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Abstract 

The sensing matrix has an important influence on the original signal sampling and 

reconstruction algorithm in the compressed sensing theory. A complete random sensing 

matrix has the drawbacks of large storage and high complexity in its implementation. In 

this paper, we propose an interlaced filling algorithm to construct the sensing matrix, 

which has a quasi-cyclic structure for efficient hardware implementation. The new 

sensing matrix has small coherence, which provides assurance for the recovery of sparse 

signal. Meanwhile, some experimental comparison with the other sensing matrix is 

accomplished. The simulation results demonstrate that the proposed sensing matrix not 

only obtains better performance but also owns easy hardware implementation. 
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1. Introduction 

Traditional approaches to sampling signal follow the celebrated Nyquist theorem: the 

sampling rate must be at least twice the maximum frequency present in the signal. 

Unfortunately, in many important and emerging applications, the sampling rate is so high 

that we deal with far too many samples that need to be transmitted, stored, and processed. 

Compressed sensing (CS) [1-3] is an innovative signal processing mode, and its theory 

shows that a finite-dimensional signal having a sparse or compressible representation can 

be recovered from a small set of linear measurements. 

At present, the core problem of CS research mainly includes two aspects: signal 

measurement and reconstruction algorithm. Signal measurement is done by sensing 

matrix. An important and meaningful criteria called restricted isometry property (RIP) for 

was introduced by Candes and Tao [4]. A number of random matrices, such as Gaussian 

matrices and Fourier matrices satisfy RIP with preponderant probability. In spite of the 

theoretical advantages, a random matrix has the defects of high complexity and large 

storage to its implementation. Deterministic sensing matrices can avoid these drawbacks. 

For the deterministic sensing matrices constructions, binary 0-1 matrices have been 

brought to a remarkable attraction [5-9]. Recently, Dimakis [10] showed that parity-check 

matrices of "good" channel codes can be used as probably "good" measurement matrices 

under basis pursuit.  

The main contribution of this paper is to use interlaced filling algorithm to construct 

the sensing matrix, which has a quasi-cyclic structure for efficient hardware 

implementation. The experimental results show that the performance of the proposed 

sensing matrix outperforms the Gaussian random matrix, a sparse random matrix, 

Toeplitz matrix and Bernoulli matrix. The paper is organized as below. In Section 2, the 

theory of compressed sensing is recalled. Section 3 shows the interlaced filling algorithm 

is used to construct the sensing matrix and analysis recovery conditions by coherence. In 

Section 4, experiments are carried out in order to simulate the performance of the 

proposed sensing matrix. Finally, the conclusion is given in Section 5. 
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2. The Theory of Compressive Sensing 

Compressed Sensing is a quite new framework that enables to get exact and 

approximate reconstruction of sparse or almost sparse signals from incomplete 

measurements. CS theory considers a k-sparse signal Nx with k nonzero elements, 

and then the system can get the measurements
My from linear projection in the 

noiseless setting.  

y Hx                                                                                                                   (1) 

Where M NH   is the sensing matrix with M N . The solution to this system by 

solving the following 0l -minimization problem 

0
min . .x s t Hx y                                                                                     (2) 

However, (2) is NP-hard problem in general, which is a non-convex optimization 

problem. There are two kinds of solution to recover the k-sparse signal x. The first 

method is to found convex relationship to (2), and x can recovered via 1l -

minimization 

1
min . .x s t Hx y                                                                                      (3) 

This solution to recover the k-sparse signal x can be completed by the basis pursuit 

(BP) algorithm [11]. The second method is greedy algorithms for 0l -minimization, 

such as orthogonal matching pursuit (OMP) [12], which can exactly recover x. 

The construction of the sensing matrix is part of the main concerns in CS. In 

order to select the appropriate matrix, some criteria have been proposed. An 

insightful and useful criteria RIP was proposed [4-13]. In addition, Xu [14] 

proposed a sufficient and necessary condition of exactly recovering, named the null 

space property (NSP). Although NSP and RIP all provide guarantees for the 

recovery of k-sparse signal, but they are very hard computable. In many cases it is 

preferable to use properties of H that are easily computable to provide more 

concrete recovery conditions. The coherence of a matrix is one such property. 

