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Abstract 

To remove the impact of noise on the ultrasonic testing signals of standing trees, 

wavelet transform method was used to eliminate the noise in the collected ultrasonic 

signals in the field. In order to achieve the best denoising effect, four kinds of wavelet 

base denoising parameters including Daubechies (db), Symlets (sym), Coiflets (coif), and 

Discrete Meyer (dmey) were compared, and the best denoising effect was obtained with 

db3 wavelet base. The variations of denoising parameters corresponding to the number 

of db3 wavelet decomposition levels (1- 8) were further analyzed and the decomposition 

level 4 was demonstrated the best. Meanwhile, the effects of wavelet denoising under 

different threshold states were compared and the hard rigrsure threshold was 

demonstrated the best. Experimental results showed that the wavelet transform can 

effectively remove noise hidden in the ultrasonic signal and improve the denoising effect 

by selecting reasonable parameters, which laid some initial groundwork for efficient 

extraction of useful information from the ultrasonic signals. 
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1. Introduction 

Wood defects can affect the quality of wood materials to different extent, making them 

reduce or even completely lose their value. In order to save the limited timber resources 

and improve the utilization of wood, for decades, people have been working on some 

quick and accurate methods to detect wood defects. Therefore, the study of detecting 

internal defects in the wood has very important practical significance. Traditional wood 

defects detection is conducted mostly by using artificial methods, but these methods are 

time consuming, which require harsh testing conditions, and have poor stability and low 

accuracy. Some tests even have to be conducted by destroying the wood samples being 

tested, so these detection methods cannot meet the needs of non-destructive, rapid and 

continuous detection during timber production. Wood non-destructive testing (WNDT) 

technique was gradually emerged in the 1960s, which was used for detecting the growth 

characteristics, physical properties, mechanical properties, and defects of wood and wood 

components [1]. With the continuous development of electronics, optics, and computer 

technology, currently more than dozens of WNDT technologies have been applied in 

testing wood properties, such as ray inspection, ultrasonic testing, magnetic resonance 

detection, microwave detection, stress wave detection, and acoustic emission testing [2]. 

Based on the related literature review at home and abroad, it is concluded that ultrasonic 

detection method is one of the most widely used methods in WNDT techniques. It can be 

applied in detecting the surface and internal decay of wood, knots, resin, bark, holes, and 

other defects in the wood [3-6]. Although the application of ultrasonic in wood defects 
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detection is very extensive, the study on the defect detecting for the healthy standing trees 

or trees with internal defects is still very limited. 

While propagating in the timber, large amount of information including the relevant 

timber properties, internal structure, and composition will be recorded by the ultrasonic 

wave. Accurate determination on the changes of the acoustic parameters can help infer 

the performance, internal structure, and composition of wood. However, useful 

information is often hidden in the acquired signal, since the sensor received signal is 

always accompanied by random noise. Of course, the most effective and thorough 

approach is to eliminate the possibility of producing noise. But due to the impacts of the 

detection instrument itself, testing conditions in the field, ambient noise, and other 

factors, it is often difficult to be eradicated. Therefore, only the signal processing 

techniques can be used to remove or reduce the noise in the detection signal and greatly 

improve the reliability of detection. Currently, the Fourier transform is widely used in 

signal processing, especially for relatively stable periodic signal. However, it cannot 

reflect the mutation characteristics of the signal, or describe the local features in the time 

domain, thus it is difficult to meet the time-domain and local variation characteristics in 

the frequency domain. At present, some researchers began to use wavelet analysis for 

ultrasonic signals processing, especially in signal denoising. Wavelet transform method 

has unique advantages in signal denoising, which has good time-frequency localization 

properties and can be focused in any detail signal.  

Among the wavelet transform denoising methods, the wavelet threshold denoising is 

simple, requiring less calculation, and has extensive adaptation, which is one of the most 

widely used wavelet denoising methods. Therefore, the purpose of this paper is to 

conduct wavelet threshold denoising on the ultrasonic testing signal collected in the field 

by using the wavelet transform, and to measure the effect of denoising by signal-to-noise 

ratio (SNR) and other indicators, and to determine the optimal wavelet base, the number 

of wavelet decomposition levels and the type of threshold. 
 

