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Abstract 

Aiming at properties of remote sensing image data such as high-dimension, 

nonlinearity and massive unlabeled samples, a kind of probability least squares support 

vector machine (PLSSVM) classification method based on hybrid entropy and L1 norm 

was proposed. Firstly, hybrid entropy was designed by combining quasi-entropy with 

entropy difference, which was used to select the most “valuable” samples to be labeled 

from massive unlabeled sample set. Secondly, a L1 norm distance measuring was used 

to further select and remove outliers and redundant data from the sample set to be 

labeled. Finally, based on originally labeled samples and screened samples, PLSSVM 

was gained through training. Experimental results on classification of ROSIS 

hyperspectral remote sensing images show that the overall accuracy and Kappa 

coefficient of the proposed classification method reach higher accuracy respectively. 

The proposed method can obtain higher classification accuracy with few training 

samples, which is much applicable to classification problem of remote sensing images. 
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1. Introduction 

Classification of remote sensing images means to make each pixel point region in the 

image belong to a category in several categories or one among several special elements. 

The classification results is to divide image space into several sub-regions, and each sub-

region presents a practical land object [1-2]. In actual classification of remote sensing 

images, there are usually massive unlabeled samples, while the proportion of labeled 

samples is very small. Thus, it is very difficult to look for the information in need of 

labeling from these massive unlabeled samples. Besides, the cist used to label these 

samples is very high. Active learning algorithm is a new method for sample training. It 

is different from passive learning algorithm where samples are selected randomly
 
[3-4]. 

In the process of machine learning, learners can actively choose the data most beneficial 

to improving properties of a classifier, automatically mark and add them in training 

samples for learning so as to effectively avoid excessive manual intervention and reduce 

the number of labeled samples. 

The core of active learning algorithm is that which strategic selection function is used 

to select the most “valuable” sample for labeling from unlabeled samples. Since the 

evaluation criteria for “value” are different, multiple active learning algorithms appear. 

Literature [5] selects the samples for labeling which current classifier cannot confirm the 

category mostly. Generally, this is called uncertain sampling. This method can fully 

select the samples beneficial to the classifier, and gain better results than random 

algorithm. But it has large randomness, so only sub-superior samples set can be picked 

out. In addition, outliers and redundant data may be easily chosen [6]. The introduction 

of quasi-entropy [7] can reduce sampling randomness to some extent. Literature [8] 
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proposes a heuristic active learning algorithm which selects the most possible 

misclassified samples based on committee. This algorithm chooses the most possible 

misclassified samples of current classifier during every sampling and eliminates the 

samples more than a half in the space so as to gain faster convergence speed than 

mainstream selection algorithm. Literature [9] randomly selects unlabeled samples from 

uncertain misclassified samples on the verification set for labeling. This algorithm owns 

better accuracy rate than standard algorithm. But, these algorithms still probably choose 

outliers and redundant data, and calculation complexity is high. The introduction of 

entropy difference can help pick up misclassified samples more conveniently. In order to 

get more refined sample set, hybrid entropy is gained through fusing quasi-entropy and 

entropy difference. Since the algorithm may result in selecting outliers and redundant 

data, L1 norm distance measurement is used to choose these data and eliminate them.  

This paper proposes an active learning algorithm based on hybrid entropy and L1 

norm. This algorithm improves selection function from two aspects: 1) the most 

“valuable’ samples are selected with hybrid entropy, and a rough sample set to be 

labeled is gained; L1 norm distance measurement is used to choose and eliminate 

possible outliers and redundant data; 2) remote sensing image data usually own such 

features as high dimension, nonlinearity and massive data, so support vector machine ca 

be used to analyze and treat them. But traditional support vector machine classification 

method only takes into account of two extreme cases during deciding sample 

classification, i.e. the label for the sample belonging to the category is +1 and the label 

for the sample which does not belong to the category is -1. However, in practical 

application, due to the existence of uncertainty and influence of external factors, every 

sample has different division methods. Especially form some problems, due to sample 

randomness and fuzziness, they cannot be classified into a class explicitly, but can only 

classified into a class according to caaertain probability or certain membership degree. 

So, it is improper to empress class information only with  1, 1   [10]. Thus, for the 

samples selected on the basis of active learning algorithm, PLSSVM is adopted as the 

classifier to classify and identity hyperspectral remote sensing images. 

