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Abstract 

The aim of this work is signal processing of Secondary Ions Mass Spectrometry (SIMS) 

profiles for improving the depth resolution beyond its physical and instrumental limits. 

Indeed, we propose a new iterative deconvolution algorithm based on Tikhonov-Miller 

regularization where a priori model of solution is included. The latter is a denoisy and 

pre-deconvoluted signal obtained by wavelets shrinkage algorithm. It is shown that this 

new algorithm gives best results without artifacts and oscillations related to noise. This 

leads to a significant improvement of the depth resolution and peaks’ maximums. The 

SIMS profiles are obtained by analysis of delta layers of boron in a silicon matrix using 

Cameca-Ims6f instrument at oblique incidence. In the light of the obtained results, the 

advantages and limitations of this new method as well as suggestions for future work are 

presented and discussed. 

 

Keywords: We multiresolution deconvolution, wavelet schrinkage, multilayers, SIMS, 

in-depth resolution 

 

1. Introduction 

Secondary ion mass spectrometry (SIMS) is widely used in the semiconductor industry 

for dopant depth profiling as well as contamination monitoring because of its ability to 

detect all elements, its high sensitivity, its large dynamic range, its unrivalled depth 

resolution and minimal sample preparation. In the last few years, improvement of depth 

resolution in secondary ion mass spectrometry (SIMS) analysis is a critical issue for depth 

profiling of silicon semiconductor films [1-4]. 

Developments of SIMS analysis are not as pronounced and rapid than those of the 

manufacturing techniques of materials in microelectronics technology. For progressing in 

this domain, it is important to go beyond the experimental results by including a post- 

erosion digital processing. This treatment, called deconvolution, leads to a good approach 

to the original profile from the experimental one and the system response.  

Actually, the deconvolution of depth profiling in SIMS analysis amounts to the 

solution of an appropriate ill-posed problem and it requires the result to be regularized. To 

this end, the solution is superimposed with certain limitations by introducing some 

additional limitative operator, whose shape is chosen depending on the formalism used for 

the solution of the ill-posed problem; into a goal function (usually the goal function is the 

mismatch between the convolved solution and initial data).  

The different monoresolution deconvolution methods proposed in the SIMS field 

showed a certain disability to the noise, the consequences are mainly limiting the depth 

resolution of the deconvoluted profiles and especially the generation of oscillations and 



International Journal of Signal Processing, Image Processing and Pattern Recognition 

Vol.8, No.8 (2015) 

 

 

200   Copyright ⓒ 2015 SERSC 

artifacts, which are not physically acceptable as negative concentrations. Indeed, in image 

processing field Barakat et al. [5] proposed a restoration method based on Tikhonov-

Miller regularization with an introduced a priori model of solution. In SIMS framework 

Mancina et al. [6] proposed an iterative constrained algorithm, based on Barakat 

algorithm, in which the model of solution is a pre-deconvoluted signal. Nevertheless, the 

results of these approaches contain oscillations and artifacts with negative components, 

which are not physically accepted in SIMS analysis. The origin of these oscillations is 

related to the presence of strong local concentrations of high frequencies in the signal 

which belong to noise. For this reason, it is important to eliminate noise components from 

the signal [2]. Denoising with the sole purpose of extracting desired information from 

measured data has proven to be a crucial preliminarily steps in any analytical method.   

Noise reduction, as an integral part of signal estimation, has been studied for many 

years with practical applications. In this context, Morlet [7] proposed a powerful tool for 

data analysis: the wavelet theory. Indeed, in the last decade, interest in wavelets has 

grown at an exponential rate. Donoho and Johnstone [8] offered a method for 

reconstructing an unknown signal from noisy data. They employed thresholding in 

wavelet domain and showed it to be asymptotically near optimal for a wide class of 

signals corrupted by additive white Gaussian noise.  

The aim of this work is to present an extension of Mancina algorithm [6]. Indeed, in 

the proposed algorithm the model of solution is a denoisy signal obtained by wavelet 

shrinkage and without application of any constraint operator. By denoising a priori of 

SIMS signal, the noise energy is then limited, only details which are greater than the 

shrinkage threshold are preserved. Thus, the contributions of high-frequency noise are 

removed to a great extent of the SIMS profiles.  