2. Material and Method  
 

2.1.  Ultrasonic Signal Acquisition and Data Preprocessing  

The ultrasonic instrument used in this study was RSM-SY5 ultrasonic detector 

produced by Wuhan Institute of Rock Mechanics in China, as shown in Figure 1 (a). In 

order to effectively detect the standing trees, the probes of the RSM-SY5 ultrasonic 

detector were modified, as shown in Figure 1 (b). The original probe of the ultrasonic 

longitudinal wave is planar. However, the barks of logs and standing trees will result in a 

large gap between the ultrasonic probe and the object to be measured, which has a 

significant negative impact on the detection accuracy. Thus, a steel conical waveguide 

rod was connected to the original flat probe. The contact surface of the cone cusp is very 

small, so the ultrasonic longitudinal wave from the cone tip to the standing tree can be 

taken as a point source. 

The standing trees were selected from the experimental forest farm at Northeast 

Forestry University, China (126° 62'~ 126° 63'E, 45°71 '~ 45°72'N, with an average 

elevation of 142 m). A total of forty standing trees with diameter of 0.40-0.55 m were 

selected and ultrasonic testing was conducted at tree height of 1.30m in order to 

determine the location of the internal defects. Before testing, some testing parameters 

were set up for the ultrasonic detector, such as trigger mode (inside trigger), gain value 

(1000), high-pass filter frequency (10kHz), low-pass filter frequency (10kHz), signal 

sampling point (2048), and sampling period (1us).  

The ultrasonic signal acquisition results were saved in RWV format and the data 

structure was a 16×128 matrix. In order to facilitate the later data processing, the data 

structure was transformed into a 1×2048 matrix in MATLAB software. The transform 

functions are: a=a', Y=reshape (a, 1, 2048), where a is the original signal, and Y is 
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transformed array. Once data preprocessing on the collected signal is done, wavelet 

denoising can be started. 

  

(a) Ultrasonic testing detector               (b) The modified ultrasound probe 

Figure 1. Ultrasonic Testing System 

2.2. The Principles of Wavelet Denoising  

Wavelet transform is developed from the Fourier transform, which is a new method of 

signal analysis. The basic idea is to decompose the original signal into a series of 

primitive signals with good positioning of frequency domain and to use various features 

of the primitive signals to characterize the local features of the original signal, and to 

realize localization analysis on the time-frequency domain of the signal [7-8]. The 

wavelet transform is to expand the arbitrary function )()( 2 RLtf  on the wavelet base 

)(t
. The mathematical expression for the wavelet transform is defined as:  

 )(),(),( , ttfWf                                                                          (1) 

This expansion is called continuous wavelet transform for the  tf  function. 

However, in the practical applications, especially in the computer realization, continuous 

wavelet must be made to be discrete. The mathematical expression for the discrete 

wavelet transform is given by: 
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After decomposing the signal into different levels, the wavelet coefficients 

),)((  fW
 can be obtained, then inverse transform is conducted on the coefficients 

and the signal reconstruction is completed. The mathematical expression is: 

)(),)(()( ,

,

tfwtf 


 
                                             (3) 

Where, 
)(2 RL

 represents the square-integrable real-value space, that is the energy 

limited signal space,   and 


 are the stretch factor and the translation factor for 
)(t

, 

respectively. 
 ,

 define the width of wavelets and center position, respectively, where 


 0
，


 00

. 

In the denoising process using wavelet transform, the selection and quantification of 

the threshold can determine the final quality of the signal to some extent. To determine 
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the optimal denoising method, three types of adaptive thresholds were adopted to denoise 

and reconstruct the ultrasonic signal. Each threshold is calculated as follows: 

Sqtwolog threshold 

nln21                                                                                   (4)  

where,  is noise intensity, n is the number of wavelet coefficients. 

