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Abstract 

To lower the mapping complexity of designing analog decoders, a method to optimize 

the design of low-density parity-check (LDPC) analog decoders is proposed in this paper. 

Based on factor graphs and the sum-product algorithm, the LDPC decoding process on 

the factor graph and the construction of analog decoders are exploited. Then the frequent 

subgraph mining algorithm is introduced to search the isomorphic subgraphs in factor 

graphs. According to the output of the frequent subgraph mining algorithm which 

enumerates all the subgraphs in factor graphs, the mapping complexity of a LDPC analog 

decoder can be significantly reduced. Finally, a (40, 16) LDPC analog decoder is 

constructed using the proposed method. Simulation results show that the need to place 

gates and connections can be reduced 90% and 23%, respectively, and the ideal 

performance is obtained by carefully choosing unit currents and decoding time. 
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1. Introduction 

Low-density parity-check (LDPC) codes were first proposed by Gallager [1] in 1962, 

and have attracted much attention after rediscovery by Mackay [2] in 1996. Because 

LDPC codes are applied to a wide range of applications, such as digital video 

broadcasting (DVB) and wireless sensor networks (WSNs) [3], there is enormous interest 

in implementing low-cost iterative decoders with high throughput and low power 

consumption. Analog continuous-time iterative decoding was proposed several years ago 

to improve the power-to-speed ratio of iterative decoder chips [4]. Analog decoders are 

also more compact and generate lower switching noise compared with the digital 

counterparts [5].  

In [6], analog decoders for turbo-style and tail-biting trellis codes were proposed, 

which provided a different way for LDPC decoder implementation. Several analog 

decoders for the (32, 8) LDPC code have been proposed [5-8] using different decoding 

algorithms, such as the min-sum (MS) algorithm and the belief propagation (BP) 

algorithm. All of the analog decoders gained lower power consumption and smaller core 

area compared with digital decoders. A (120, 75) LDPC analog decoder with the MS 

algorithm was proposed in [9], which was one of the longest length codes implemented to 

date using analog techniques [10]. However, due to the complexity of mapping during the 

analog decoder design, the application of LDPC analog decoders is limited by the code 

lengths.  

To lower mapping complexity, an optimization method based on factor graphs and the 

subgraph mining algorithm is proposed. By forming the algorithm of LDPC decoding on 

a undirected bipartite factor graph, a frequent subgraph mining algorithm is applied to the 

graph to determine the set of subgraphs which repeatedly appear in the factor graph. With 

these subgraphs, the mapping complexity of a LDPC analog decoder can be significantly 

reduced.  
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The remainder of the paper is organized as follows. Section 2 describes the factor 

graph and analog decoding process over memoryless channels. In Section 3, we propose 

an optimization method for analog decoder mapping based on the frequent subgraph 

mining algorithm. An approach based on the proposed method is introduced to analyze 

performance of the analog decoder in Section 4. In Section 5, an implementation of LDPC 

decoders is proposed, and a simulation analysis is also undertaken. 

 

2. The Graphic Model of Analog Decoding over Memoryless Channels 

A (N, K) LDPC code is defined as a binary linear code over )2(GF . An NM  check 

matrix is represented by H with MKNHrank )( . Let the code words set be C , 

which is a 12 K vectors subset of )2( nGF , then CccH  ,0T . The analog decoders 

of the aforementioned LDPC codes can be defined over an undirected bipartite factor 

graph, ),( EVG  , which consists of a set of vertices, including N variable nodes (VNs: 

},,2,1{, NiX i  ) and M check nodes (CNs: },,2,1{, MjC j  ). Each node is connected 

by a set of edges, E , which represents the check matrix, H , if the corresponding element 

in H  is 1.  1,0iX  and RYi   ( i is a integer ranging from 1 to N ) are denoted as 

variables that correspond to the i-th transmitted symbol and the i-th received symbol of a 

codeword, respectively. Then a memoryless binary-input output-symmetric channel can 

be defined by a conditional probability density function as follows: 

)/()/(/ iiiiiiXY xXyYfxyf
ii

                                                                                         (1) 

from which the priori probability, )/( ii xyp , could be obtained. 