This work is based on SIMS data, for which reason the results presented here are 

largely restricted to the conditions of SIMS. The case of multilayer boron-doped silicon, 

analyzed using Cameca-Ims6f at oblique incidence, is then considered. 

 

2. Tikhonov-Miller regularization  

The Tikhono-Miller regularization is achieved through a compromise between 

choosing a solution that both leads to a reconstructed signal close to the measured data 

and conform to some prior knowledge of the original signal [2, 4-6]. This means that the 

solution x is considered to be close to the data if the reconstruction signal Hx is close to 

the measured one y, i.e. if 
2

Hxy  is reasonably small. Where H is Toeplitz matrix 

constructed from the pulse response of the system h(z).  

The first task of deconvolution procedure is to minimize the quadratic distance 

between y and Hx. Unfortunately; solutions that lead to very small values of 
2

Hxy  are 

oscillating and unacceptable. In order to get a stable solution, one must choose another 

criterion that checks whether the solution conforms to what must be expected from the 

solution of the deconvolution problem: it must be physically accepted, i.e. a smoothed 

solution. The smoothness of the solution can be described by its regularity r
2
, defined as  

 22

rDx  , (1) 

D is a stabilizing operator. The choice of D is based on the processing context and 

some a priori knowledge about the original signal. Indeed, D is usually designed to 

smooth the estimated signal, and then a gradient or a discrete Laplacien is conventionally 

chosen. Its spectrum is a high-pass filter [2, 9], this results in the minimisation of the 

quadratic functional proposed by Tikhonov: 

 
22 ~(~(minarg~ xDxHyx r²)), (2) 

where α is the regularization parameter and ‘argmin’ denotes the argument that minimizes 

the expression between brackets. Perfect fidelity to the data is achieved for α = 0, whereas 

perfect matching with a priori knowledge is achieved for α = ∞. It is therefore necessary 
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to find optimum α and, hence, such smoothing factor at which the solution of (2) is well-

stabilized and still close to the actual distribution. This regularization parameter α can be 

estimated by a variety of techniques [2, 5, 6, 9]. In simulation where the regularity of the 

solution is known, α = n
2
/r

2
, where n

2
 is a higher bound for the total power of the noise. 

Unfortunately, in the real case, there is no access to the regularity of the real profile, but it 

can be estimated by means of the generalized cross-validation [2] which is well applied 

for Gaussian white noise.  

The regularized solution takes the following form: 

 yHHyHDDHHx
TTTT 11 )()(~   ,  (3) 

with DDHHH
TT  . 

The matrix H characterizing the deconvolution process before regularization is 

replaced by the generalized matrix H
+
 = (H

T
H + αD

T
D) more conditioned. That is carried 

out by the modification of the eigenvalues of the system H, thus the system becomes 

more stable.   Figure 1 shows the spectra of the DRF (Depth Resolution Function: H), the 

filter D and the generalized matrix H
+
. 

 

 

Figure 1. Spectra of: DRF (H), filter D and the generalized matrix H+. Here 
the regularization parameter α is overestimated, which leads to well-

conditioned H+. 

The choice of the regularization operator D should not constitute a difficulty since the 

rule on the modification of the eigenvalues is respected. The more determining choice for 

the reconstruction quality will be that of the regularization parameter α. Indeed, the bad 

calculation of this parameter leads to the evil conditioning of the matrix H, consequently 

the solution will be degenerated. 

The regularization can guarantee the unicity and stability of the solution but cannot 

lead to a very satisfactory result. The quantity of information brought is not sufficient to 

obtain a solution close to the ideal one, because this regularization provides global 

proprieties of the signal. 

Barakat et al. [5] proposed a method based on Tikhonov regularization, combined with 

an a priori model of the solution. The idea of such model is to introduce local 

characteristics of the signal. This model may contain discontinuities whose locations and 

amplitudes are imposed. The new functional to be minimized with respect to x, is defined 

as follows:  

 L = ,)~(~ 2
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2

xxDxHy   (4) 
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where xmod is an a priori model of the solution. The solution is given by: 

 

 ).()(~
mod

1
DxDyHDDHHx

TTTT    (5) 

The strategy developed here is useful if the a priori information is quite precise and                

the quality of solution depends on the accuracy of a priori information.  

