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Abstract 

The efficiency of spectral clustering depends heavily on the similarity measure 

adopted. A widely used similarity measure is the Gaussian kernel function where 

Euclidean distance is used. Unfortunately, the result of spectral clustering is very 

sensitive to the scaling parameter and the Euclidean distance is usually not suitable to the 

complex distribution data. In this paper, a spectral clustering algorithm based on fuzzy 

partition similarity measure ( FPSC) is presented to solve the problem that result of 

spectral clustering is very sensitive to scaling parameter. The proposed algorithm is 

steady extremely and hardly affected by the scaling parameter. Experiments on three 

benchmark datasets, two synthetic texture images are made, and the results demonstrate 

the effectiveness of the proposed algorithm. 

 

Keywords: spectral clustering, fuzzy clustering, fuzzy partition matrix, image 

segmentation 

 

1. Introduction 

Image segmentation is just to segment an image into different subimages with different 

characters and get some interested objects. It is the important process of image analysis 

and image understanding [1], and plays a fundamental role in computer vision as a 

requisite step in such tasks as object detection, classification, and tracking [2]. As one of 

key methods of image segmentation, clustering algorithms have been widely used in 

image segmentation [3-]. In the past few decades, spectral clustering algorithms [4-29] 

which combined with spectral graph theory have shown great promise in data clustering 

and image segmentation. It realized dimension reduction by transforming the original 

dataset into a new one in lower-dimensional eigenspace, then performed clustering by 

using the eigenvectors of the normalized similarity matrix derived from the original 

dataset in lower-dimensional eigenspace. Spectral clustering methods attracts more and 

more interests because of its high performance in data clustering and simplicity in 

implementation, and have been successfully used to solve data clustering and graph 

partitioning problems. 

However, there are still some open problems in traditional spectral clustering 

algorithms. 

Firstly, the similarity measure is usually constructed by the Gaussian kernel function 

based on Euclidean distance. The obvious drawback of similarity measure is that the 

Gaussian scaling parameter is a somewhat sensitive parameter and the measure based on 

Euclidean distance cannot fully reflect the complex space distribution of dataset, and it is 

undesirable when clusters develop complicated manifold structure [12], therefore, it is 

crucial to choose a suitable similarity measure for spectral clustering algorithms. To 

overcome the influence of the scale parameter, Zelnik-Manor and Perona[13] proposed a 

self-tuning spectral clustering algorithm(STSC) that utilized a local scale for each data 

point to replace the single scale parameter, however, the local scale parameter in STSC, 
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the distance to a nearby neighbor, is still a Euclidean distance factor and cannot make any 

contribution to clustering better than using the scale parameter of Gaussian kernel 

function [20]. Fischer, B. et. al., [21] proposed the path-based similarity, this similarity 

reflects the idea that no matter how far the physical distance between two points, they 

should be considered as in one cluster if they are connected by a set of successive points 

in dense regions. This is intuitively reasonable. However, it is not robust enough against 

noise and outliers [22]. Feng Zhao et. al., [23] proposed fuzzy similarity measure by 

utilizing the partition matrix obtained by fuzzy c-means clustering algorithm. Secondly, 

when the scale n of the data set is relatively large, the overall time complexity and space 

complexity of standard spectral clustering can reach O(n3) and O(n2) respectively [9], 

which is difficult to store and decompose a large similarity matrix, especially for one 

image. Fowlkes et. al., [4] presented the Nyström approximation technique to alleviate the 

computational burden of spectral clustering algorithms. Wen-Yen Chen et. al., [30] 

generated sparse similarity matrix using the t-nearest-neighbor method to avoid the dense 

similarity matrix storing problem. 

There are several papers reported the kernel fuzzy-clustering algorithm has better 

performance than the standard FCM. Authors in [24] reported good performance of kernel 

fuzzy-clustering algorithm on a 2-dimensional non-linearly separable synthetic dataset 

and compared the obtained results with those produced by the standard FCM; the 

classification rate for kernel FCM is much higher than standard FCM. The kernel based 

clustering algorithms can cluster specific nonspherical clusters such as the ring cluster, 

and quite well outperform FCM for the same number of clusters [25]. In this paper, a 

novel kernel fuzzy similarity measure is proposed and a new spectral clustering algorithm 

based on this measure is used in image segmentation. To alleviate the computational 

complexity, time and space complexity of the algorithm and avoid the dense similarity 

matrix storing problem, the t-nearest-neighbor method is applied to the algorithm. 