The coherence of a matrix H, denoted ( )H , is the largest absolute inner product 

between any two columns
ih ,

jh of H and is then defined as: 

 
1

2 2

,
max

i j

i j N
i j

h h
H

h h


  
                                                                                     (4) 

Where , T

i j i jh h h h  denotes inner product of vectors. The following 

proposition bounds the value of the coherence for an arbitrary matrix. Let H be a 

matrix of size M N   with M N , whose columns are normalized so that 1ih   

for all i. Then the mutual coherence of A satisfies 

  1
( 1)

N M
H

M N



 


                                                                                        (5) 

The lower bound in (5) is known as the Welch bound [15]. If N M , the lower 

bound is approximately   1H M  . 
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3. The Construction of Sensing Matrix via Interlaced Filling Algorithm 
 

3.1. A Representation of Matrix by a Distance Graph 

The matrix can be represented with distance graph [16], where vertices are rows 

and edges represent columns. If the two vertices, xh  and
yh , are connected in the 

graph, then 1xr yrH H   for a column r. That is, the "1" entries in the matrix 

indicates that the two vertices are connected in the graph. The number of rows is 

equal to the number of vertices in the graph whereas the number  of columns is equal 

to the number of edges. Figure 1 (a), shows a distance graph of four vertices and a 

minimum cycle length of three, a corresponding matrix is showed as in part (b) of 

the Figure1. In the graph, each vertex is a row of a matrix, and each edge represents 

a column of the matrix. In general the size of the matrix is given by 2M Mk , 

where M is the number of vertices; k is the degree of each vertex (row weight) and 

2Mk is the number of edges.  
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(a) A Distance Graph                            (b) The Corresponding Matrix 

Figure 1. A Matrix Derived from a Distance Graph  

The cycle in a distance graph is composed of a path of edges or vertices starting 

from a vertex xh and ending at xh . The length of girth, g, is the smallest cycle in the 

graph. A cycle of length of g in the graph corresponds to a cycle of length 2g in the 

matrix. Therefore, the graph cycle represents half of the matrix cycle . A cycle of 

three in the distance graph is shown Figure 1 (a) in dotted lines between vertices 1, 

2 and 4. It forms a cycle of six between rows 1, 2, 3 and columns 2, 4 in matrix form 

as shown part (b) of the Figure 1. 

 

3.2. The Construction of Sensing Matrix 

Many random matrices, such as Gaussian matrices and Fourier matrices have been 

verified to satisfy RIP with overwhelming probability. However, there is no guarantee 

that the random matrix of the specific implementation methods. Moreover, storing a 

random matrix may require lots of storage space. The deterministic construction of 

sensing matrices is necessary. There are many works on deterministic constructions. This 

paper presents an interlaced filling method to construct the sensing matrix, which has a 

quasi-cyclic structure to efficient hardware implementation. Vertexes or rows are divided 

into the same size group to obtain a block structure in the form of sub-matrices. In order 

to obtain the cyclic structure in sub-matrix, Vertexes in the group are connected according 

to their position. The basic idea of the algorithm is as follows: 
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1. We assume that the number of vertices of the distance graph is M, the row weight of 

the matrix is k, and the column weight is j. Divide rows into equal groups  1 2, , , jG G G , 

each group contains p rows, where p M j . xr is the row x . 
xr
is a set of rows within a 

distance of g from xr .   

2.  Divide  1 2 1, , , ,j jG G G G
 into sub-groups with j  row-groups with   each row-

group appearing k  times. The number of sub-groups is k ,  1 2 1, , , ,k kGP GP GP GP
. 

3. For 1t   to k  

                {  (1)   Select 1 tGP GP  as a reference group 

                    (2)   Select 1 1r GP  as a reference row 

                    (3) Sequentially search 1j   row  2 jr r ,where  2 j tr r GP  (Such 

conditions must be met: the distance  between each row and the reference row 1r  is at 

least g, and the distance between each other is at least g ). If such a row can be found, then 

1r  is connected to xr (the corresponding position in the matrix is filled by "1", and execute 

(4), else the algorithm fails. 

                   (4) For 1z   to 1p   

                          { if 1r  is connected to xr , 1 zr   is connected to x zr  . 

                            else the algorithm fails.} 

                  }. 

4. Use obtained distance graph to form deterministic sensing matrix. 

Figure 2, shows row connections for the matrix H (20, 2, 4) with girth of eight, which 

uses our proposed algorithm. The total numbers of rows of the matrix H is 10，and the 

number row-groups, j, is 2. The size of each group, p M j , is 5. Group 1 has rows 1 to 

5  1 2 3 4 5, , , ,r r r r r  row, and group 2 rows 5 to 8  6 7 8 9 10, , , ,r r r r r  row. The number of sub-

groups, k, is 4. The 4 sub-groups are [1 2], [1 2], [1 2] and [1 2] with each group 

appearing four times. An interlaced filling method for a row satisfying the distance is used 

in this case. Group 1 and row 1 are always be chosen as the reference group and row. 