Rigrsure threshold 

It is assumed that 
 nWWWW ,,21 

 and nWWW  21 , and the elements in 

W are the squared wavelet coefficients. R is defined as the risk vector, 
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, and the minimum value ir is defined as the risk value, 

so the threshold can be calculated by: 

a 2                                                                             (5) 
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2.3.  Evaluation of Denoising 

In the process of noise removal, some effective information may be regarded as 

ultrasonic noise and eliminated, so it is necessary to evaluate the effect of denoising. In 

this paper, the signal-to-noise ratio (SNR) and root mean squared error (RMSE) were 

used as computing standards to evaluate the effect of wavelet denoising. The larger the 

SNR value and the smaller the RMSE value, the better the noise removal and effective 

information of the signal retained is more complete, which means that the denoising 

effect of this method is better. The expressions for SNR and RMSE are defined as: 


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where, 
)(if

is the collected ultrasonic signal, and )(ˆ if is the ultrasonic signal after 

denoising. 
 

3. Results and Analysis  
 

3.1. Effects of Denoising by Different Wavelet Bases 

The appropriateness of wavelet base selection is directly related to the effect of 

denoising. In this paper, four commonly used wavelet bases were selected to decompose 

the ultrasonic signal into two levels and process denoising, including Daubechies (db), 
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Symlets (sym), Coiflets (coif), and Discrete Meyer (dmey). Here, Daubechies is db3, 

Symlets is sym3, and Coiflets is coif3. The effects of denoising by the four wavelet bases 

are presented in Table 1. The order of SNR value was dmey<coif3<sym3<db3, and the 

maximum value was 34.9167. While, the order of RMSE value was 

db3<sym3<coif3<dmey, and the minimum value was 3.2195. The results showed that 

among the four wavelet bases, the denoising effect with db3 wavelet base was the best. 

Table 1. The Effects of Denoising by Different Wavelet Bases 

Parameters db3 sym3 coif3 dmey 

SNR 34.9167 34.7283 34.7032 34.4814 

RMSE 3.2195 3.291 3.3006 3.3859 

 

3.2.  Effects of Denoising by Different Decomposition Levels  

In the denoising process by wavelet transform, ultrasonic portable noise may not be 

completely removed with fewer decomposition levels, while a part of effective 

information may be rejected as noise with excessive decomposition levels. Therefore, the 

determination of the wavelet decomposition levels is critical to the effect of ultrasonic 

denoising. In this paper, the db3 wavelet in the toolbox of Matlab software was applied to 

conduct fixed soft and hard threshold denoising under different decomposition levels in 

order to find the best decomposition levels. 

Table 2. The Effects of Denoising by Different Decomposition Levels 

Parameters 1 2 3 4 5 6 7 8 

SNR 34.9167 35.2398 35.9961 37.5451 34.7662 34.6563 34.63 34.6072 

RMSE 3.2195 3.1033 2.8477 2.3886 3.2749 3.3161 3.3259 3.3343 

As shown in Table 2, SNR and RMSE values were different from each other 

decomposition level, which means that the effects of denoising of db3 wavelet under 1-8 

wavelet decomposition levels were different. With the increase of decomposition levels, 

SNR showed an increasing trend, while RMSE showed a decreasing trend. When the 

number of decomposition levels was equal to four, SNR reached the maximum value of 

37.5451, and RMSE reached the minimum value of 2.3886. However, when the number 

of decomposition levels was greater than four, SNR showed a decreasing trend and 

RMSE showed an increasing trend with the increase of the decomposition levels. The 

reason for this phenomenon was that the denoising effect of db3 wavelet enhanced with 

the increase of decomposition levels and achieved the best when the decomposition levels 

reached four in this study. However; when the number of decomposition levels surpassed 

four, with the increase of decomposition levels, a part of the effective information was 

rejected as noise and the effective information being removed was also increasing, 

resulting in the decrease of the effect of wavelet denoising. 
 