 

2. Plssvm 

Aiming at classification inaccuracy and uncertainty of traditional support vector 

machine as well as defects of interference samples, Literature [10] designs PLSSVM to 

classify the samples which cannot be explicitly classified into a class according to 

certain probability. In this way, sample classification has qualitative interpretation and 

quantitative evaluation. Posterior probability of sample x belonging to each class is: 
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Where, c is the number of classes; ( |1)p c  is posterior probability that sample x 

belongs to the c
th
 class under the condition where sample x belongs to the first class. 

Similarly, (1| )p c ； mp  is posterior probability that sample x belongs to the m
th
 class 

( 1,2, , )m c L . 

Formula (1) can be regarded as c equation sets used to solve c unknown variables mp . 

Through solving Formula (1), in output probability modeling of multi-classification 

problem, decision function of mp of sample x in each class can be gained, i.e. take the 

class with the largest posterior probability as the sample. The class that x belongs to is as 

follows:  
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3. Active Learning based on Hybrid Entropy and L1 Norm 

Labeled sample set
1 1 2 2{( , ),( , ), ,( , )}l lL x y x y x y L  from unknown distribution and an 

unlabelled sample set
1 2{ , , }l l nU x x x  L  are given. Overall sample set is L U  U . 

There are c classes. Rd

ix  ( 1,2, , ;i n L d refers to the number of dimensions of 

samples) and {1,2, , }iy c L is the label of sample ix . The system adopts labeled sample 

set L as the training set to gain initial PLSSVM classifier, and actively selects some 

samples with large information quantity from unlabelled sample set U according to a 

strategy. Then, experts label them and add them in the training set. Thus, new PLSSVM 

classifier is obtained. After repeated cycles, classification results will finally reach the 

threshold value of an evaluation index or specified cycle times.  

 

A. Sample selection strategy based on hybrid entropy 

The classifier may easily make mistakes during judging the most uncertain sample 

classification, thus leading to low classification accuracy rate. Therefore, uncertainty is 

an important factor that experts should consider when selecting the samples to be 

labeled. Sample uncertainty algorithms can be based on Shannon entropy, posterior 

probability and the nearest boundary etc. The algorithm based on Shannon entropy has 

gained good results in many applications, but it cannot select the optimal samples so that 

calculation complexity is high during training the set. Thus, optimization selection 

standard (i.e. quasi-entropy with high quality factor) is needed to measure sample 

uncertainty. Literature [11] points out that quality factor of (0 1)ap a    convex 

function is higher than that of logp p . If the quality factor is larger, quasi-entropy is more 

sensitive to probability distribution evenness near the minimum value, and the shape of 

minimum value of quasi-entropy is shaper. So, quasi-entropy surpasses Shannon entropy 

in terms of significance index of minimum value. Therefore, quasi-entropy with high 

quality factor replaces Shannon entropy. Assuming posterior probabilities that sample ix  

belongs to every class are 1 2, , cp p pL , and 
1

1
c

im

m

p


  is met, uncertainty measure of 

sample ix can be expressed as  
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Where, ( ) a

im imf p p  ; i  has the following properties:  

Property 1: when posterior probability distribution is most even (i.e. all mp  are 

equal), i  is the minimum and equal to (1/ )cf c . This is also the situation where 

uncertainty is the largest.  

It can be known from Property 1 that when posterior probabilities mp  that sample ix  

belongs to every class are equal, sample uncertainty is the largest, and the value of quasi-

entropy i is the smallest. So, quasi-entropy can be sued to figure out uncertainty 

measurement value of each sample. If quasi-entropy value of samples is smaller, the 

information quantity is larger.  

In information entropy, the samples which may be easily misclassified can be 

expressed with the absolute value of differences of two absolute values:  
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Where, 
maxp  is the maximum posterior probability that sample ix  belongs to every 

class; secp is the second largest posterior probability that sample ix  belongs to every class. 

Entropy difference distance metric function of density functions 
maxp  and 

secp of the 

two posterior probabilities have the following characteristic
 
[12]  

1
max sec max sec

1

2L
p p p p               (5) 

Where, 
1

max sec L
p p is standard Minkowski L1 norm distance measurement, then 

1
max sec max sec( ) ( )

L
H p H p p p         (6) 

This characteristic shows retrieval results of Entropy difference distance metric is 

included in retrieval results of L1 norm distance measurement, and the retrieval range 

narrows. 

