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Abstract 

This paper addresses the problem of independent component extraction of complex-

valued signals in convolutive mixtures. Most previous research focused on real-valued 

convolutive ICA, and corresponding solution methods are generally computationally 

complex and inefficient for real application. In order to solve the problem, we propose 

a novel method based on first-order statistics, which includes several single-step and 

iterative separators to satisfy different demands of engineering applications. We also 

provided the theoretical performance analysis, which is validated by experimental 

simulations. It is observed from the simulations that various factors (especially the 

noncircularity) affect the extraction performance of separators; hence we offer some 

advice on how to choose separators properly. Besides, the proposed iterative 

separators generally perform better and converge faster compared to two complex 

FastICA algorithms. 

 

Keywords: Independent component analysis, convolutive mixture, circular and 

noncircular signals, first-order statistics 
 

1. Introduction 

Independent component analysis (ICA) for extracting source signals from mixtures 

has found utility in many applications such as communications [1], face recognition 

[2], analysis of functional magnetic resonance imaging [3], and radar data [4]. 

However, in many applications, the mixtures are oversimplified to be instantaneous. 

The more general case is that the mixtures are convolutive with several different 

delays, especially in multi-input /multi-output (MIMO) wireless communications where 

channel models often include multipath propagation. 

Currently, the techniques of ICA for convolutive mixtures generally fall into two 

types: time-domain and frequency-domain methods. Time-domain methods inspired by 

blind deconvolution methods are the first efforts devoted to the convolutive case [5-6]. 

One problem with time-domain methods is that they tend to be complex 

computationally due to the relationship of filter coefficients with each other [7]. This 

can be overcome by moving to the frequency-domain, where the problem is 

transformed to multidimensional ICA. But there arise a large problem called 

permutation, inconsistency of output channels among frequency bins. To correct the 

permutation disorder, several approaches have been proposed [8-10], which however 

require a number of samples even larger than time-domain methods [11]. Furthermore, 

to provide acceptable results, these two types of techniques generally require many 

iteration steps to converge. This may be unrealistic for some application in timely 

situation, e.g., telecommunication and wireless communications. Moreover, most 

researchers pay attention to real-valued convolutive ICA, but neglect the investigation 

on ICA for convolutive mixtures of complex sources including circular and noncircular 
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signals. This fact constrains further the use of abovementioned techniques, especially in 

wireless communications where sources are complex-valued and most probably 

noncircular caused by in-phase/quadrature-phase (IQ) imbalance [12]. 

In this context, it is challenging to solve the complex-valued case of convolutive 

ICA in an efficient way. Recently, some research has focused on exploiting prior 

knowledge about the mixing system or the sources themselves, including prior 

information on the time or frequency indices where the desired source is positive or 

presents significant power [13-14]. Vicente Zarzoso et. al., proposed an extremely 

efficient algorithm in real-valued domain which exploits only first-order statistics of the 

whitened observations, assuming that the sample indices where the source of interest 

presents positive values are known [15]. Furthermore in [16], we proposed to extract 

the complex-valued sources from the instantaneous mixtures using the first-order 

statistics. Nevertheless, it is a pity that these algorithms though simple and efficient 

can’t be directly applied to solve the general complex case of convolutive ICA. 

In this paper, we translate the convolutive mixtures into instantaneous ones in time-

domain, and then design an effective algorithm for general complex signals using first-

order statistics of extended observations. Section 2 introduces some information about 

complex random variables and develops the problem formulation. Section 3 presents 

the proposed algorithms including three kinds of single-step algorithms. Generally, 

prior knowledge of the positive support should be totally required by the method; while 

in wireless communication, the prior knowledge obtained by training-based 

communication system usually exhibits inaccuracy. Therefore, an iterative algorithm is 

also provided to modify the accuracy of the prior knowledge. Furthermore, theoretical 

performance analysis concerning the above algorithms is accomplished in terms of 

asymptotic interference-to-signal ratio (ISR) and probability of correct support 

estimation (PCE) in Section 4. Simulations are carried out in Section 5 to validate the 

theoretic analysis and investigate the factors that affect the extraction performance of 

the algorithms, where noncircular property of sources has an extremely important effect 

on the performance. The performance of two complex FastICA algorithms [17-18] is 

also used as reference for comparison. Finally, a concise conclusion is given in Section 

