide wave 

propagation process, an echo signal, which contains numerous information, will change 

because of the discontinuity or property changes of the structure. The characteristics of 

echoes are determined by the physical characteristics of the reflector, such as location, 

size, and direction [4-6]. We can study the echo signal characteristics by constructing the 

ultrasonic echo signal model. The ultrasonic guide wave signal can be seen as the 

convolution of a system time response and ultrasonic reflection sequence. Obtaining the 

time-of-arrival (TOA) or time-of-flight (TOF) is important to pinpoint the location of 

defects accurately. The ultrasonic guide wave detection hope to be able to propagate in a 

long distance and precisely detect the small defects. The ultrasonic guide wave detection 

resolution is mainly determined by the transducer frequency and its design. Although a 
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higher frequency of the transducer can obtain better detection resolution, the rapid 

attenuation of the ultrasonic signal in the propagation process is at the cost of sacrificing 

the propagation distance. Ultrasonic guide wave detection currently selects the low 

frequency transducers, which leads to a low defect detection resolution. In addition, 

frequency dispersion in the transmission process causes considerable difficulties to the 

TOA or TOF extraction [7-8]. 

The methods of obtaining the TOF estimation include cross-correlation, threshold 

comparison, and sliding window, and so on. However, the cross-correlation method 

requires the signal noise to be a Gauss white noise. Furthermore, compared with the 

reference waveform, the frequency domain of the received signal has no change, and the 

dispersion of the guided wave signal constrains the accuracy of the cross-correlation 

method to solve time arrival [9-10]. In the detection process, the collected ultrasonic 

guided wave signal can be expressed by the convolution model of the transducer impulse 

response and reflection sequence [11]. Therefore, the deconvolution method can 

effectively restore the reflection sequence, improve the defect detection resolution, and 

obtain an accurate TOA or TOF expression. 

The traditional deconvolution method for minimum phase or linear systems can play a 

good role in the reflection sequence recovery. When the system is nonlinear or has a 

non-minimum phase, deconvolution will appear as an abnormal phenomenon [12-13]. 

However, the ultrasonic guided wave detection signal has two characteristics, namely, 

non-minimum phase and nonlinear. The minimum entropy deconvolution (MED) 

proposed by Wiggins [14] is a method that does not require making any assumptions 

regarding the system phase. If the output sequence is a sparse spike pulse, then such 

output can be a good solution to the problem of non-minimum phase and nonlinear 

system deconvolution. However, the MED output sequence is not an actual sparse spike 

pulse sequence because it seriously affects the reflection sequence resolution. 

Furthermore, the nature of MED is to determine the inverse filter of the smallest entropy 

of the output sequence through iteration. The iteration process makes the speed of 

convergence and computation times of the algorithm become another problem to consider. 

To enhance the deconvolution output sequence sparsity and to improve the convergence 

speed, a modified MED algorithm has been applied in the ultrasonic nondestructive 

testing [11-15]. These methods have a good effect on the improvement of the 

deconvolution output sequence sparsity and the acceleration of the convergence speed. 

This study presents a nonlinear transformation function to construct a generalized 

weighted MED (GWMED) algorithm, which is applied in the ultrasonic guided wave 

defect detection. In the process of deconvolution, through adjusting the parameters of 

nonlinear transform, the algorithm can achieve the deconvolution of guided wave signal. 

Compared with other deconvolution algorithm, the output sequence of GWMED 

algorithm becomes sparser and the convergence speed of algorithm becomes faster. The 

algorithm plays a good role in overcoming the influence of the guided wave dispersion 

effect and the precise extraction of TOA. 

This paper is organized as follows: Section 2 describes the ultrasonic guided wave 

signal convolution model. Section 3 introduces the minimum entropy deconvolution 

principle. In Section 4, we modified the minimum entropy deconvolution algorithm. 

Section 5 is the experimental results and discussion. A conclusion is given at the end. 

 

2. Ultrasonic Guided Wave Signal Convolution Model 

The guided wave signal involves a convolution process among high-voltage pulses and 

transducers, the measured object (pipes), defects, test systems, and the other aspects of the 

integrated transfer function [16], assuming the echo signal received by the ultrasonic 

transducer is expressed as: 

)()()()()()()( ttStdtHtHtStx minvd                               (1) 
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In Eq. (1), )(tSd
is the electrical-mechanical response of the guide wave transducer.

)(tH is the forward direction transmission characteristics from the guided wave 

transducer to the defects, which has connections with the wave guide structure, size, shape, 

location, and the number of defects. )(tHinv  
is the reverse transmission characteristics 

from the defects to the guided wave transducers, which has connections with the 

amplitude, phase, and propagation distance of the waveform. )(td  
is the reflection 

response of the defects, which is the reflection sequence. )(tSm
is the 

mechanical-electrical response of the guided wave transducer. )(t is the noise. 