With the factor graph of (N, K) LDPC codes and the priori probability, )/( ii yxp , the 

decoding process can be achieved by a “sum-product algorithm” to the graphical model 

[12]. The priori probability, )/( ii yxp , is used to initialize the procedure of the sum-

product algorithm, which can be expressed as follows:  

CNs update: CN jc calculates the message, )(x
ij xc  , sent to ji Xx   using message, 
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where )(Xf is the constraint function of CN, jX denotes the set of neighbor VNs 

connected to CN jc , and  ij xX \  represents the set, jX , except ix . 

VNs update: VN ix calculates the message, )(x
ji cx  , sent to ij Cc  using the message, 

)(x
jch  )( iCh : 
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where nC  denotes the set of neighbor CNs connected to VN, ix , and  mn cC \  represents 

the set, nC , except mc . 

Generally, the graph, G, of LDPC codes in this paper is a complete bipartite graph and 

also a simple graph, in which self-loops are exclusive. From (2) and (3), we can note that 

the process of message passing refers to the edge in graph, G, which corresponds to the 

mapping of analog decoders. In graph G, the node with degree, )3( DD , is implied by a 

sequence of 3 ports bi-directional Soft-XOR gates or Equal gates. The problem of analog 

decoders mapping optimization is equal to the problem of frequent subgraph mining, 
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which determines whether or not a given graph occurs in another graph and enumerates 

all the frequent subgraphs. 

 

3. Frequent Subgraph Mining Algorithm 

To optimize the mapping of graph model, G, we have to extend the graph, G, to label 

graph GL. A labeled graph, GL, is a five-element tuple, ),,,,( lEVEVGL  , where V is 

a set of vertices, VVE   is a set of edges, V  is the set of vertex labels, and E  is the 

set edge labels. In the graph model of LDPC codes, }0,1{E and l is a function assign 

label to vertices. Without loss of generality, we assume that there is a total order on 

each label set  V  and E . The mapping complexity of an analog decoder is determined 

by the edges, which are connected by Soft-XOR gates and Equal gates or blocks. The 

optimization of analog decoder mapping is to reduce the edges of the graph model or to 

enhance the multiplex of gates-blocks. Thus, we introduce the subgraph isomorphic to 

indicate the block multiplexing. A labeled graph, GL, is a subgraph isomorphic to a 

labeled graph, GL', denoted by 'GLGL , if and only if there is a subgraph GL'' of GL' 

such that GL is isomorphic to GL''. The reusability of a given graph of a block is 

equivalent to the "support" of a graph. The support of a graph, G, denoted by Gsup , is 

defined as the fraction of graphs in GS to which GL is subgraph isomorphic. 

 
GS

GGGSG
G

''
sup


                                                                                                       (4) 

where GS is a set of graphs and )10(   is the threshold. GL is frequent if and only if 

Gsup . 

The optimizing problem of mapping an analog decoder represented by labeled graph 

can be equivalent to the problem of frequent subgraph mining, which is to enumerate all 

the frequent subgraphs in GS for the given threshold and graph database. 

The adjacency matrix, )(GA , of graph G is translated as follows: 











0

0
)(

T

H

H
GA                                                                                                               (5) 

where H  is the check matrix. The vertex labels are given by 

}1,,1,0{,  NMkjiNVk  . The adjacency matrix, )(GLA , we used here, can be 

represented by filling the diagonal entry of )(GA  with the label, kV , of the corresponding 

node. Then, we define the code of the adjacency matrix )(GLA , shortened as A, as the 

sequence of lower triangular entries of A  in the following order: 

};;;;;;;{ ,1,2,1,2,21,21,1 nnnnnn aaaaaaa  , where jia , represents the entry at the i-th row and j-th 

column in A. To find out the unique pattern of a given adjacency matrix in all its possible 

forms, we use the )(max AC  to denote the maximal code among all its possible codes, 

which are in standard lexicographic order. The adjacency matrix, A', which produces the 

canonical form is defined as GL's canonical adjacency matrix (CAM). 

Given a graph GL, a suboptimal CAM of GL is an adjacency matrix A of G such that 

its maximal proper submatix N is the CAM that graph N represents.  

All the suboptimal CAMs of graph GL can be organized in a tree as follows by using 

the operation of FFSM-Join and FFSM-Extension proposed in [11]: 

(i) The root of the tree is empty matrix; 

(ii) Each node in the tree is a distinct connected subgraph of G, represented by 

)(max AC ; 

(iii) For a given none-root node, its parent is the graph represented by A's submatrix. 
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Clearly, the suboptimal CAM tree is "complete" in the sense that all vertices in a 

suboptimal CAM tree can be enumerated using join and extension operations. 