5. What’s more, this paper can be regarded as an important complement for Vicente 

Zarzoso’s method in [15], and a great advancement for our previous work in [16]. In 

this paper, the main novelties are the following ones: 

 A transformation of the convolutive mixture model into extended instantaneous 

mixture model with a stacked number of sources which are composed of i.i.d. samples; 

 An efficient method for extracting complex sources including both circular and 

noncircular signals from the mixtures; 

 Theoretical analysis and empirical rules provided to indicate how to choose the 

separators for engineering applications. 
 

2. Problem Statement 

2.1.  Complex Preliminaries 

A complex variable z is defined in terms of two real variables z
R
 and z

I
 as 

R Iz z jz  , where 1j    is the imaginary unit. The mean of a complex random 

variable z is given by      R IE z E z jE z  . Assume that   0E z  , the variance 

and pseudo-variance of z are defined as    2
var z E z  and    2p var z E z  

where 
*z zz  is the modulus of z [19]. 
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If a complex random variable z has a zero pseudo-variance, it is called second-order 

circular (or simply as circular), which implies that z
R
 and z

I
 are uncorrelated with equal 

variances. In this paper, noncircular random variable whose real and imaginary parts 

are uncorrelated with unequal variances is also investigated. A strict but seldom utilized 

definition of circularity is based on the probability density function of the complex 

random variable: a complex random variable z is said to be circular if z has the same 

distribution as e
jθ
z for any   ¡  [20]. 

2.2. Complex ICA in the Convolutive Mixture Model 

Before concentrating on convolutive mixture model, we introduce the instantaneous 

one first. The instantaneous linear mixture and the extraction of one source can be 

denoted as 

( ) ( )t tx As                                                                           (1) 

( ) ( )Hy t t w x                                                                          (2) 

where  1 2( ) ( ), ( ), , ( )
T

mt x t x t x tx K ,  1 2( ) ( ), ( ), , ( )
T

nt s t s t s ts K , w and A are, 

respectively, the vector of observations, the original source vector, the separator vector, 

and the m n  mixing matrix which is usually assumed to be full rank matrix with 

m n  and invariant over time. 

The convolutive mixture and the extraction of one source can be expressed respectively 

as 

( ) ( ) ( )t t


  x A s                                                                (3) 

( ) ( ) ( )Hy t t


  w x                                                              (4) 

In the above equations, the mixing matrix is replaced by a multi-variate linear time 

invariant (LTI) system with impulse response ( ) m nt A £ , and the separator vector by 

a LTI vector filter 
1( ) mt w £ . 

The following assumptions on the characteristics of the sources are made 

AS1: s(t) are mutually independent, zero mean, and stochastic processes with unit 

variance; 

AS2: Real and imaginary parts of s(t) are mutually uncorrelated and respectively 

symmetric distributed in probability density function; 

AS3: s(t) are composed of i.i.d. samples. 

where AS1 and AS3 are basic and original assumptions of ICA [21], and AS2 is 

satisfied by most of complex signals in communications [19]. Then we translate this 

linear convolutive mixing model into instantaneous one. We consider the finite impulse 

response (FIR) mixing system of given length L, thus (3) can be rewritten as 

 

( )

( 1)
( ) (0) (1) ( 1) , 2

( 1)

t

t
t L L

t L

 
 


   
 
 

  

s

s
x A A A

s

K
M

                                (5) 
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On the other hand, the length of FIR separators is denoted by D, and then the 

extracting filter can be replaced by the following 1mD  vector which concatenates the 

vectors of the separator impulse response 

(0) (1) ( 1)
T

T T TD  w w w w@ K                                              (6) 

Similarly, (4) can be rewritten as 

 

( ) ( )

( )

( 1)
(0) (1) ( 1) , 2

( 1)

H

H H H

y t t

t

t
D D

t D



 
 


       
 