It can be seen from Formula (4), when posterior probability of samples changes 

slightly, and the change in entropy value will also be small. When entropy difference 

value is smaller, the possibility that sample ix belongs to some two classes is close, i.e. 

this sample may be misclassified most easily, and the information quantity is also the 

largest.  

According to analysis of quasi-entropy and entropy difference, the following 

conclusions can be drawn: if quasi-entropy value is smaller, sample uncertainty is larger; 

entropy difference value is smaller, the sample may be misclassified more easily. If the 

values of quasi-entropy and entropy difference are smaller, information quantity is larger 

and there are larger impacts in classification effects. In massive data sets, the sample size 

selected purely by quasi-entropy or entropy difference strategy is also large. In order to 

pick out more refined samples and reduce labeling cost, quasi-entropy and entropy 

difference are fused to gain a new sample selection measurement strategy - hybrid 

entropy.   

i i iu d .                      (7) 

M samples with the highest information quantity are worked out according to 

Formula (7), i.e. M samples with the smallest iu  value. 

B. Sample similarity measurement based on L1 norm 

The samples selected by hybrid entropy may have outliers and redundant data. These 

data make little contributions to classification accuracy of the classifier and even will 

affect its classification accuracy. Therefore, L1 norm distance measurement will be 

adopted to work out similarity among samples. Outliers and redundant data will be 

removed according to similarity value.  

Literature [13] adopts L1 norm, L2 norm and quadric expression to compare data 

retrieval properties. The testing results show these distance measurement methods differ 

little in retrieval property. L1 norm distance measurement is more robust than L2 norm 

distance measurement, and L1 norm distance measurement is the most simplest in 

calculation. So, L1 norm distance measurement is adopted to calculate similarity among 

samples to be labeled.  
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Where, hkx  and jkx are the k
th
 attribute in the h

th
 and j

th
 samples; v is the number of 

samples.  

Assuming mean space distance of samples of the same class is θ , /100a  ,   . 

If hjs a , sample jx  is judged to be redundant information and eliminated; if min hjs  , 

sample jx  is judged to be an outlier and deleted. Then, the remaining samples are 

selected and submitted to experts for labeling. This deletes outliers, eliminates redundant 
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data, further narrows scale of sample set to be labeled and reduces cost of manual 

labeling.  

 

4. Algorithm Steps 

Input: labeled sample set is expressed as L and unlabelled sample set is expressed as 

U; the number of samples is expressed as M; ending condition is expressed as S; the 

parameter is expressed as a. 

Algorithm process:  

1) Train classifier PLSSVM with labeled sample set; 

2) Carry out a~g repeatedly until ending condition S is met;  

a) Posterior probability that unlabeled sample set U belongs to each class is calculated 

with classifier PLSSVM; 

b) Calculate quasi-entropy i  and entropy difference id  of unlabeled samples 

according to posterior probability gained, Formula (3) and (4); 

c) Calculate hybrid entropy iu  according to Formula (7);  

d) Select m samples with the smallest iu value and add them in the sample set to be 

labeled;  

e) Calculate similarity of M samples according to Formula (8), eliminate the samples 

meeting hjs a  and min hjs  , and make the remaining samples form new sample 

subset A; 

f) Submit A to experts for labeling and add labeled samples in L;  

g) PLSSVM. Utilize L to train classifier PLSSVM again. 

Output: train sample set L finally labeled and gain classifier PLSSVM. 

 

5. Experiment and Analysis 
 

A. ROSIS hyperspectral experimental data 

ROSIS hyperspectral experimental data come from Literature [14]. Spectral region is 

0.43~0.86 μm, with 610×340 pixel, 103 wave bands and 1.3 spatial resolution. Besides, 

training region and testing region actually measured synchronously are provided. The 

training samples include 9 classes of land objects: bituminous pavement (548 pixel), tree 

(524 pixel), brick (514 pixel), shadow (231 pixel), pitch roof (375 pixel), bare land (532 

pixel), metal plate (265 pixel), grit (392 pixel) and grassland (540 pixel). Testing 

samples include 9 classes of land objects: bituminous pavement (6592 pixel), tree (3064 

pixel), brick (3682 pixel), shadow (942 pixel), pitch roof (1330 pixel), bare land (5029 

pixel), metal plate (1345 pixel), grit (2099 pixel) and grassland (18675 pixel).  ENVI4.7 

software is utilized to transform original data corresponding to the regions ROSIS 

hyperspectral image training sample and testing sample are interested in to ASCII data 

so as to process data in Matlab 7.8 environment.  