During the first filling process, row 6 is found to satisfy the distance of four (desired 

girth) from row 1. Therefore, the 1 rows and 6 rows of the 1 column of the matrix are 

filled with "1" entries. The rest of group 1 rows, rows 2 to 5, are then filled to rows 7 to 

10 with "1" entries. In the second search, row 7 is the first to satisfy the distance. It is 

filled to row 1 with the rest of group 1 filled to the rest of group 2. This process is 

repeated in the third and fourth filled processes as shown in Figure 2. We can see from the 

distance graph, the number of vertices is 10, a vertex degree equal to four and a girth of 

four. Figure 3 is the corresponding matrix representation. From the matrix can be seen, 

the top five rows contain four identity sub-matrices as the first group is not searched or 

shifted. The bottom 4×4 cyclic shifted sub-matrices represent group 2 searching. 
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(a)The First Filled   (b)The Second Filled  (c)The Third Filled    (d)The Fourth Filled 

Figure 2. The Distance Graph Representation of (20, 2, 4) Code with Girth-8 
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Figure 3. The Matrix Representation of (20, 2, 4) Code with Girth-8 

The proposed sensing matrices H can be represented by circulant permutation matrices 

I as follows: 
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                                                                         (6) 
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Where  0,1, , 1ijp s  , s executes the right cyclic shift operation for 

times, 0 vi w  , 0 ci w   , ijp
I represents identity matrix cyclically shifted the 

columns to the right 
ijp  positions. The index matrix P is defined by 

00 01 0( 1)

10 11 1( 1)

( 1)0 ( 1)1 ( 1)( 1)

c

c

v v v c

w

w

w w w w

p p p

p p p
P

p p p





   

 
 
 

  
 
  

                                                                      (7) 

The design of index matrix P is widely investigated, such as array codes. In order to 

avoid 4-cycle, (6) is expressed as (8). Any rows have overlapping "1" in more than one 

position. 

1( 1)11

( 1)1 ( 1)( 1)

wc

w w wv v c

pp

p p

I I I

I I I
H

I I I


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 
 
 

  
 
 
 

                                                                                (8) 

A deterministic construction of compressed sensing matrix is constructed with the 

interlaced filling algorithm. The algorithm divides rows into equal group sizes to obtain 

the sub-matrix or block structure, which has a quasi-cyclic structure to efficient hardware 

implementation. In order to get the structure of the circular matrix, the rows are divided 

into equal groups. Rows are filled in their numerical order to obtain a cyclic structure in a 

group. Two rows that are composed of columns must be satisfied with the distance 

between them to get the desired cycle. The quasi-cyclic structure of the sensing matrix is 

easier to implement in hardware. 

 

3.2. The Coherence and Spark of Constructed Sensing Matrix 

To measure the performance of sensing matrices, RIP and NSP are the widely used 

criterions. But generally, there is no effective way to verify whether a sensing matrix 

satisfies RIP and NSP or not. As discussed in [17], any k-sparse signal can be exactly 

recovered from the measurement via BP algorithm or OMP, provided 

 
1 1

1
2

k
H

 
  

 
                                                                                                           (9) 

Coherence is an important criterion to guarantee exact signal recovery, and one would 

design such that is minimized. For an M N  ( M N ) sensing matrix H  built from 

proposed algorithm, we define 

1
( )

v

H
w

                                                                                                                       (10) 

Where 
vw  is the uniform column weight of the sensing matrix H. 

Suppose H has N columns 
1 2, , Nh h h , then 

2i vh w  for 1 i N  . Since the 

proposed sensing matrix is free of cycles of length 4,so it is easy to see that any two 
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distinct columns of H has only one same '1' in all lows. When the maximum inner product 

of any two columns is 1, we have 

1
( )

v

H
w

                                                                                                                       (11) 

According to (10), the spark of the sensing matrix H, where spark (H) is defined to be 

the smallest number of columns of H that are linearly dependent [17], can be calculated. 

 
 
1

1 1 vspark H w
H

                                                                                       (12) 

According to (9) and (10), we can have 

 
1

1
2

vk w                                                                                                                   (13) 

If k-sparse signal x is satisfied (13), the signal x can be solved the 
0l -minimization 

problem. 

To show the intuition for mutual coherence of the proposed sensing matrix, Five types 

of matrices are generated as contrast: Gauss matrix, Toeplitz matrix and sparse random 

matrix with size m n , where 150m , and 300n  . Assumed the column weight 

5vw  for the proposed sensing matrix and sparse random matrix. The mutual coherence 

of these matrices are plotted in Figure 4. It can be seen that the mutual coherence of the 

proposed sensing matrix is superior to other matrices. 