  

w x

x

x
w w w

x

K
M

                                                   (7) 

where column vector ( )tx  denotes an extended observation vector that contains the 

original vector of observations and its delay ones. One can notice from (7) that the first 

equality is quite similar to (2) which represents the extraction of one source from the 

instantaneous mixture. Substituting (5) into the extended observation vector, we obtain 

 

 

 

( )

(0) ( 1)

( 1)

( 1)( )

(0) ( 1)( 1)
( )

( )

( 1)

( 1)

(0) ( 1)

( 2)

(0) ( 1) 0 0

0 (0)

t

L

t L

tt

Lt
t

t L

t D

t D

L

t L D

L

  
  

  
    
 

    
    
     
     

   
    

   
  

  
       





s

A A

s

sx

A Ax
x

s

x

s

A A

s

A A

A

K M

K M

M

M

K M

K K ( )

( 1) ( 1)

0

0 0 (0) ( 1) ( 2)

( )

t

L t

L t L D

t

   
   

 
   
   
   

      



s

A s

A A s

As

K O M

M O O O O M

K K

                                     (8) 

where A  and ( )ts  are respectively the extended mixing matrix and extended source 

vector. This leads to the fact that the convolutive model (3) and (4) is transformed into 

the extended instantaneous model (8) and (7). Noting that s(t) are composed of i.i.d. 

samples (AS3), we find ( )ts  are  also mutually independent, zero mean and stochastic 

processes with unit variance, which means that the problem to be solved is still a 

classical ICA case. Therefore we assume the extended mixing system has more sensors 

than sources, i.e., ( 1)mD n L D   , so that the length of FIR separators is given by 

( 1)n L
D

m n





                                                                              (9) 

For m=n, the length of mixing filter L is constrained to be 1 and the convolutive 

model is reduced to instantaneous one. For m>n, the condition (9) becomes 

( 1)D n L  . 
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3. Algorithm Development 

In the first place, the extended observed vector ( )tx  is preprocessed to be whitened. 

In other words, ( )tx  is linearly transformed into a vector 

( ) ( ) ( ) ( )t t t t  z Ux UAs Qs                                               (10) 

whose covariance matrix equals the identity matrix:  ( ) ( )HE t t z z I , where U is a 

whitening matrix. We find that the new mixing matrix Q is unitary due to  

   ( ) ( ) ( ) ( )H H HE t t E t t z z Q s s Q I  and  ( ) ( )HE t t s s I . 

Without loss of generality, we will suppose that s1(t) is the source of interest. The 

method can be expressed in terms of the conditional mean of the whitened extended 

observations, as summarized by the following result. 

Separator 1: 

 1

1

1
0RE s


 w z  with  1 1 1 0R RE s s                                     (11) 

where 
1

Rs  is the real part of s1. In practice, (11) means to averaging the observations 

over samples where 
1

Rs  is positive-valued. Then the source of interest can be estimated 

as 

1

H
y s w z                                                                        (12) 

The reason for the last equality in (12) is illustrated as follows: 

According to (10), we have    1 1

1 1

1 1
0 0R RE s E s

 
    w z Qs Qg , where 

 1

1

1
0RE s


 g s                                                             (13) 

Considering AS1 and the uncorrelation assumption in AS2, we have 

      

 

1 1 1 1 1 1 1

1 1

1

1

1 1
0 0 0 1

1
0 0, 2

R R R I R

R

k k

g E s s E s s jE s s

g E s s k

 



      

   

                    (14) 

Hence,  1 1 0 0
T

 g e K  and consequently 

1

H H H Hy s   w z g Q Qs g s . 

Similarly, another separator based on the positive support of the imaginary part is 

given by 

Separator 2: 

 1

2

0Ij
E s


  w z  with  2 1 1 0I IE s s                                  (15) 

where α2 is equal to α1 only when sources are circular. Furthermore, the third 

separator based on the positive support of both real and imaginary parts is provided: 



International Journal of Signal Processing, Image Processing and Pattern Recognition 

Vol.9, No.1 (2016) 

 

 

250  Copyright ⓒ 2016 SERSC 

Separator 3: 

   1 1

1 2

1
0 0

2

R Ij
E s E s

 

 
   

 

z z

w                                        (16) 

Undoubtedly, Separator 3 requires more prior knowledge concerning the positive 

support of the sources. All the separators can independently accomplish the source 

separation task. What should be noticed is that, Separator 3 though utilizing doubled 

prior knowledge performs worse than the other separators in most conditions. This 

judgment will be demonstrated by both theoretical and experimental analysis of next 

sections in detail. 