3.3. Effects of Denoising by Different Thresholds 

After determining the wavelet base function and wavelet decomposition levels, the 

selection and quantification of threshold play a decisive role in the wavelet denoising 

effect. In this paper, under the db3 wavelet and four decomposition levels, three types of 

adaptive thresholds including sqtwolog threshold, rigrsure threshold, and minimaxi 

threshold were used in combination with soft and hard quantization thresholds to denoise 

the signal to determine the best method of denoising. The related denoising parameters 

are presented in Table 3. 
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Table 3. The Effects of Denoising by Different Thresholds 

Denoising 

methods 

sqtwolog 

threshold  
rigrsure threshold 

 

minimaxi 

threshold 

SNR RMSE SNR RMSE SNR RMSE 

Soft 

threshold 
37.5451 2.3886  54.514 0.3417  39.1916 1.9795 

Hard 

threshold 
61.831 0.1474  89.9371 0.0058  67.3438 0.0781 

It was shown from Table 3 that regardless of the type of threshold selected, the SNR 

value after denoising for the quantized wavelet by a hard threshold was larger than that 

by a softer threshold, while root mean square error vice versa, which indicated that the 

quantization effect for the hard threshold was better than soft threshold. After quantifying 

by the hard threshold, the order of the SNR obtained after denoising is sqtwolog 

threshold < minimaxi threshold < rigrsure threshold, and the order of the RMSE is 

rigrsure threshold < minimaxi threshold < sqtwolog threshold, and soft threshold is also 

the same, which showed that among the three types of adaptive thresholds the effect of 

denoising by rigrsure threshold was the best. To sum up, the best way for denoising was 

the rigrsure hard threshold, and the SNR and RMSE were 87.9371 and 0.0058, 

respectively. 
 

3.4. Effect of Wavelet Transform Denoising  

In order to confirm the effect of wavelet transform denoising, the signals before and 

after the rigrsure denoising were reconstructed, as shown in Figure 2. Figure 2(a) and 

Figure 2(b) show the signals before and after the rigrsure with hard quantization 

threshold denoising, respectively. Although part of the denoising effect can be seen, the 

important information such as specific point or location cannot be identified from the 

signals In order to identify the hidden defects and the presence of noise more effectively 

in the ultrasonic signal, low-frequency approximation signal and high-frequency signal 

were plotted. Figure 2(c) is ultrasonic frequency coefficient with four decomposition 

levels. When x-axis was between 950-1200, the concave of ultrasonic was very 

significant, which was caused by the attenuation of some ingredients in the specified 

frequency band signal in the defective portion and indicated the presence of internal 

defects in the standing tree. Figure 2(d) is the high-frequency detail signal which shows 

mostly noise in the signal. 

 
(a) Original signal                                   (b) After denoising signal 
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(c) Low-frequency approximation signal    (d) High-frequency signal 

Figure 2. The Effect of Wavelet Transform Denoising 

Since there were some internal defects in the standing tree based on Figure 2(c), in 

order to confirm the existence of the defect, the stress wave tester ARBOTOM which was 

imported from Germany was used to detect the same location of the standing tree. Based 

on the stress wave software ZDPC-PROG, a two-dimensional cross-sectional map can be 

obtained which contains the stress wave propagation velocity, propagation paths, and 

wood decaying (Figure 3). The ID numbers in Figure 3 represent the locations of twelve 

sensors hung on the cross section of the standing tree. The stress wave two-dimensional 

cross-sectional map uses a "red - yellow - green" mode to indicate the propagation 

velocity. For example, the red area (darker) means that the stress wave propagation speed 

is relatively slow, indicating that this region is likely to have decay. The green area 

means that the stress wave propagation speed is relatively fast, indicating that there is no 

decay. The cross-sectional map can directly reflect the situation of growing internal 

decay through different color gradient (from green to yellow, from yellow to red). That is 

to say, the cross-sectional image is a visual representation of velocity changes, while the 

variation of velocity is the nature of the image color change [9]. Because there were only 

two ultrasonic probes being used to detect the standing tree, the ultrasonic signals were 

captured from the two test locations at ID_5291 and ID_5295. As can be seen from Fig. 