B. Calcification results of remote sensing image and analysis of results 

Active learning algorithm is adopted to select training samples for the classifier and to 

construct two types of APLSSVM, expressed as APLSSVM1 and APLSSVM2 in this 

paper. In the experiment process, parameter setting is as follows: kernel function of 

PLSSVM adopts polynomial kernel function; the optimal values of penalty parameter C 

and kernel parameter γ are confirmed with cross validation method, a=0.6 and M=100.  

1) Based on the same initial sample set, change the number of newly-added training 

samples, evaluate effects of the number of newly-added training samples on 

classification accuracy of two type of APLSSVM; the ending condition S is that the 

difference between adjacent two classification accuracies is less than 0.002 or the 

number of iteration times reaches 15. This indicates high classification accuracy can be 
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gained when PLSSVM is used to process remote sensing images; when the number of 

newly-added training samples is less than 300, classification accuracy of APLSSVM1 

boots rapidly with the rise in the number of labeled samples; when the number of newly-

added training samples exceeds 300, classification accuracy of APLSSVM1 basically 

tends to be stable and maintains about 90% with the rise in the number of labeled 

samples; for APLSSVM2, its classification accuracy increases slowly with the rise in the 

number of labeled samples; to reach the same classification accuracy with APLSSVM1, 

APLSSVM2 needs more labeled samples, which will consumes more time and energy of 

experts. So, the cost is expensive.     

2) In the experiment, given training samples serve as the initial sample set. Under the 

condition where the number of newly-added training samples is the same, classification 

effects of two APLSSVM classifiers and passive PLSSVM classifier are compared. 

APLSSVM1 and APLSSVM2 selects newly-added training samples for labeling through 

iteration of active learning algorithm; passive PLSSVM directly selects samples of the 

same number as newly-added samples for training. The number of training samples the 

three classifiers select is: original sample set + 300 newly-added samples. The ending 

condition S is that the number of iterations reaches 3. Table 1, Table 2 and Table 3 are 

confusion matrix and Kappa coefficient corresponding to each figure.  

It can be seen that APLSSVM2 and passive PLSSVM classify most grassland into 

bare land, and the misclassification phenomenon is serious; APLSSVM1 performs 

relatively well in this aspect and can well classify the two types of land objects; 

misclassification accuracy of other land objects approaches for the three classifiers.  

The following can be gained according to Table 1-3:  

User’s accuracy: among all kinds of land objects, user’s accuracy differs mostly 

for bare land. User’s accuracy of APLSSVM1 is 80.04%, up over 30% compared 

with user’s accuracy of APLSSVM2 and passive PLSSVM. According to 

confusion matrix in Table 2 and Table 3, APLSSVM2 and passive PLSSVM 

misclassify most grassland into bare land. Thus, the proportion of grassland in bare 

land samples exceeds a half. For pitch roof, the largest user’s accuracy of 

APLSSVM2 is 83.90%, followed by APLSSVM1 (70.29%), and passive PLSSVM 

has the smallest user’s accuracy (65.58%). For the three classifiers, user’s accuracy 

differs little among other land objects. 