In engineering practice, to capture the prior knowledge about the positive support of 

sources is difficult and even impossible, leading to the unavailability of the above 

extraction method. Thus in our previous works, we have also proposed a training-based 

project for the application in MIMO wireless communications to solve the problem (see 

[16] for more details). The project is still available in convolution condition. If the 

MIMO wireless communications follow the rules of the project, the problem of the co-

channel interference will be overcome, and thus mutually independent complex sources 

will be able to transmit simultaneously even in the same frequency band. 

However, an inevitable problem in the training-based project is the inaccuracy of 

prior knowledge. To solve the problem, we add the following iterative separators to 

replace the single-step ones. 

Iterative Separators:  

Initiation. Use the single-step separator from the inaccurate prior knowledge to 

estimate the pilot sequence of the source of interest. 

Step1. Recalculate the separator  
1

1
0

R

E y


 w z % ,  
2

0
Ij

E y


  w z %  or 

   
1 2

1
0 0

2

R Ij
E y E y

 

 
   

 

z z

w

% %

  where y% denotes the estimated pilot. 

Step2. Calculate the estimate of pilot, i.e., 
H

y  w z% . Repeat these two steps until 

converges. 

We define Iterative Separator 1 that uses  
1

1
0

R

E y


 w z %  in Step1, and Iterative 

Separator 2 with  
2

0
Ij

E y


  w z %  as well as Iterative Separator 3 with 

   
1 2

1
0 0

2

R Ij
E y E y

 

 
   

 

z z

w

% %

. 

 

4. Performance Analysis 

This section is concerned with the theoretical analysis on source extraction 

performance. The closed forms of performance on both single-step separators and 

iterative separators are given in terms of ISR and PCE respectively. 
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4.1. Theoretical Performance in Terms of ISR 

We first assume that the length of observations is T such that the index of samples is 

expressed as a set  0 1 T 1 KS . The set S  can be divided into two exclusive 

sets 
1rS  and 1rS  (or 

1iS  and 1iS ) where 
1rS  (or 

1iS ) is the positive support of real 

parts (or imaginary parts) of the interested source and 1rS  (or 1iS ) is the complement. 

The index set estimated as the positive support of real parts (or imaginary parts) of the 

interested source is denoted by 
rF  (or 

iF ), the cardinality of which is 
T

2
N  . Here we 

suppose that the correct support estimation ratios for real and imaginary parts are equal. 

Therefore, the set 
rF  (or 

iF ) is the union of set 
1rF  (or

1iF ) composed of N1 indices 

correctly identified, i.e., for which actually 
1 ( ) 0Rs t   (or 

1 ( ) 0Is t  ), and its 

complement 1rF  (or 1iF ) of N-N1 indices in 
rF  (or 

iF ) where 
1 ( ) 0Rs t   (or 

1 ( ) 0Is t  ). In short, we can summarize these relations as follows: 

 

1 1 1 11 1 1 1, , ,r r r rr r r r r r r   U U I IS S S F F F F F S F F S  

and 

1 1 1 11 1 1 1, , ,i i i ii i i i i i i   U U I IS S S F F F F F S F F S  

 

Next, we show the performance of Separator 1 in (11) explicitly depends on which 

parameters. In practice, we should first remove the sample mean from every sample of 

the observations so as to ensure the rationality of the zero-mean assumption in AS1. 