Mancina et al. [6] proposed to reiterate the algorithm of Barakat et al. [5] and to use as 

model of solution a pre-deconvoluted signal (intermediate solution between the ideal 

solution i.e. the input signal and the measured one) with a sufficient regularization. The 

mathematic formulation of Mancina approach in Fourier space is as follows: 
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 (6) 

 

Where H
*
 is the conjugate of H and C represents the constraint operator which must be 

applied in the time domain after an inverse Fourier transformation.    

The accuracy of the solution is referred to the accuracy of the model which suggests a 

reasonable formulation. It is obvious that an important lack of precision in the a priori 

model leads to an error restoration more important than the usual one without model. 

Moreover, if the pre-deconvoluted signal is a noisy signal (which is the case of SIMS 

signal) or contains aberrations, the iterative process worsen these aberrations and the 

result is an oscillatory signal. This is a limitation of Mancina algorithm.  

The origin of these oscillations is the presence of strong local concentrations of high 

frequencies in the signal which belong to noise. For this reason, it is important to remove 

noise components from the signal. The tool more adapted to this mission is denoising by 

wavelets. Indeed, wavelet transformation has been a key technique in signal processing 

applications due to its capability of space frequency localization and provides a temporal 

(or spatial) resolution of the frequency information. This makes it an ideal tool to capture 

patterns at all relevant frequency scales as well as to denoise signals [8]. The following 

section addresses the wavelets transformation theory. 

 

3. Discreet Wavelet Transform  
 

3.1. Background  

Nowadays, wavelet theory is developed into a methodology used in many disciplines. 

Wavelets also provide a rich source of useful tools for applications in many time-scale 

problems. The attention of wavelets was more attracted when Mallat [10] established a 

connection between wavelets and signal processing. Discrete Wavelet Transform (DWT) 

is an extremely fast algorithm that transforms a data into wavelet coefficients at discrete 

intervals of time and scale, instead of at all scales. It is based on dyadic scaling and 

translating and is possible if the scale parameter varies only along the dyadic sequence 

(dyadic scales and positions). It is basically a filtering procedure that separates high and 

low frequencies components of profiles measurements with high-pass and low-pass filters 

by multiresolution decomposition algorithm [10]. Hence, the DWT is represented by the 

following equation: 

 ),2(2)(),( 2 knkykjW
j

j k

j

 

  (7) 

where y is descretized heights of the original profile measurements, ψ is discrete wavelet 

coefficients and n is a sample number. The translation parameter determines the location 
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of the wavelet in the time domain, while the dilatation parameter determines the location 

in the frequency domain as well as the scale or the extent of the space-frequency 

localization. 

DWT analysis can be performed using a fast, pyramidal algorithm by iteratively 

applying low-pass and high-pass filters, and subsequent down-sampling by 2 [10]. Each 

level of the decomposition algorithm then yields low-frequency components of the signal 

(approximations) and high-frequency components (details). This is computed by the 

equations 

  
n

low
nkfnyky ],2[][][  (8) 

  
n

high
nkgnyky ],2[][][  (9) 

where ylow[k] and yhigh[k] are the outputs of the low-pass (f) and high-pass (g) filters, 

respectively, after down sampling by 2. Due to the down-sampling during decomposition, 

the number of resulting wavelet coefficients (i.e., approximations and details) at each 

level is exactly the same as the number of input points for this level. It is sufficient to 

keep all detail coefficients and the final approximation coefficient (at the coarsest level) in 

order to be able to reconstruct the original data. 

In the matrix formalism, (8) and (9) can be written (the approximation and details at 

the resolution 2
-(j+1)

 are obtained from the approximation signal at the resolution 2
-j
 ) as  

 )()1()()1( , j

a

j

d

j

a

j

a
yGyyFy   , (10) 

where F and G are matrixes Toeplitz constructed from the filters f and g, respectively.  

The reconstruction algorithm then involves up-sampling (i.e. inserting zeros between data 

points) and filtering with dual filters. By carefully choosing filters for the decomposition 

and reconstruction phases that are closely related, one can achieve perfect reconstruction 

of the original signal in the inverse orthogonal wavelet transform [10].  

The reconstructed signal is obtained from (10) by: 

 )()( ~~~ j

d

j

a
yGyFy  , (11) 

where F
~

 and G
~

 are Toeplitz matrixes constructed from the reconstruction filters f
~

and 

g~ , respectively.  