Table I. Confusion Matrix obtained by APLSSVM 1 

 
Bituminous 

pavement 
Tree  Brick  Shadow  

Pitch 

roof 

Bare 

land 

Metal 

plate 
Grit  Grassland  User’s accuracy/%  

Bituminous 

pavement 
5416 5 166 0 115 9 0 25 11 94.24 

Tree 0 2747 3 0 0 13 0 0 465 85.10 

Brick 273 0 3196 0 11 50 5 379 41 80.81 

Shadow 26 1 0 942 0 0 2 0 0 97.01 

Pitch roof 418 0 36 0 1201 2 53 5 0 70.29 

Bare land 23 201 0 0 0 4799 0 0 973 80.04 

Metal plate 0 2 0 0 0 35 1281 0 0 97.19 

Grit 405 0 251 0 3 0 2 1687 0 71.85 

Grassland 31 94 28 0 0 121 2 3 16901 98.38 

Producer’s  

accuracy/%  
82.16 90.07 86.85 100 90.30 95.43 95.24 80.37 91.90 

Overall 

accuracy=89.90% 
  Kappa=0.8685 

Table II. Confusion Matrix obtained by APLSSVM 2 

 
Bituminous 

pavement 
Tree  Brick  Shadow  

Pitch 

roof 

Bare 

land 

Metal 

plate 
Grit  Grassland  User’s accuracy/%  

Bituminous 

pavement 
5717 0 240 0 129 4 0 31 13 93.20 

Tree 0 2889 0 0 0 12 0 0 703 80.16 
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Bituminous 

pavement 
Tree  Brick  Shadow  

Pitch 

roof 

Bare 

land 

Metal 

plate 
Grit  Grassland  User’s accuracy/%  

Brick 135 0 3172 0 3 18 0 380 30 84.86 

Shadow 27 0 0 942 0 0 1 0 0 97.11 

Pitch roof 209 0 17 0 1193 0 0 3 0 83.90 

Bare land 10 59 3 0 0 4958 1 0 5115 48.87 

Metal plate 0 1 0 0 0 0 1287 0 0 99.92 

Grit 345 0 206 0 1 0 0 1675 0 75.21 

Grassland 19 76 24 0 0 9 1 4 12796 98.97 

Producer’s 

accuracy/%  
88.47 95.50 86.62 100 89.97 99.14 99.77 80.03 68.59 

Overall 

accuracy=81.56% 
Kappa=0.7691 

Table III. Confusion Matrix obtained by Passive PLSSVM 

 
Bituminous 

pavement 
Tree  Brick  Shadow  

Pitch 

roof 

Bare 

land 

Metal 

plate 
Grit  Grassland  User’s accuracy/%  

Bituminous 

pavement 
5341 5 146 1 111 5 0 24 21 94.46 

Tree 0 2805 2 0 0 15 0 1 981 73.74 

Brick 284 0 3174 0 9 51 9 373 79 79.77 

Shadow 3 1 0 841 0 0 2 0 100 88.81 

Pitch roof 411 0 24 0 1107 4 51 3 88 65.58 

Bare land 19 84 2 0 0 4801 0 0 5253 47.26 

Metal plate 0 2 0 0 0 35 1181 0 98 89.74 

Grit 402 0 208 0 3 0 1 1596 78 69.76 

Grassland 32 67 26 0 0 18 1 2 12477 98.84 

Producer’s 

accuracy/%  
82.27 94.63 88.61 99.88 90 97.40 94.86 79.84 65.07 

Overall 

accuracy=78.48% 
Kappa=0.7305 

 

Producer’s accuracy: producer’s accuracy of grassland differs most greatly. 

Producer’s accuracy of APLSSVM1 is 91.90%, up over 20% compared with producer’s 

accuracy of APLSSVM2 and passive PLSSVM. According to confusion matrixes in 

Table 2 and Table 3, nearly 1/3 grassland samples are misclassified into bare land. 

Producer’s accuracy of other land objects approaches for the three classifiers. Overall 

accuracy and Kappa coefficient: since overall accuracy takes into account of 

corresponding weight relationship of each class, it is relatively objective; since Kappa 

coefficient considers the prelateship between user’s accuracy and producer’s accuracy, it 

has become classification accuracy evaluation index of remote sensing images together 

with overall accuracy. Based on analysis of Table 1-3, overall accuracy and Kappa 

coefficient of APLSSVM1 are the highest, followed by APLSSVM2. Passive PLSSVM 

performs most poorly.  

Experiment results show, APLSSVM1 over considers sample uncertainty and samples 

which may be easily misclassified, and eliminates outliers and redundant data from 

samples to be selected. Finally, more refined training sample set is gained. Therefore, 

under the same number of training samples, APLSSVM1 has higher classification 

accuracy than other classifiers.  

 

6. Conclusions  

1) Hybrid entropy gained through fusing quasi-entropy and entropy difference can 

measure sample uncertainty and avoid sample misclassification. Sample selection 

strategy based on hybrid entropy can choose more refined samples and reduce the cost of 

manual labeling.  