Therefore the global transformation in (13) can be expressed as 
 

1 1

1

1 1 1 1 1 1
( ) ( ) ( ) ( )

T T T

1 1 1
( ) ( ) ( ) ( )

T T T T

rr r

r rr r

t t t t

R R I I

t tt t

t t t t
N

j j
t t t t

 



   

  

   
      

   

 
    

 

   

   

g s s s s

s s s s

%

F S F F

F FF F

                                (17) 

 

where ° ° ° ( 1) 1

1 2 '
[ , , , ]T n L D

n
g g g    g% K £  such that the estimate source of interest 

can be decomposed as the sum of contributions from the source of interest and the 

interfering sources: 
 

1

H

y y b  g s% % % % with °
11 1

y g s%  and °
'

2

n

kk

k

b g s


%                                   (18) 

 

To quantify source extraction performance, we refer to [15] and define the average 

ISR per interfering source as 
 

 

° °

   ° °

*'*

2

* *

1 1 1 1

{ }{ }

' 1 { } 1 1 { }

n

k kk
E g gE bb

ISR
n E y y n L D E g g

 
   

%%

%%
                                         (19) 

 

where ' ( 1)n n L D    according to the extended model in Section 2.2. We 

assume that the non-circularity of sources resulted from the real to imaginary 
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asymmetry can be defined by 
 
 

var
,

var

R

k

I

k

s
k

s
  , i.e., the ratio of the variances of real 

and imaginary parts. Hence,   
2

1

R

kE s






 and   

2 1

1

I

kE s





 according to AS1. 

For 2 'k n  , under the uncorrelation assumption of AS2 and AS3, we obtain 

° °             
2 2 2 2*

2 2 2 2 2

1

2 2 2

1 1

1 1 1 1 1

T T T T

1 T T T 1 T 1 1

T 2 1 2 1 2 1 2 1 T

r rr r

R R I I

k k k kk k

t tt t

E g g E s E s E s E s


 

     

  

 
    

 

 
     

    

   
F FF F        

(20) 

For k=1, given the symmetry assumption of distribution in AS2, we have 
 

1 1

1
11

2
11 1 1

{ ( )}

var{ ( )} ,
1

rR

r

R
rr

t
E s t

t

s t t or t











 

 

   


S

S

S S

                                      (21) 

 

Now, N1 indices of 
rF  belong to 

1rS  and the remaining N-N1 to 1rS ; by symmetry, 

set rF  contains N-N1 indices in 
1rS  and N1 in 1rS . Hence, we obtain 

 
°

°  

1

2

11 2

1

{ } (2 1)

1
var{ } 1

T

E g r

g 


 

 
                                                             (22) 

 

where r=N1/N represents the correct support estimation ratio. For sufficient sample 

size, °
1

var{ }g  can be neglected and then ° ° ° °* *

1 1 1 1{ } { } { }E g g E g E g , as a result, 

° °* 2

1 1{ } (2 1)E g g r  . Substituting this equation and (20) into (19), the closed form of 

ISR is given by 

 

1 2 2

1

1

T(2 1)
ISR

r 



                                                                  (23) 

 

Similarly, referring to the derivation of performance of Separator 1, the ISR 

performance of Separator 2 in (15) can be achieved easily: 

 

2 2 2

2

1

T(2 1)
ISR

r 



                                                                 (24) 

 

To deduce the closed form of ISR for Separator 3, we note that another global 

transformation in (16) can be derived: 
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                  (25) 

 

Under the assumption AS1-AS3, for 2 'k n   we have 
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For k=1, we obtain 
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Thereby, N1 indices of 
rF  belong to 

1rS  and the remaining N-N1 to 1rS ; by 

symmetry, set rF  contains N-N1 indices in 
1rS  and N1 in 1rS . So it is the same with sets 

iF and iF  Hence, we obtain 

 
°

°    

1

2 2

1 21 2 2

1 2

{ } (2 1)

1 1
var{ } 1 1

4 T 4 T

E g r
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 
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                                             (28) 

 

For sufficient sample size, ° °* 2

1 1{ } (2 1)E g g r   so that consequently 
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
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4
eff

 


 



                                               (29) 
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The equations (23), (24) and (29) indicate that ISR is in inverse proportion to sample 

size T, correct support estimation ratio r and the conditional means α1,α2, αeff. When r 

tends to 0.5, i.e., very little prior knowledge of positive support is available, ISR will 

extremely increase. The fitness of these approximate equations will be assessed by the 

experiments in Section 5. The constants α1 and α2 are derived and summarized in Table 

1 for some common sources. 