The Mallat [10] algorithm is fast, linear operation that operates on a data vector whose 

length is an integer power of two, transforming it into numerically different vector of the 

same length. Many wavelet families are available. However only orthogonal wavelets 

(such as Haar, Daubichies, Coiflet and Symmlet wavelets) allow for perfect 

reconstruction of a signal by inverse discrete wavelet transform [7], i.e. the inverse 

transform is simply the transpose of the transform. Indeed, the selection of the most 

appropriate wavelet is based on the similarity between the derivatives of the signal and 

the number of wavelet vanishing moments. In practice wavelets with higher number of 

vanishing moments give higher coefficients and more stable performances. This study 

will be restricted to Symmlet, after some experimentation we have chosen “Sym8” 

wavelet with four vanishing moments. The following section addresses denoising of 

signals via wavelets shrinkage.  

 

3.2. Denoising via Wavelet Shrinkage  

In the wavelet decomposition of signals, as it is described in the previous section, the 

filter f is an averaging or smoothing filter (low-pass filter), while its mirror counterpart g 

produces details (high-pass filter) [10]. Since the signal will tend to dominate the low-

frequency components it is expected that the majority of high-frequency components 

above a certain level are due to noise. With the exclusion of the last remaining smoothed 

components (usually one or two) all wavelet coefficients in the final decomposition 

corresponds to details. If the absolute value of a detail component is small and if we omit 

it (set it to zero) the general signal would not change much. Therefore, the thresholding of 
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the wavelet coefficients is a good way of removing unimportant or undesired details from 

a signal and denoising it. Thresholding techniques are successfully used in numerous data 

processing domains, since in most cases a small number of wavelet coefficients with large 

amplitudes preserve most of the information about the original data set. Wavelet 

denoising methods in general use two different approaches: hard thresholding and soft 

thresholding. The hard thresholding philosophy is simply to cut all the wavelet 

coefficients below a certain threshold to zero. The soft thresholding reduces the value 

(referred to as ‘shrinkage’) of wavelet coefficients toward zero if they are below a certain 

value. For a certain wavelet coefficient k at scale j we have: 

  )()(ˆ kysignky
d

, (12) 

where 
d

ŷ is thresholded detail coefficients, sign returns the sign of the wavelet coefficient 

and λ is the threshold value. In the case of a gaussian white noise (which is the kind of 

noise in SIMS analysis), Donoho and Johnstone [8] modelled this threshold by:  

 )log(2 N , (13) 

where N is the number of the observed data, σ the standard deviation of noise. This 

standard deviation, in the case of white and Gaussian noise, is estimated by: 

 6754.0)((ˆ 1
kcdmedian , (14) 

where median (cd
1
(k)) is the median value of details coefficients at the first level of 

decomposition, which is considered attributed to noise.  

The reconstructed signal of (11) becomes after thresholding as follows: 