In Eq. (1), )(tSd
, )(tH , )(tHinv

and )(tSm
 are the response characteristics of every 

section on the guided wave detection system, which can be expressed as the following 

equation: 

)()()()()( tStHtHtSth minvd 
                                        

(2) 

Substitute Eq. (2) into Eq. (1), we can obtain the convolution model of the guided wave 

signals as:  

)()()()( ttdthtx 
                                                   

(3) 

From the convolution model of the guided wave, if we eliminate the influence of noise 

)(t  and system response )(th  
from the collected signals )(tx , then we can recover 

the reflecting sequences )(td  to improve the guided wave inspection resolution; thus, the 

dispersion effect on the TOA extraction is reduced. 

 

3. Minimum Entropy Deconvolution Principle 

From the definition of entropy in information theory, the better the sparsity of the 

guided wave signal sequence, the entropy is smaller. The discretization of the guided 

waves signal convolution models will obtain [11-17]: 

)()()()( nndnhnx                                                   (4) 

If we do not consider the influence of noise after convoluting, then the entropy of 

)(nd  as the sparse reflection sequence and system response )(nh  will further increase. 

An inverse filter )(nf  can recover )(nd  from the sequence )(nx . Thus, the better the 

performance of the filter )(nf , the simpler the reflection sequence )(nd  will be. In 

addition, the entropy will be smaller. MED determines the optimal inverse filter and 

makes the entropy change for the smallest. Wiggins utilizes the norm of sequence )(nx  

as the method to evaluate the sequence entropy size. Furthermore, he designates the 

))((4

2 nfO  as the objective function to obtain the optimal results. MED is the maximum 

of the inverse filter norm ))((4

2 nfO , that is, 

0)())((4

2  nfnfO                                                      (5) 

If the length of the inverse filter is L , then )()()( nxnfnd   can be expressed as: 

)()()(
1

mnxmfnd
L

m




                                                   (6) 

Eq. (5) can obtain: 
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Eq. (7) can be expressed in the following matrix form: 

Afb                                  (8) 

In Eq. (8), b
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)()(  is the 

autocorrelation matrix of )(nx . The inverse filter matrix can be obtained through the 

iterative computation of Eq. (8): 

bAf 1                                                                 (9) 

 

4. Generalized Weighted Minimum Entropy Deconvolution 

The purpose of MED is to determine an optimal inverse filter coefficient through 

iteration and to highlight the few large spikes in the sequence, which makes the 

sparseness of the reflection sequence the best. However, the algorithm is vulnerable to 

noise; thus, the sparsity of the iterative output results is unexpected. The algorithm 

reduces the inspection resolution particularly for the weak signal of the small defects. 

This study proposes an adjustable parameter nonlinear transformation to obtain the 

sparsest solutions. We can increase the sparsity of the iterative output sequence and 

reduce the effect of the noises through nonlinear transformation. The adjustable 

parameters of the nonlinear transfer functions are as follows: 


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In Eq. (10), 
bndanw ))(()(  , ba, are the adjusting factors. The value of regulatory 

factor is larger than 1. If the strong component amplitude of the signal is larger than 1, 

then adjusting the value of b  can make the strength component comparison larger. If the 

strong component amplitude of the signal is less than 1, then further adjusting the value of 

a  can achieve the same effect. After the transformation of )(nw , regulators ba,  can 

make the strong component larger and the weak component smaller of the time series

)(nd , which increases the contrast between sharp pulse and noise. 

If )(nd  is the value generated by the noise, compared with the larger sharp pulse, 

then its value is relatively small. Thus, 

0
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1,1
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                                                   (11) 

If )(nd  is the value generated by the few large sharp pulses, then  
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If the difference between the few large sharp pulses and noise is larger, then 

adjustments in ba,  can make such difference even larger. If the few large sharp pulses 

and noise do not have a slight difference between them, then adjusting ba,  
can increase 

the difference. They can effectively highlight the sharp pulse of time sequence, which 

achieves the purpose of noise suppression. 

Considering the influence of noise, the iterative computation steps of the GWMED 

algorithm are as follows: 

1. Estimate the variance   of signal;  

2. Calculate )(nx ’s correlation matrix A  and its inverse matrix, in which the coefficient 

of the initial filter 
0f is 1; 

3. Compute the output signal )()( 0 nxfnd  ;
 

4. Calculate )(nw  and apply to the transformation )()(
^

ndnd  ;
 

5. Calculate matrix b ; 

6. Update the filter coefficients bIA 121 )(  f ;  

7. Calculate the iterative criterion, and make the kurtosis value of signal as the criterion. 

The calculation of the kurtosis is expressed as 2

1

2

1

4 )/()( 
n

n

n

n ddjk ( j is the 

iterations number). Assess whether )1()(  jkjk  is smaller than the given threshold. 

If it is smaller than the given threshold, then the iteration should stop. Otherwise, the 

iteration should continue and return to step 3. 