To explain the outcome of Table 1, we take the uniform source as an example to 

derive its conditional mean α1 and α2. Assume that the real part of normalized source is 

uniformly distributed during the interval [-λ, λ], i.e., 

 

 
1

, ,
2

0, .

R

R

s

s
p

otherwise

 
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Therefore, the variance of the real part and conditional mean α1 are given 

respectively: 
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The sources are normalized with unit variance such that   
2
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RE s






, which has 

been just proved during the derivation of ISR performance. Hence we obtain 3
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
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



 

and the conditional mean 
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

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. Analogically, we can derive another 

conditional mean 
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Table 1. Conditional Mean α1 and α2 for Some Normalized Sources 

Source 1. 2. 3. 4. 5. 

Distribution Bernoulli Sinusoid Uniform Laplacian Gaussian 
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4.2.  Theoretical Performance Concerning Iterative Separators 

To evaluate the performance of iterative separators, we define PCE as 

 1' 0 0
RRr P s y  %  for Iterative Separator 1,  1' 0 0

IIr P s y  %  for Iterative Separator 

2, and    1 1

1
' 0 0 0 0

2

R IR Ir P s y P s y       
 

% %  for Iterative Separator 3. Assume that 

the real and imaginary parts of the estimate are composed of source component and 

interfering components, i.e., 
1

R R

ry y b % % %  and 
1

I I

iy y b % % %.  
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To deduce the closed form of  1' 0 0
RRr P s y  % , we note that it can be 

approximately reduced to  10 0
R RP y s %  according the Bayesian Theorem. Therefore, 

the probability density function of 
R

y%  given 
1 0Rs   which is denoted by

1| 0
( )R Ry s

p u
%

 

would be required to calculate  10 0
R RP y s % . Otherwise, for sufficient samples 

using (18) and (22), we find that °  1 11 1{ } 2 1y E g s r s  %  and that   11
2 1

R Ry r s % . 

Thereby, we obtain 
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where the second equality follows from the symmetry assumption of distribution in 

AS2. According to the Central Limit Theorem, the interference term rb%  performs as a 

zero-mean Gaussian random variable with variance 2 2
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where the last equality uses the error function 
2

0

2
( )

x
verf x e dv



   and follows 

from the change of variable ( ) /( 2 )v u    .  

Similarly, referring to the derivation of performance of Iterative Separator 1, the 

performance of Iterative Separator 2 in terms of PCE can be achieved easily: 
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To evaluate the closed form of PCE for Iterative Separator 3, we note that 

   1 10 0 0 0
R IR IP s y P s y    % %  and the probability can be also reduced to 
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 1' 0 0
RRr P s y  % , whereas the variance of the interference term rb%  becomes 
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Therefore, the closed form of PCE is given by 
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where the equations also follow from the assumption that 4QAM sources are 

circularly symmetric, i.e., 1  . 

Finally in this section, we checked the complexity of iterative separators for 

extraction of one interested source. One can see that the complexity of the algorithms 

mainly depends on step2, which means that the algorithms need ( ( 1)T)n L D    

products per iteration. Hence the proposed algorithms have the same quantity level of 

complexity as convolutive FastICA [22], an extended algorithm of FastICA in 

instantaneous case. In contrast, another second-order technique called joint block 

Toeplitzation and block-inner diagonalization (JBTBID) [23], which converges slower 

than convolutive FastICA, requires 3 3( ( 1) T)n L D    products. 

 

5. Simulation Results and Discussion 

Here, several sets of simulation results are provided to demonstrate the performance 

of the proposed algorithm. Generally speaking, experiments on both single-step and 

iterative algorithms have been carried out. 
 