 )()( ˆ
~~~ j

d

j

a
yGyFy  . (15) 

By this process, high-frequency components which (above a certain threshold) belong 

to noise can therefore be removed. It can be noted that the wavelet should be orthogonal. 

Then the noise in the approximation and detail signal remains white and Gaussian if the 

noise in the original is white and Gaussian. 

The decomposition and denoising of MD5 sample (five delta layers of boron in silicon 

matrix) on a wavelet basis are illustrated in Figure 2. The used wavelet is Sym8.  
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Figure 2. Wavelet decomposition of SIMS depth profile (8.5 keV / O2
+, 38.1°), 

the used wavelet is Sym8; the decomposition level is 5. (a) The original 
measured profile with different approximation signals from level 1 to 5. (b) 

Details signals from 1 to 5 with denoised signal superposed on original 
signal. (c) Absolute wavelet coefficients with thresholded coefficients 

In approximations’ graphs (see Figure 2-a), starting from a1 and looking back to the 

level decomposition such that the approximation is a good candidate to be good estimator 

of the original signal. Thus, levels 4 and 5 are very good candidates for the useful signal. 

Now look at the details (see Figure 2-b). Detail d1 is entirely composed by noise. d2 to 

d5 details have strong values concentrated in the abscissa corresponding to the positions 

of deltas - layers. We deduce that d4 and d5 details contain useful signal components 

versus uninformative noise. This phenomenon is also visible on the graph of the wavelet 

coefficients from level 5 to level 1. 

The point that attracts all the attention here is the continuity between the denoised 

signal (deltas – layers) where it is supposed to be discontinuous. Classical denoising 

methods are incapable of such adaptation scale. Indeed, the approximation at level 5 is 

preserved as the noise is absent or much attenuated, complemented by the finest details 

clearly attributable to the useful signal. The thresholded wavelet coefficients give us an 
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idea about the remaining details in the approximation (denoised signal) as part of the 

original signal (see Figure 2-c). These coefficients are concentrated in the area where the 

signal is very noisy (high frequencies), after thresholding there is only details which are 

higher than the specified threshold and likely to belong to the useful signal. The threshold 

obtained by the universal hard thresholding using the formula of Donoho and Johnstone 

[8] is λ = 55.7831 cps. The estimated noise level is SNR (signal to noise ratio) = 40.9212 

dB. 

 

4. The Proposed Algorithm  

In the proposed algorithm, the idea is to introduce a model of solution which is a pre-

decomposed signal on a wavelet basis. It is a denoised signal and reconstructed retaining 

only the approximation coefficients and details thresholded coefficients. In this approach, 

the model of solution is as follows: 

  Xmod = x
(j-1)

= 
)()( ˆ

~~~ j

d

j

a
yGyFy  . (16) 

Hence, the proposed deconvolution scheme is constructed by the following steps: 

1. Dyadic wavelet decomposition of the noisy signal at the resolution 2
-j
. 

2. Denoising of this signal by thresholding. One conserves only high-frequency 

components of details which are above the estimated threshold. 

3. Reconstruction of the denoisy signal from the approximations and thresholded 

details using (15). 

4. The obtained denoisy signal constitutes the model of solution in iterative 

Tikhonov-Miller regularization at the first iteration. 

The mathematical formulation, in Fourier space, of this algorithm is as follows: 
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yGyFX

n

n , (17) 

It can be noted that denoising reduces the noise power in data; the regularization 

parameter should be evaluated by cross-validation in regards of the denoisy signal.  

Since the noise is controlled by multiscale transforms, the regularization parameter does 

not have the same importance as in standard deconvolution methods. Clearly it will be 

lower than the one obtained without denoising.  

 

5. Experimental  

The profile we have chosen to process contains five delta-layers of boron in a silicon 

matrix (MD5). SIMS analysis was performed using Cameca-Ims6f magnetic sector 

instrument, corresponding to 8.5 keV / O2
+
 primary beam (38.1° incidence). The total 

sputter depth was determined from the crater measurements and the depth scale was 

established assuming a constant erosion rate. The DRF used in the deconvolution 

algorithm is taken from the first delta layer of the sample we deconvolve.  

 

6. Results and Discussion  

Boron delta-doped multilayers are potential reference materials for the evaluation of 

depth resolution in secondary ion mass spectrometry (SIMS). These are ideal structures 

for applying a deconvolution method since it is the most affected by the effects of the 

convolution in the SIMS analysis. Their deconvolution gives an idea of what we can 

expect from the depth resolution especially on the experimental plane after deconvolution. 

That is why we are interested in this type of samples. 
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The results of the deconvolution of multi delta-layers sample is illustrated in Figure 3. 

Indeed, the deconvolution of this sample gives a good improvement of the depth 

resolution and recovery of the original signal shape. Exponential slopes were completely 

removed giving symmetrical and well separated peaks. By comparison with the results of 

the deconvolution algorithm proposed by Gautier et al. [9], the profiles obtained by our 

approach are smooth and doesn’t contain artifacts. The different gains of depth resolution 

and peaks maximum are summarized in Table1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

 

 

Figure 3. Results of deconvolution of SIMS profile containing five 
delta-layers of boron in silicon (8.5 keV / O2

+, 38.1°). a) Linear scale 
plot. b) Logarithmic scale plot. c) Reconstruction of the measured 

profile from the deconvoluted profile and the DRF 
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Table 1. Summary of Gains of Depth Resolution and Peaks’ Maximums 
Obtained by Deconvolution 