To find out the optimization scheme of analog decoder mapping, we define the 

mapping cost function, ),( wsfmap , as follows: 


0

)(),( wAswsfmap                                                                                                        (6) 

where s is the support of a graph, GL, w is the frequent subgraph of GL, and
0

)(wA  

denotes the 0-norm of adjacency matrix, w, which can be obtained by counting the non-

zero elements of w. Generally, the optimization of analog decoder mapping scheme 

)','( ws  is: 

)),(max(arg)','( wsfws map                                                                                                 (7) 

We use the frequent subgraph mining algorithm proposed in [11] to enumerate the 

subgraphs, and the output of the algorithm is the set W which contains CAMs of all the 

searched frequent subgraphs. 

 

4. Constructing the LDPC Analog Decoder with Kernel Blocks 
 

4.1. Simplification of Analog Decoder Mapping for CCSDS LDPC 

To examine our method of analog decoder mapping optimization, we perform the 

LDPC codes presented in CCSDS 131.1-O-1 standard  (shortened as CCSDS-LDPC).  

The check matrices of CCSDS-LDPC for rate-1/2 can be specified as follows: 
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where MI  and M0 are MM   identity and zero matrices, respectively, and through 1Π to 

8Π  are MM   permutation matrices. The distribution of row and column weight of check 

matrix is shown in Table 1. 

Table 1. The Distribution of Row Weight and Column Weight of Check 
Matrix 

Columns/Rows 1~M M+1~2M 2M+1~3M 3M+1~4M 4M+1~5M 

Columns Weight 2(+1) 3(+1) 2(+1) 1(+1) 6(+1) 

Rows Weight 3 6 6 -- -- 

 

In order to output the posterior probability of each bit, an edge to output extrinsic 

information is added to each VN in the factor graph, which is denoted by (+1) in Table 1.  

Thus, we can obtain the modified check matrix of LDPC codes. By following the steps 

aforementioned in this paper, the subgraphs of LDPC codes can be sorted into two kinds, 

which are shown on the left side of Figure 1. Each nonblank block is a M/4×M/4 matrix, 

and blank blocks are zero matrices, while 4/MI and y
x  are M/4×M/4 identity and 

permutation matrices representing connections between M/4 CNs and M/4 VNs. 
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Figure 1. Structures of Subgraphs (Present by Adjacency Matrix): (a) 
Subgraph for 1~M Rows; (b) Subgraph for M+1~2M and 2M+1~3M Rows 
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Frameworks of two kinds of subgraphs are shown on the right/lower side of Figure 1, 

each  ( ) represents M/4 CN (VN), with the connection between the frameworks if and 

only if the corresponding block is not blank. On the right side of Figure 1(a), each 

subgraph inside the dashed box owns the same structure, which can be viewed as a basic 

kernel block, as well as subgraphs on the lower side of Figure 1(b).  

Hence, a factor graph of LDPC codes according to the CCSDS standard can be 

composed by two kinds of basic kernel blocks presented on the right/lower side of Figure 

1. 

 

4.2. Structure of the Corresponding Analog Decoder 

There are two sorts of basic kernel blocks of CCSDS-LDPC analog decoders according 

to Figure 1. The first basic kernel block, which realizes subgraph on the right side of 

Figure 1 (a), is composed by M/4 Soft-XOR gates with degree 3 and M/4 Equal gates 

with degree 4, while the second basic kernel block realizes the subgraph on the lower side 

of Figure 1 (b), and can be composed by M/4 Soft-XOR gates with degree 6, M/4 Equal 

gates with degree 4 and 2M/4 Equal gates with degree 3. Making use of these kernel 

blocks, the framework of the proposed LDPC analog decoders is shown as Figure 2. 
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Figure 2. Framework of CCSDS-LDPC Analog Decoders 
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In Figure 2, squares with “x-y” inside are kernel blocks corresponding to subgraphs on 

the right/lower side of Figure 1, while “x” and “y” indicate which sort of kernel block and 

what order a kernel block is, respectively. The solid lines between kernel blocks are 

connecting relationships between kernel blocks corresponding to y
x  in Figure 1, which 

exist in the original factor graph, while dashed lines and dotted lines are links that connect 

Equal gates in the chain, as is illustrated in Figure 1, and inputs (or outputs) of bits for 

decoders, respectively. 