The rest of this paper is organized as follows. In Section 2, we present a short overview 

about techniques of NJW, A new kernel fuzzy similarity measure which is used to 

construct the similarity matrix and the proposed FPSC method for image segmentation are 

described in details in Section 3. Experimental results analysis, discussion and parameter 

setting are described in Section 4. Finally, conclusions are given in Section 5. 

 

2. Spectral Clustering Algorithm and the NJW Method 

Spectral clustering methods widely adopt graph-based approaches for data clustering. 

Given a dataset  1 2, , nX x x x  in
dR  with d clusters, we represent the dataset 

X  as a weighted graph ( , )G V E , of which { }iV x  Set of n  vertices represent n data 

points, and { }ijE W  Set of weighted edges indicate pairwise similarity between the 
ix  

and jx data points. The element ijW  of the affinity matrix is measured by a typical 

Gaussian functionError! Reference source not found.     
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Furthermore, the degree matrix D is a diagonal matrix whose element (
1

n

ii ij

j

D W


 ) 

is the degree of the point 
ix . In above framework, clustering problem can be seen as a 

graph partitioning problem. 
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As a spectral approach to graph partitioning problem, NJW method [27] is one of the 

most widely used spectral clustering algorithms. It uses the normalized affinity matrix as 

the Laplacian matrix and solves the optimization of the normalized cut criterion through 

considering the eigenvectors associated with the largest eigenvalues. The idea of NJW 

method is to find a new representation of patterns on the first k  eigenvectors of the 

Laplacian matrix. The details of NJW method are given as follows. 

(1) Form the affinity matrix 
n nW R   defined by formula (1). 

(2) Compute the degree matrix D  and the normalized Laplacian matrix 
1/2 1/2L D WD  . 

(3) Let 
1 21 k      be the k  largest eigenvalues of L  and 

1 2, , , kp p p  be the 

corresponding eigenvectors. Form the matrix 
1 2[ , , , ]k n kP p p p R   and here 

ip  is 

the column vector. 

(4) Form the matrix Y  from P  by renormalizing each rows of P  to have unit length 
2 1/2(i.e., / ( ) )ij ij ij

j

Y P P  . 

(5) Treat each row of Y  as a point in 
kR  , and cluster them into k clusters via kmeans 

algorithm to obtain the final clustering of original dataset. 

However, the similarity measure in NJW algorithm[4], i.e., Gaussian kernel similarity 

measure, is sensitive to scaling parameter. To overcome this defect, the proposed new 

similarity measure in this paper is used to resolve the sensitivity problem of NJW method. 

 

3. The Proposed FPSC Method 

KFCM represents the kernel version of FCM by exploiting a kernel function for 

calculating the distance of data points from the cluster centers that is mapping the data 

points from the input space to a high dimensional space H (a Hilbert space usually called 

kernel space). In the new kernel space, the data show simpler structures or patterns. 

According to clustering algorithms, the data in the new space are more spherical and 
therefore can be clustered more easily by FCM algorithms [14-]. 

 

3.1. Kernel Fuzzy C-Means Clustering (KFCM) 

Given a dataset  1 2, , nX x x x in the p-dimensional space 
pR , in KFCM, a 

nonlinear map is defined as : , ( ).pR H x x   where x X ,  is a nonlinear 

mapping function from this input space to a high dimensional feature space H. The key 

notion in kernel based learning is that mapping function   need not be explicitly 

specified, and the dot product in the high dimensional feature space can be calculated 

through the kernel function )()(),( jiji xxxxK  . Based on the above, KFCM 

algorithm partitions X into c fuzzy subsets by minimizing the following objective function: 

2

i 1 1

( , ) ( ) ( () )
c n

m

m ik i

k

kJ U V u x v 
 

                                                                       (2) 

where: c is the number of clusters , n is the number of data points, (1 )iv i c  is the 

centroid of i-th cluster, (1 ,1 )iku i c j c    represents the fuzzy membership of k-th 
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data point belonging to the i-th cluster, satisfying 
1

1
c

ik

i

u


 , where 

( 1, 2 , 1, 2 )
ik

U u i c k n   is partition matrix,  1 2, , , p

cV v v v R  is cluster 

centers, m is a constant, known as the fuzzifier (or fuzziness index), which controls the 

fuzziness of the resulting partition. In particular, we set m = 2 in this paper. 
2

( ) ( )k vx x  is the square of distance between ( )kx  and ( )vx .   