3, there was indeed some internal decay in the standing tree, which is consistent with the 

judgment of the ultrasonic signal. 

 

Figure 3. Cross-sectional Map Detected by Stress Wave 
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4. Conclusions and Discussion  

While detecting the defects in standing trees by using ultrasonic testing method, it is 

not very easy to visually identify the defects such as cracks, internal decay, and insect 

holes from the ultrasonic signals. If these defect characteristics in the ultrasonic signal 

can be detected, the diagnosis of internal defects in standing trees will be greatly 

enhanced, which has a significant practical value for identification of standing tree’ 

quality. The ultrasonic testing signal is always mixed with some random noise and the 

presence of noise seriously interferes with the essential characteristics of the signal, 

which is not conducive to the signal analysis. Therefore, it is an urgent problem need to 

be resolved in testing the internal defects of standing trees that appropriate analytical 

methods should be used to extract the internal defect features from the original ultrasonic 

signal mixed with noise. The wavelet transform is a time-scale (time-frequency) analysis 

method for signal, which has the characteristics of multi-resolution analysis, but also has 

the ability to characterize the local signal characteristics in both the time and frequency 

domains, very suitable for the detection of transient anomalies carried by normal signals 

and showing their constituents. Therefore, wavelet transform was applied to perform 

denoising on the collected ultrasonic signal in the paper and the purpose was to make the 

ultrasonic signal after denoising not only to improve the SNR but also to project some 

detailed features for the signal.  

The defect characteristics of ultrasonic signals are that when defects occur, the 

amplitude of the ultrasonic signal will change, while its phase and frequency are also 

changed. Wavelet decomposition is expanded on wavelet base, and breaks it down into 

different frequency bands. In fact, the wavelet decomposition of the ultrasonic signal is 

an infinite summation equation. Because of the sampling frequency and the limit of the 

computer, often this summation is intercepted to a desired scale and to get an 

approximate signal whose approximate extent is completely dependent on the choice of 

the wavelet base. In this study, we compared four wavelet base denoising parameters 

including Daubechies (db), Symlets (sym), Coiflets (coif) and Discrete Meyer (dmey), 

and db3 wavelet base had the best denoising effect. The variations of denoising 

parameters corresponding to the number of db3 wavelet decomposition levels (1- 8) were 

further analyzed and the decomposition level 4 was demonstrated the best. Meanwhile, 

the effects of wavelet denoising under different threshold states were compared and the 

hard rigrsure threshold was demonstrated the best. This is because heursure threshold is 

the combination sqtwolog threshold and rigsure threshold. When determining the 

threshold during the process of denoising, an appropriate threshold can be adaptively 

selected in sqtwolog threshold and rigsure threshold based on the size of the noise. 

The singular points and irregular mutation parts in the ultrasonic testing signals often 

bring more important information, which are one of the important characteristics of the 

signals, especially in the detection of internal defects in the standing trees. Based on the 

reconstruction of the low and high frequency portions of the ultrasonic testing signal, the 

singularity of the ultrasonic testing signal can be checked. The reconstructed low-

frequency signal indicated that there were internal defects in the ultrasonic detection 

signal of the standing tree. Finally, in order to confirm the existence of the defect, the 

diagnosis result was compared with the stress wave testing result, which finally proved 

the judgment by using ultrasonic testing signal. Thus, the feasibility of applying wavelet 

transform in ultrasonic signal denoising for standing trees is proven. In addition, the 

results of this study can be combined with the variations of ultrasonic wave propagation 

parameters such as time, velocity, and modulus of elasticity to determine the internal 

defects, thereby more effectively improving the reliability and applicability of ultrasound 

technology in detecting the internal defects in the standing trees. 
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