2) Sample similarity measurement method based on L1 norm can screen out outliers 

and redundant data, which further reduces the scale of sample set to be labeled and cost 

of manual labeling.  
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3) Compared with heuristic active learning algorithm which selects the most possible 

misclassified samples based on committee, active learning algorithm based on hybrid 

entropy and L1 norm can pick out more valuable samples to be labeled and gain high 

classification accuracy with few training samples.  

4) PLSSVM owns both qualitative explanation and quantitative evaluation during 

classifying uncertain samples, suitable for classifying remote sensing image data.  

5) For remote sensing image data with massive unlabelled samples, active learning 

can help find out the most valuable information from massive unlabeled samples. 

Compared with passive PLSSVM which selects samples randomly, APLSSVM owns 

higher classification accuracy. 

 

References 

[1] Y.-y. Wang, Y.-h. Chen and J. Li, “Application of model tree and support vector regression in the 

hyperspectral remote sensing”, Journal of China University of Mining & Technology, vol. 35, no. 6, 

(2006), pp. 818-823. 

[2] S.-j. Chen, G.-l. Li and W. Zhang, “Land use classification in coal mining area using remote sensing 

images based on multiple classifier combination”, Journal of China University of Mining & 

Technology, vol. 40, no. 2, (2011), pp. 273-278.  

[3] Y. Hamanaka, K. Shinoda and T. Tsutaoka, “Committee-based active learning for speech recognition”, 

IEICE Transactions on Information and Systems, vol. 94, no. 10, (2011), pp. 2015-2023.  

[4] L. J. Zhang, C. Chen and J. J. Bu, “Active learning based on locally linear reconstruction”, IEEE 

Transactions on Pattern Analysis and Machine Intelligence, vol. 33, no. 10, (2011), pp. 2026-2038.  

[5] Z. Sun, Z. Liu and S. Liu, “Active learning with support vector machines in remotely sensed 

image classification”, 2009 2nd International Congress on Image and Signal Processing, (2009) 

October 17-19, Tianjin, China. 

[6] D. Tuia, F. Ratle and F. Pacifici, “Active learning methods for remote sensing image classification”, 

IEEE Transactions on Geoscience and Remote Sensing, vol. 47, no. 7, (2009), pp. 2218-2232. 

[7] Y. Chen and Z. He, “Blind separation using a class of new independence measures”, IEEE. Proceedings 

of IEEE International Conference on Acoustics, Speech, and Signal Processing, Piscataway: IEEE 

Signal Process, (2003), pp. 309-312. 

[8] J. Long, J. P. Yin and E. Zhu, “An active learning method based on most possible misclassification 

sampling using committee”, Lecture Notes in Computer Science, vol. 4617, (2007), pp. 104-113. 

[9] L. Bruzzone and C. Persello, “Active learning for classification of remote sensing images”, IEEE, 

Proceedings of IEEE International Geoscience and Remote Sensing Symposium, Piscataway: IEEE In-

corporated, (2009), pp. 693-696. 

[10] Y. Gao, X. S. Wang and Y. H. Cheng, “Fault diagnosis using a probability least squares support vector 

classification machine”, Mining Science and Technology, vol. 20, no. 6, (2010), pp. 917-921. 

[11] Y. Chen, “Properties of quasi-entropy and their application”, Journal of Southeast University: Natural 

Science Edition, vol. 36, no. 2, (2006), pp. 221-225.  

[12] I. J. Cox, M. L. Miller and T. P. Minka, “The bayesian image retrieval system, PieHunter: theory, 

implementation, and psyehophysieal experiments”, IEEE Transactions on Image Processing, vol. 9, 

no. 1, (2000), pp. 20-37.  

[13] R. S. John, “Integrated spatial and feature image systems: retrieval, analysis, and compression”, New 

York: Columbia University, (1997). 

[14] L. Wei and Saurabh P. James E F., “Locality-preserving dimensionality reduction and classification for 

hyperspectral image analysis”, IEEE Transactions on Geoscience and Remote Sensing, vol. 50, no. 5, 

(2012), pp. 1185-1198. 

 

 

Author 

 
 Chen Xiao-hui, he is a lecturer of Information Engineering 

School in Yulin University, his main research interests include 

image processing, pattern recognition and computer software. 

 

 
 

 