5.1.  Performance of Single-step Algorithms 

In the simulation, complex Gaussian and sinusoid sources with the number of 

sources n=10 have been generated respectively. They have been mixed by mixing 
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filters with the length L=10 whose coefficients are randomly driven. The number of 

sensors is set to m=11, and the separating FIR separators have been searched with the 

length ( 1) ( ) 90D n L m n    , i.e., the number of extended observations equals the 

number of the extended sources according to (9), an exactly determined model. The 

extended observations are prewhitened before the source extraction in all experiments. 

In the first experiment, the positive support of the source of interest is assumed to be 

perfectly known. Figure 1 illustrates the ISR obtained by different single-step 

separators (11), (15) and (16) for different complex sources with the noncircularity 

η=10. Results are averaged over 100 Monte Carlo runs. The fitness of theoretical 

approximation is very precise in all cases. The Separator 1 that is real-based algorithm 

exhibits better than other separators, and Separator 2 behaves worst among them, due to 

the internal fact that the power of real parts is larger than that of imaginary parts. 

Besides, Separator 3 though using the doubled prior knowledge performs poorer than 

Separator 1, which indicates that doubled prior knowledge from noncircular sources 

may probably lead to the degeneration of performance. 

Next, we study the performance for different values of the correct support estimation 

ratio r when T=1000 and η=10. Figure 2 shows that the simulation results are also well 

approximated by the estimation in theory. 

Moreover, Figure 3 provides the ISR performance with respect to the asymmetry η 

when sample size T=1000 and the prior knowledge of positive support is totally known. 

As seen in the figure, the performance of Separator 3 is about 3dB better than other two 

separators when η=1, i.e., sources are circular symmetric distributed. However, as η 

increases, the performance of Separator 1 is improved and the other two degrade. If η is 

set between 0 and 1, i.e., the power of imaginary parts is larger than that of real parts, it 

can be expected obviously that Separator 2 will be modified just as Separator 1 does 

when η>1. Therefore, Separator 3 not only uses doubled prior knowledge, but also 

performs worse than the other separators in most conditions, except when sources are 

close to circular (1/3<η<3). Again, these results demonstrate the conformity of the 

theoretical approximations to the experiments. 
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Figure 1. ISR Versus Sample Size for Three Separators when n=10, η=10, 
and r=1 

 

Figure 2. ISR Versus Correct Support Estimation Ratio for Three 
Separators when n=10, η=10, and T=1000 
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Figure 3. ISR Versus Asymmetry of the Real to Imaginary Parts for Three 
Separators when n=10, T=1000, and r=1 

5.2.  Performance of Iterative Algorithms 

The iterative implementation of Section 4 is applied on the extraction of circular and 

noncircular 4QAM sources from convolutive mixtures. The convergence speed of 

iterative separators is investigated when n=2, m=3, L=3, D=4 and T=1000. Likewise, 

results are obtained over 100 Monte Carlo runs. 

Figure 4 shows the average values of r and ISR obtained by three kinds of iterative 

separators for circular 4QAM sources, when different initial values of the correct 

support estimation ratio r1 are adopted. Also shown are the theoretical approximations 

given by (34-36) and the corresponding ISR defined by (23-24) and (29). One can 

observe that, after several iterations the correct support estimation ratio r converges 

around 1.0. With the same initial r1, Iterative Separator 3 (Figure 4, right) converges 

faster than other separators (Figure 4, left), and the predicted r and ISR of Iterative 

Separator 3 are more accurate. 

Next, we study the influence from the noncircularity of sources on the performance 

of iterative separators. Considering that Iterative Separator 2 is unsuitable for extracting 

the sources when the asymmetry η>1, we adopted Iterative Separator 1 and 3 here. 

Figure 5 and Figure 6 show the average performance for 4QAM sources with the 

asymmetry η=2 and 3 respectively. The theoretical approximations given by (31-33) 

and the corresponding ISR are also provided. What should be noticed is that, as the 

asymmetry value increase, the performance of Iterative Separator 1 (Figure 5, left and 

Figure 6 left) is improved while Iterative Separator 3 (Figure 5, right and Figure 6 

right) behaves worse. Additionally, the predicted r and ISR of Iterative Separator 1 
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become more accurate. The comparison between these two separators indicates that 

Iterative Separator 3 which requires doubled prior knowledge may be cost-effective 

only for the extraction of nearly circular sources (η<2), whereas Iterative Separator 1 

using less prior knowledge is generally more effective when the sources are noncircular 

( 2  ). This judgment can be easily extended to the reverse case that 0<η<1, in which 

Iterative Separator 2 behaves more effective for 0 1/ 2   while Iterative Separator 3 

is proper only when 1/2<η<1. 