 Peak # 1 Peak # 2 Peak # 3 Peak # 4 Peak # 5 

Depth resolution Gain 1,53 1,51 1,53 1,35 1,51 

Maximum of peaks 

Gain 

1,8 1,77 1,75 1,72 1,64 

 

By observing the different values of gains, these results clearly show the good quality 

of the retrieval signal and good gains of depth resolution. Actually, the goal of the 

deconvolution procedure is to have a good gain of the depth resolution and good shape 

recovery of the entire signal without artifacts and oscillations and without ensuring that 

the solution is accurate! To eliminate these oscillations, Gautier et al. [9] proposed the 

application of local confidence level deduced empirically from the reconstruction error in 

the deconvoluted profiles. The goal of this confidence level is to separate the parts of the 

signal belonging to the original profile from those generated artificially by the process of 

deconvolution. According to these authors, when the signal falls to the noise level, at 

which one cannot be confident in the deconvolution result, one must fix a limiting value 

of the deconvoluted signal below which one should not take into account the 

deconvolution result that likely belongs to the original signal. However, a confidence 

level that authorizes to take into account certain parts of the signal and eliminates the 

lower parts in which the signal should not be taken into account any more, does not bring 

any information about the quality of information. One of the advantages of SIMS analysis 

is the great dynamic range of the signal, and allowing the deconvoluted signal to be 

restricted to a dynamic range which does not exceed two decades and thus does not reflect 

the original signal. The parts filtered by the confidence level can provide precious 

information about the sample.  

In ref. [6], Mancina showed that artifacts are not always aberrations of the 

deconvolution; they can be structures with low concentrations. The interpretation of 

artifacts must be measured, especially if their amount is not negligible, in which case, one 

cannot eliminate them from the deconvoluted profiles. The greatest danger of 

deconvolution is to achieve a dazzling and brilliant result but it is not real and haven’t no 

relationship with the original profile! In this context, a validation criterion of the 

deconvolution result is the reconstruction of the measured profile from the deconvoluted 

signal and the impulse response which is in our case the DRF (Depth Resolution 

Function). More the reconstructed profile follows the measured one more the results are 

accurate. The reconstruction of the profiles is excellent, especially for high signal levels 

(see Figure 3-c). The differences between the measured profile and the reconstructed one 

are mainly at the junctions of concentration peaks, where the noise is dominant.  

 

6. Conclusion  

This paper proposes a new deconvoltion algorithm for the recovery of SIMS data, and 

hence, for the improvement of the depth resolution. In particular, deconvolution of delta 

layers is the most important depth profiling data deconvolution, since it gives not only the 

shape of the resolution function, but also the optimum data deconvolution conditions for a 

specific experimental setup. This algorithm can be characterized as a regularized wavelet 

transform, it combines ideas from Tikhonov Miller regularization, wavelet analysis and 

deconvolution algorithms in order to benefit from the advantages of each. Particularly, it 

shows how the denoising of wavelet coefficients plays an important role in the 

deconvolution procedure.  

The results show that the SIMS profiles are recovered very satisfactory. The artifacts, 

which appear in almost all monoresolution deconvolution schemes, have been corrected. 
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In particular, the FWHM (Full Width at Half Maximum) of the deconvoluted peaks is 

equal to 10.46 nm, which corresponds to an improvement of the depth resolution by a 

factor around 1.75. The dynamic range is improved by a factor around 1.5 for almost 

peaks. Therefore, this new algorithm can push the limits of SIMS measurement towards 

its ultimate depth resolution. 

The main advantage of this algorithm is the absence of oscillations with negative 

components which appear in almost monoresolution deconvolution results. The question 

for the SIMS user is to know whether these small peaks (oscillations) are to be considered 

as physical features or as deconvolution artifacts. In our opinion, the origin of these 

oscillations is the presence of strong local concentrations of the high frequencies of noise 

in the signal, and which cannot be correctly restored by a simple classical regularization.  

This algorithm can be used in two-dimension applications and generally in many 

problems in science and engineering involving the recovery of an interest object from 

collected data. SIMS depth profiling is just one example thereof. Nevertheless, the major 

disadvantage of this approach is the longer computing time compared to monoresolution 

deconvolution methods. However, due to the increase of computer power during recent 

years, this disadvantage has become progressively less important. 
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