The distance in the feature space is calculated through the kernel in the input space 

as follows: 

2
( )- ( ) ( ( )- ( ))( ( )- ( ))

( ) ( ) 2 ( ) ( ) ( ) ( )

( , ) 2 ( , ) ( , )

k i k i k i

k k k i i i

k k k i i i
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x x x v v v

K x x K x v K v v

      

      

  

                                      (3) 

In KFCM, the Gaussian function is taken as the Kernel function, namely 
2

( , ) exp( / )K x y x y    . where  defined as Kernel width, is a positive number, 

then K(x, x) = 1, and according to Eq.(2), Eq.(1) can be rewritten as 

i 1 1

( , ) 2 ( ) (1 ( , ))
c n

m

m ik

k

k iJ U V u K x v
 

                                                                     (4) 

where 1 ( , )k iK x v can be considered as a robust distance measurement derived in the 

kernel space [18]. 

 Finally, solving Eq.(4) for the minimum value of J will get the partition matrix U 

and clustering center V as follows: 
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3.2. Kernel Fuzzy Similarity Measure 

The membership value 
ij  in partition matrix U obtained by KFCM denotes the 

probability that a data point belonging to a specific cluster. Therefore, we can reasonably 

assume that two data points belonging to the same cluster have higher similarity, while 

two data points belonging to different cluster have lower similarity. Let 

1 2{ , , , , , }i nU  u u u u , here, 
iu is the i-th column vector of matrix U, it consists of 

the membership value that data point xi belonging to c clusters. We can also assume 

similarity between two data points through their membership distribution, namely, the 

greater the inner product of  
iu  and 

ju , the higher the similarity of 
ix  and 

jx . 

Conversely, the smaller the inner product of 
iu  and 

ju , the lower the similarity of 
ix  and 

jx . Based on this idea, a new kernel fuzzy similarity measure is proposed. 
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Algorithm 1: a new kernel fuzzy similarity measure 

Input: Dataset X to be clustered. 

Output: Obtain the similarity matrix S of the dataset. 

Step 1. Cluster the data set X into c clusters by KFCM, and obtain the partition matrix U . 

Step 2. Let 1 2{ , , , , , }i nU  u u u u , here, 
iu  is the i-th column vector of matrix U, it 

consists of the membership value that data point 
ix  belonging to c clusters. 

Step 3. For each
ix   and 

jx , 

If 
ix  and 

jx  belonging to the same cluster, 

1ijs 
; 

Else 
( 2) ( )

1i jLn

ijs e


 
u u

. 

Step 4. Finally, the similarity matrix S is obtained. 

To apply our method to texture image segmentation, NSCT (Non-subsampled 

Contourlet Transform) texture feature extracted from the image are used as a suitable 

image representation. The subband energy information of NSCT decomposition can 

describe the image feature splendidly. We also perform three-level discrete wavelet 

decomposition on texture images to extract a ten-dimension energy feature using a 

16×16window, 

which can be written as 

1 1

1
( ,

M N

i j

E coef i j
MN  

  ）                                                                                               (7)  

where M × N is the subband size and |coef(i, j)| is the coefficient in the i-th row and j-th 

column of the subband. To avoid storing the dense similarity matrix, we employ the t-

nearest-neighbor method [30] when we construct the kernel fuzzy similarity matrix. 

 

3.3. FPSC Method for Texture Image Segmentation 

The usual outline of FPSC for texture image Segmentation is as follows: 

Algorithms 2: FPSC 

Input: A M × M image I to be segmented; the number k of the image segmentation; 

t-nearest-neighbor parameter t in FPSC. 

Output: Segmented image. 

Step 1. Feature extraction using Non-subsampled Contourlet Transform(NSCT), compute 

the texture features of each pixel in the image by Eq.(7), and obtain the texture feature 

dataset X with M2 instances and 10 attributes. 

Step 2. Construct the similarity matrix S using proposed kernel fuzzy similarity measure. 

Step 3. Compute the dominant eigenvectors matrix 
2( ) n nV R n M by adopting 

Nystr öm approximation technique. 