 

Figure 4. r and ISR of Iterative Separators for Different Initial Correct 
Support Estimation Ratios when Circular 4QAM Sources with η=1 are 

Adopted 
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Figure 5. r and ISR of Iterative Separators for Different Initial Correct 
Support Estimation Ratios when Noncircular 4QAM Sources with η=2 are 

Adopted 

 

Figure 6. r and ISR of Iterative Separators for Different Initial Correct 
Support Estimation Ratios when Noncircular 4QAM Sources with η=3 are 

Adopted 
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Figure 7. Comparison of Performance with Kurtosis based C-FastICA and 
NC-FastICA in terms of ISR. (Left) Performance for Extracting Circular 
4QAM sources. (Right) Performance for Extracting Noncircular 4QAM 

Sources with the Asymmetry η=3 

Finally, the performance of iterative separators is compared with two complex 

FastICA algorithms, i.e., Complex FastICA (C-FastICA) [17] and Noncircular FastICA 

(NC-FastICA) [18] in terms of ISR. Although these two algorithms were used to deal 

with the instantaneous case for circular and noncircular sources respectively, they are 

now available for the convolutive case since we have transformed the convolutive 

mixture into instantaneous one in Section 2. While recovering both circular sources 

(Figure 7, left) and noncircular sources (Figure 7, right), iterative separators generally 

converge faster and perform better than two complex FastICA algorithms, except when 

improper separators are chosen also with low value of r1. Meanwhile, considering the 

complexity with equally ( ( 1)T)n L D    products per iteration, the proposed 

algorithms are more efficient than the complex FastICA algorithms. 

The above-mentioned analysis can be summed up by a few empirical rules to 

indicate how separators should be chosen: 

 If the prior knowledge of positive support is accurate enough (r>0.9), using 

single-step separators given in (11), (15) and (16) is a satisfactory choice to achieve 

extraction efficiently. But iterative separators should be preferable to improve the 

performance when the accuracy of prior knowledge is poor (0.5<r<0.9). 

 For single-step separators, Separator 3 in (16) requiring doubled corresponding 

prior knowledge really costs and behaves cost-effective only when sources are close to 
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circular (1 3 3  ), whereas Separator 1 in (11) and Separator 2 in (15) that is more 

economical should be chosen in most cases, especially when the sources are 

noncircular with the asymmetry 3   and 0 1 3   respectively. 

 For iterative separators, Iterative Separator 3 converges faster and performs 

better only when sources are nearly circular (1 2 2  ), whereas Separator 1 in (11) 

and Separator 2 in (15) converge equally fast or even faster than Separator 3 in most 

cases, especially when the sources are noncircular with the asymmetry 2   and 

0 1 2   respectively. 

 

6. Conclusion 

In this paper, we propose a novel method to solve the problem of extracting complex 

source signals from convolutive mixtures in a simple yet effective way. The single-step 

and iterative algorithms are derived for both complex circular and noncircular sources. 

In order to show effects of different factors including sample size, correct support 

estimation ratio and noncircularity on the performance, ISR and PCE is provided 

theoretically and experimentally. Theoretical analysis approximates the simulation 

results precisely, and indicates that special attention should be paid to the noncircularity 

while choosing separators to recover the source of interest. The judgment concerning 

the choice of separators is made after deliberation specifically. What’s more, compared 

with two complex FastICA algorithms, the proposed iterative algorithms have equally 

low complexity and converge faster in most cases, except when improper separators are 

chosen also with very low initial value of correct support estimation ratio. This work is 

an important advancement of our previous work for the application in wireless 

communication system, but future research is still needed to evaluate its performance in 

real-world applications. 
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