Figure 2, shows the relationship between different kernel blocks and reveals that the 

CCSDS-LDPC analog decoders can be composed by two sorts of circuits corresponding 

to subgraphs on the right/lower side of Figure 1, which eventually lower the mapping 

complexity from the whole decoder to two sorts of kernel blocks and connections between 

them. 

 

5. The (40, 16) LDPC Analog Decoder and Simulation Results 

In this section, an example of (40, 16) LDPC analog decoder from CCSDS standard is 

implemented from two sorts of kernel blocks, and the mapping complexity and 

performance are both analyzed. 

 

5.1. (40, 16) LDPC Analog Decoder and Mapping Complexity Analysis 

To construct the (40, 16) LDPC analog decoder, two sorts of kernel blocks of the (40, 

16) LDPC analog decoder are implemented and exhibited in Figure 3, which realizes 

subgraphs on the right/lower side of Figure 1. The first sort of kernel blocks is composed 

by 2 degree-3 Soft-XOR gates and 2 degree-4 Equal gates, and the second kernel block is 

composed by 2 degree-6 Soft-XOR gates, and 2 degree-4 Equal gates with and 4 degree-3 

Equal gates. 
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(a)                                                                                            (b) 

Figure 3. Two Kernel Blocks: (a) The First One; (b) The Second One 
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With four kernel blocks of the first sort and eight kernel blocks of the second sort, the 

analog decoder can be obtained following the framework in Figure 3. Table 2, gives the 

mapping complexity comparisons between the proposed method and the conventional 

way maps the whole decoder. In Table 2, “Conventional” denotes the analog decoder built 

in the conventional way, while “Degree-3 Gates” and “Average Connections per Input 

Bits” indicate the number of degree-3 gates that need to be placed and the number of 

average connections need to be mapped when the number of input bits is increased by 

one. 

Table 2. Mapping Complexity Comparisons in Designing 

 Degree-3 Gates Average Connections per Input Bits 

Conventional 216 11.2 

Proposed 22 8.6 

As the proposed method only maps two kernel blocks and wires connecting the blocks, 

the number of degree-3 gates placed to construct the analog decoders is reduced to 10% of 

the conventional method, while the number of connections mapped is decreased by 23%. 

The mapping complexity of designing analog decoders is lowered to 20% compared with 

the conventional way. 

 

5.2. Simulation Results of the (40, 16) LDPC Analog Decoder 

To testify the feasibility of the (40, 16) LDPC analog decoder, the simulation model 

from [13] is improved by taking mismatch of transistors, error brought by IC technics and 

unit currents (Iu) into account. In the simulation, Soft-XOR gates and Equal gates 

together implement the BP algorithm over AWGN channel with BPSK modulation. The 

mismatch of transistors and error brought by IC technics are transformed into parameters 

in each edge, which obey (0, 0.2) Gauss distribution ranging from -1 to 1. 

Figure 4, depicts the bit error rate (BER) performance of decoder versus Eb/N0 for 

different decoding time (Td) and Iu. It can be observed that the larger the decoding time, 

the better the BER performance. When the decoding time is too short, such as 20ns, the 

decoder is likely to stop decoding process before it converges. However, the BER 

performance of decoder approaches the ideal performance rapidly as decoding time 

increases. A decoder with Iu=5uA needs less decoding time compared with decoders with 

Iu=1uA, which means that to strike balance of power consumption and decoding time one 

needs to manipulate Iu. 
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Figure 4. Simulation Results of the (40, 16) Analog Decoder: (a) Iu =1uA; (b) 
Iu =5uA 

6. Conclusion 

An optimization method for designing analog decoders is presented. By exploiting 

LDPC decoding process on factor graphs and applying the frequent subgraph mining 

algorithm on factor graphs, the analog decoder of LDPC can be simplified as connecting 

frequent subgraphs. This method enables system-level optimization of an analog decoder, 
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regardless of the physical realization. Moreover, this method can extend to optimize the 

design of other analog decoders for linear block codes, such as BCH and RS codes. 

According to the simulations of an example analog decoder, the average mapping 

complexity of decoders can be lowered 80%, and simulation results indicate that the 

decoder can achieve the BER performance as good as the ideal decoder.  
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