 

5. Experimental Results and Discussion 

The experimental object is a gas pipeline, which is 1000 mm long, has a 273 mm 

outside diameter, and 8 mm wall thickness. The pipe material is X70 steel. The outer 

surface of the pipe prefabricates the artificial defect, with a rectangular shape, and is made 

with cutter. The defect is 20 mm long, 2 mm wide, and 3 mm deep, and is 128 mm from 

the transducer in the axial direction. The experimental testing system is composed of a 

center frequency of 0.5 MHz wedge ultrasonic probes, AD-IPR1210 pulsed ultrasonic 

transceiver card, four-channel 4104B-Tektronix digital storage oscilloscope, and industrial 

personal computer (IPC). Figure 1, shows the schematic diagram of the experimental 

system. The experiment uses the oblique wedge technology to inspire L (0, 2) guided 

wave mode for testing. Data are recorded in the form of A-SCAN. Figure 2 (a), shows the 

original signal waveforms. 
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Figure 1. Schematic Diagram of Experiment One 
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(a) Original Measurement Signal 

 
(b) Minimum Entropy Deconvolution 

 
(c) Generalized Weighted Minimum Entropy Deconvolution 

Figure 2. Original Signal and Several Deconvolution Results 

Figures 2 (a), (b), (c), show that the resolution of the GWMED algorithm was 

improved significantly; the reflection coefficient estimation precision of the algorithm is 

higher than that of the MED algorithm. Based on the ultrasonic reflection sequence, the 

arrival time of the ultrasonic echo can be calculated. Because the ultrasonic guided wave 

has the characteristic of dispersion, the arrival time of the echo is the corresponding 

arrival time of the echo-peak. Figure 2, shows that the arrival time of the echo-peak is 

75.14 s . The ultrasonic echo arrival time of the MED algorithm is 76.18 s , while that 

of the GWMED algorithm is 76.24 s . The propagation speed of mode L (0, 2) in the 

X70 pipeline steel is 3326 m/s. The axial position of defect is 124.958 mm, 126.688 mm, 

and 126.787mm. Compared with the actual axial position of defect, the error of 

calculation are 3.042 mm, 1.312 mm, and 1.213 mm. Therefore, using the GWMED 

algorithm to calculate arrival time of echo is effective. Table 1, presents the iteration 

number of the different algorithms. Based on Table 1, the iteration number of the 

GWMED algorithm is significantly reduced compared with that of the MED algorithm. 

By adjusting the value of a ,b , the iteration number can be reduced effectively. However, 

when a ,b  is adjusted to a certain value, the iteration number tends to be saturated.  
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Table 1.Iteration Number of the Different Deconvolution Algorithm 

 

Minimum entropy 

deconvolution  

MED 

Generalized weighted minimum entropy 

deconvolution GWMED 

1,100  ba  3,100  ba  

iteration number 13 6 4 

 

The kurtosis coefficients reflect the impact component of the signal. Thus, the kurtosis 

values are calculated with the results of certain deconvolution algorithm Figure 3. Figure 

3, shows that the kurtosis growth of the GWMED algorithm changes rapidly, which 

illustrates that a strong or weak component contrast variation of the reflective sequence is 

rapid. When 3,100  ba , and involving only 4 iterations, the same kurtosis value is 

obtained through the GWMED algorithm. Figure 2, shows the kurtosis value of all kinds 

of algorithm corresponding to each iteration. 

 

 

Figure 3. Relationship between Iteration Numbers and Kurtosis Value 
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Figure 4. Schematic Diagram of Experiment Two 

Figure 4, shows the schematic diagram of Experiment Two. The gas pipeline is 500 

mm long, has a 273 mm diameter, and 8 mm wall thickness, and is made of X70 steel 

materials. The transducer and test equipment of Experiment Two is the same as those of 

Experiment One. Both experiments use the sampling frequency of 250 MHz. The defect is 

a prefabricated artificial crack, which is 25 mm in length, 3 mm wide, and 4 mm deep. 

Furthermore, the defect is 30 mm from the pipe end. Figure 5 (a), shows the measurement 

signal. 
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(a) Reflection Signal of the Defect and End Face 

 
(b) Result of the Generalized Weighted Minimum Entropy Deconvolution 

Figure 5. Original Reflection Signal and Deconvolution Results of the Defect 
and End Face 

Figure 5, shows that the reflection signals of the defect and end face are overlapping, 

and cannot be distinguished. Using GWMED can obtain two clear sparse spikes. This 

result indicates that the algorithm can effectively distinguish between echo signals that are 

mixed together. Figure 5 (b), shows that the time difference of the two sharp pulses is 9.5

s . The distance calculated by the wave velocity in the pipe is 31.597 mm. The 

experiment proves that the GWMED algorithm can effectively improve the resolution. 

 

6. Conclusion 

This study presents an adjustable parameter of nonlinear weighted transform and 

combines with the MED algorithm, which can obtain the optimal deconvolution filter 

effectively. The algorithm has the better sparse results than MED. This study discusses the 

effect of the regulation parameter a ,b  and kurtosis value. 

The results indicate that making weighted nonlinear transform for sparse reflection 

sequence can effectively increase the contrast between the large sharp pulse and the small 

sharp pulse. Signal sparsity is stronger after the transformation, which suppresses the 

noise component on the deconvolution and improves the resolution of the signal. 

Moreover, the number of iteration is reduced effectively. The algorithm has a good effect 

on accurately obtaining TOA or TOF of the ultrasonic guide wave signal, as well as the 

accurate pinpointing of the defect. 
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