 

          

(a) The Coherence of Gauss Matrix             (b) The Coherence of Toeplitz Matrix 

           

(c) The Coherence of Sparse Matrix        (d) The Coherence of Proposed Matrix 

Figure 4. The Coherence of Various Sensing Matrices 
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4. The Results and Analysis of Experiments 

In this section, some simulation experiments are carried out to validate the performance 

of the proposed sensing matrix. In order to compare result, Gauss matrix and sparse 

random matrix also are designed as the sensing matrix. The experimental procedure is 

organized as follows. We give a k-sparse signal x with length-N, and k is randomly 

generated. Then, Gauss matrix, sparse random matrix, Toeplitz matrix and the proposed 

matrix are chosen as the sensing matrix to measure the signal x separately. Among them, 

the Gauss matrix is drawn with each entry
, (0,1)i jH N  is constructed and the columns 

of the matrix are normalized to unit magnitude. Sparse random matrix is constructed with 

a random way and its column weight is 5 and 6 respectively. We adopt interlaced filling 

algorithm to construct the sensing matrix. In the process of experiment, the size of the 

proposed sensing matrix is 180 360  ( 180, 360M N  ) and 240 480  

( 240, 480M N  ), and its column weight is 5 and 6 respectively. The girth length of 

the proposed sensing matrix is 6. According to (1), the measurements y can be calculated. 

The recovery signal of x from y is done by the OMP algorithm. 

The experiment was repeated 1000 times in each sparse level, and the probability of 

accurate recovery was calculated. In order to calculate the exact recovery of the 

frequency, the threshold ' 6

2
10x x    was used in the experimental process. The 

nonzero value of k-sparse signals is get according to a standard Gaussian distribution. 

As observed from Figure 5, and Figure 6, our proposed sensing matrix with interlaced 

filling algorithm can improve significantly the exact recovery probabilities in both data 

models compared to Gauss matrix, sparse random matrix and Toeplitz matrix. When the 

sparsity is 50, the reconfiguration failure starts to emerge for the proposed sensing matrix 

from the reconstructed curve of Figure 6. However, for the same size of sparse random 

matrix and Toeplitz matrix, when the sparsity is 30, the reconfiguration failure starts to 

emerge. 

 

 

Figure 5. The Reconstitution Performance of Various Sensing Matrices 
(Column Weight is 5) 
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Figure 6. The Reconstitution Performance of Various Sensing Matrices 
(Column Weight is 6) 

To test the two-dimensional image signal of the proposed sensing matrix, the Lena 

image (128 256, 128, 256M N   ) is selected as the testing object. Compression ratio 

(M / N) is 0.5, and the reconstruction algorithm still uses the OMP algorithm. Gauss 

matrix, sparse random matrix, Toeplitz matrix, Bernoulli matrix and the proposed matrix 

are chosen as the sensing matrix. The column weight of the proposed sensor matrix is 4, 

and the girth length is 10 In order to compare the reconstruction performance of the 

matrix, Peak Signal to Noise Ratio (PSNR) and Mean Square Error (MSE) are used to 

measure the effect of reconstruction. When x  is the original signal and 'x  is the 

reconstructed signal, the calculation method of PSNR and MSE are as follows: 

 
1 1

2
'

0 0

N M

i j

x x

MSE
M N

 

 







                                                                                                    (14) 

255 255
10lgPSNR

MSE

 
  

 
                                                                                              (15) 

As can be seen from Table 1, the proposed sensor matrix compared with the other 

matrix, the value of PSNR has increased 4dB, and MSE also has a certain degree of 

improvement. In Figure 7, the effect of different matrices in the same compression ratio is 

presented for the reconstruction of 2D image. Among them, the reconstruction effect of 

the proposed sensing matrix is better than that of the other sensing matrices.                                           

Table 1. The Performance Comparison of Different Sensing Matrices 

The sensing matrix 
Peak Signal to Noise Ratio 

(PSNR) 

Mean Square Error 

(MSE) 

Gauss matrix 26.3914 149.2601 

sparse random matrix 26.5893 142.6090 

Toeplitz matrix 26.8502 134.2939 

Bernoulli matrix 26.4264 148.0606 

the proposed matrix 30.5869 56.8060 
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(a) Original Image            (b) Gauss Matrix              (c) Sparse Random Matrix 

                     

(d) Toeplitz Matrix          (e) Bernoulli Matrix            (f) the Proposed Matrix 

Figure 7. The Reconstruction Lena Images Using Five Sensing Matrix 

5. Conclusion 

In this thesis, we introduce a novel approach to construct deterministic sensing 

matrices by interlaced filling algorithm. The coherence is used to analyze the 

optimal performance of the constructed sensing matrix. In addition, we set up the 

relationship between the column weight of a matrix and the coherence, and obtained 

the increase of the column weight to reduce the coherence. As compared with the 

existing constructions, the proposed sensing matrix is not only obtains better 

performance but also has easy hardware implementation. In future work, we will 

create deterministic sensing matrices from improved interlaced filling algorithm. 
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