Step 4. Let 
1 21 k      be the k  largest eigenvalues of S and 

1 2, , , kp p p  be 
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the corresponding eigenvectors. Form the matrix
1 2[ , , , ]k n kP p p p R    and here 

ip  

is the column vector. 

Step 5. Form the matrix Y from P by normalizing each of s rows to have unit length 
2 1/2(i.e., / ( ) )ij ij ij

j

Y P P   

Step 6. Treat each row of Y as a point in 
kR  , and and cluster them into k clusters by K-

means algorithm to obtain the final segmentation results of image I. 

 

4. Experimental Results and Analysis  

In order to investigate the quality of FPSC algorithm visually, we first tested the 

NJWN, STSC and FPSC algorithms on three benchmark synthetic datasets and analyzed 

the parameters sensitivity of the proposed FPSC algorithm. Then utilized NSCT texture 

feature extraction and apply the NJWN, STSC and proposed FPSC on two synthetic 

texture images. To avoid the dense similarity matrix storing problem, t-nearest-neighbor 

method was used to generate sparse similarity matrix in STSC and FPSC algorithms. For 

NJWN method, the number of random samples of pixels in the image is set to 100 in the 

following experiments. Our experimental environment are implemented in MATLAB 

7.10 (R2010a) and performed on a computer with Intel (R) Xeon (R) CPU, 2.53 GHz and 

Windows XP Professional. In our experiments, kernel parameter  is set using fast 

bandwidth selection rule by paper [19] proposed. 

 

4.1. Experiments on Three Benchmark Synthetic Datasets 

The three benchmark synthetic datasets are Threecircles, LineBlobs and Twomoon. 

Figure 1(a)-(c), presents the three datasets respectively. How about the parameter settings 

of the three algorithms for three benchmark synthetic datasets are? The specific 

experimental settings for them are shown in Table 1. Parameter settings in NJWN: the 

scale parameter σ varied in the interval [0.05 1] with step length 0.01. Parameter settings 

in STSC and FPSC: the parameter t (nearest neighbor number) varied in the interval [5 50] 

with step length 5. To reduce the instability in initialization, the centroids obtained by K-

means are taken as the initial centroids of FPSC. For all the methods, we performed 10 

independent runs under their own parameters. Accuracy is widely used to evaluate 

clustering performance. To compute it for a clustering result, we need to build a 

permutation mapping function that maps each cluster index to a true class label. 

Following [26], this measure to evaluate the cluster quality is defined as: 

1
( , ( ))

n

i ii
y map c

Accuracy
n





                                                                                   (8) 

where n is the number of samples and
iy and 

ic denote the true label and the algorithms 

clustering label respectively, ( , ) y c  equals one if y c , or else, it equals zero. map(·) 

maps each cluster label to a category label. The smaller the Clustering Error, the better the 

performance. The maximum average Accuracy rates were listed in Table 1. 
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(a) Threecircles dataset          (b) LineBlobs dataset           (c) Twomoon dataset 

Figure 1. Three Original Datasets 
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(a) NJWN: accuracy                  (b) STSC: accuracy                       (c) FPSC: accuracy 

Figure 2. A Clustering Quality Comparison between NJWN, STSC and FPSC 
using the Three Circles Dataset 
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(a) NJWN: accuracy                  (b) STSC: accuracy                     (c) FPSC: accuracy 

Figure 3. A Clustering Quality Comparison between NJWN, STSC and FPSC 
using the LineBlobs Dataset 
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(a) NJWN: accuracy                  (b) STSC: accuracy                     (c) FPSC: accuracy 

Figure 4. A Clustering Quality Comparison between NJWN, STSC and FPSC 
using the Twomoon Dataset 

Table 1. Comparison of Maximum Average Accuracy Rate(%) 

   Alogrithm LineBlobs Threecircles Twomoon σ t 

NJWN 86.43 61.20  81.60 0.05:0.01:1 ------- 

STSC 86.20 62.31 98.71 ------- 5:5:50 

FPSC 97.37 79.60 98.75 ------- 5:5:50 
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4.2. Sensitivity Analysis of Parameters 

It can be seen from Table 1, that the average maximum accuracy of FPSC is better than 

NJWN and STSC algorithms. Figure 2-4, show the clustering accuracy performance of 

NJWN, STSC and FPSC on Threecircles, LineBlobs and Twomoon datasets respectively. 

For the Threecircles dataset, the clustering accuracy of NJWN and STSC algorithms 

greatly change with the scaling parameter, however, the clustering results of FPSC 

algorithm are steady extremely and hardly affected by the scaling parameter in t-nearest-

neighbor method. For the LineBlobs and Twomoon datasets , likewise, the clustering 

results of SASC algorithm are more stable than those of NJWN and STSC algorithms. 

Moreover, the average accuracy rate of FPSC is more higher than that of NJWN and 

STSC on the three datasets. It is obvious that our method is robust to scaling parameter on 

the three synthetic datasets. 

 

4.3. Experiments on two Textures Images 

In order to apply our method to texture image segmentation, we tested NJWN, STSC 

and the proposed FPSC methods on two synthetic images. Figure 5, shows that the two 

synthetic images texture with two and three categories respectively and their ideal 

segmentation. For all the methods, we performed 10 independent runs. The maximum 

average Accuracy rates were listed in Table 2. As shown in Table 2, the maximum 

accuracy of FPSC slightly outperform NJWN and STSC methods. Figure 6 shows the 

optimal segmentation results of the synthetic texture Image1 with two categories using the 

three algorithms, respectively. It can be seen that there are some misclassified spots in 

black regions in Figure 6(a) using the NJWN method at 0.2  ; whereas, the segmented 

results of STSC and FPSC methods at t=20, presented in Figure 6(b), and and 6(c), are 

better than the first algorithms. The statistical results in Table 2, also agree with the 

visually inspection in Figure 6. From the segmentation results of two categories texture 

Image1, FPSC method obtains similar performance to STSC method and is more effective 

than NJWN method. Also, we can see that the segmented results obtained by FPSC 

method are better than those of STSC method in boundary regions. As shown in Table 2, 

when considering the clustering quality in accuracy, FPSC achieves comparable 

performance to STSC and performs slightly better than NJWN. 

Figure 7, shows the optimal segmentation results of the synthetic texture Image2 with 

three categories using the three algorithms, respectively. It can be seen, there are more 

misclassified spots in the peripheral region of black circle in Figure 7(a), than in Figure 

7(b), and in Figure 7(c). For FPSC method under t=40, we can find the optimal 

segmentation result is slightly better than STSC method under t=40 and much better than 

NJWN method at 0.1  .The statistical results in Table 2, also agree with the visually 

inspection in Figure 7. The results of FPSC in Table 2, indicate that our method obtains 

the maximum average accuracy rate and the optimal visual result. 

As seen in Figure 6-7, and Table 2, FPSC have obtained more satisfying segmentation 

results than other two algorithms. Considering the segmentation experimental results of 

three algorithms on the two synthesized texture images, we can conclude that FPSC has 

obtained impressive and encouraging partitioning results. 
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(a) Image1               (b) Image1:                 (c) Image2            (d) Image2: ideal 
                          ideal segmentation                                            segmentation 

Figure 5. Synthetic Texture Images and their Ideal Segmentation 

   
(a)  NJWN            (b)  STSC              (c)  FPSC 

Figure 6. Optimal Segmentation Results of Image1 

     
(a)  NJWN            (b)  STSC               (c)  FPSC 

Figure 7. Optimal Segmentation Results of Image2 

Table 2. Comparison of Maximum Average Accuracy Rate(%) 

Alogrithm Image1 Image2 σ      t 

NJWN 97.54 97.71 0.05:0.01:1 ------- 

STSC 97.71 97.76 ------- 20:20:100 

FPSC 97.82 97.80 ------- 20:20:100 

 

5. Conclusion 

In this paper, a novel similarity measure called kernel fuzzy similarity measure is 

proposed to solve the problem that the result of spectral clustering is very sensitive to 

initialization and scaling parameter. Then this novel measure is integrated into spectral 

clustering to get the new FPSC algorithm. The clustering results of FPSC algorithm are 

steady extremely and hardly affected by the scaling parameter in t-nearest-neighbor 

method. It can not only avoid the influence of the scale parameter on spectral clustering 

effectively, but also is reliable than the Euclidean distance for the ”neighbour” selection. 

Experiments conducted on three benchmark datasets, two synthetic texture images and 

two real images show that the similarity measure and proposed FPSC method is effective. 

Our further works include the adaptive determination for the clustering number in our 

algorithm. In addition, texture features extraction is another key technique in image 

segmentation, which deserves further study. 
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