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Abstract 

Compressed sensing (CS) provides a new solution for the problems of requiring large 

amount of measurements data and long data acquisition time in radar application, and 

both issues also exist in ground penetrating radar (GPR). Aiming at this problem, we 

adopt impulse radar with CS framework, and transform the GPR imaging into sparse 

constraint optimization problem performed on time-domain sub-sampling in this paper. 

Specifically, it focuses on the impulse GPR imaging method based on CS under double 

underground targets condition containing noise and abundant clutter. Furthermore, the 

performance of matching reconstruction algorithms under the different signal to noise 

ratios (SNR), measurement dimensions and sparseness values is also presented. The 

experimental results show that CS algorithms based on matching reconstruction can 

obviously reduce measurement data, improve the image quality and make a better anti-

noise performance. When SNR of measurement data is 1dB, the probability of accurate 

imaging can still reach 95%. So we may reasonably conclude that the regularized 

orthogonal matching pursuit algorithm has a better performance than the other matching 

algorithms. 

 

Keywords: Compressed sensing; Ground penetrating radar imaging; Reconstruction 
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1. Introduction 

As a kind of effective non-destructive detection equipment, ground penetrating radar 

has been widely applied in various fields. Its working principle is to send high-frequency 

electromagnet waves to the detection zone through transmitting antenna, receive echoed 

signals generated in discontinuous places of underground medium via receiving antenna, 

and infer space distribution, structure, shape and depth information by way of signal 

processing [1]. 

In radar image, the downrange resolution depends upon c/2B, where c is the speed of 

light and B is the bandwidth of the signal, so the greater signal bandwidth, the higher 

downrange resolution. Besides, the crossrange resolution related to the antenna array 

aperture size. In order to meet increasing demands of radar image resolution, as a result, a 

large amount of measurements data should be sampled and long data acquisition time 

should be required, which have brought about huge challenge to real-time sampling 

system and back end processing. In recent years, a new framework, compressive sensing 

[2-4] (CS) has been put forward, which provides a new approach to solve large amount of 

data and long data acquisition time in ground-penetrating radar. 

CS theory can be expressed like this: as for a sparse signal or a sparse representation in 

transform domain, the original signal can be recovered accurately by designing a 

measurement matrix meeting RIP criterion to carry out measurement with the sampling 

frequency far lower than that regulated by Nyquist sampling theorem and solving an 

optimization problem [4]. There have been several methods that apply CS for radar 
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imaging [5-11]. Wei has applied CS to synthetic aperture radar (SAR) imaging by a few 

measurements obtained high-resolution image, and analyzed the impact of the 

measurement matrix and noise for imaging in [5]. In [6], CS has been applied to through-

wall radar imaging, and the results show that CS imaging algorithm target resolution and 

anti-noise performance are significantly superior to the traditional algorithm back 

projection (BP). In [7], Zhou has proposed a CS data acquisition and imaging method for 

step frequency continuous wave (SFCW) GPR, and analyzed measurement dimension and 

noise interference. However, it is only suitable for a single target. Although literatures [5-

7] have analyzed effects of measurement matrix and noise on imaging result, they have 

not studied the influence of recovery algorithm on the imaging result. Besides, they have 

not compared the performance of recovery algorithms either. However, the recovery 

algorithm is the key step in CS and it will directly affect the imaging result. In [8-11], data 

acquisition and target reconstruction have been put forward under step frequency radar. In 

radar shallow detection and through-the-wall radar, pulse system radar can replace step 

frequency radar. Nowadays, pulse system radar has a very wide range of applications, so 

it has important significance to analyze the performance of CS algorithm under pulse 

system. 

Given all that, by aiming at pulse system radar, this paper compares the imaging 

performance under double target conditions among orthogonal matching pursuit [12] 

(OMP), stagewise orthogonal matching pursuit [13] (STOMP), regularized orthogonal 

matching pursuit [14] (ROMP) and compressive sampling matching pursuit [15] 

(CoSaMP). Specifically, it focuses on the effects of sparseness, measurement dimension 

and noise on reconstruction algorithms under double target conditions and gives some 

experimental results. 

 

2. Ground Penetrating Radar Imaging Algorithm based on CS 

 
2.1. Simulation Scene Settings 

Simulation scene settings are set as follows: the excitation signal is Ricker pulse 

which center frequency is 1GHz. the total number of time steps is 424tN  . 

Antenna transceiver and horizontal placement, the size of simulation scenarios is 

0.3 0.3m m  and relative dielectric constant 6b  , antenna placed at 0y  , along a 

line from 0.05x  to 0.25x m with a step of 0.01m . There are two point targets 

located at (0.10,0.15) and (0.20,0.15) , which relative dielectric constant is 25 

shown in Figure 1. 
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Figure 1. Simulation Scene Settings 
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2.2. CS Algorithms 

In GPR, the target echo received by receiving antenna is the linear superposition 

of various target echoes and noises in the detection zone. The target echo received 

by antenna of group i can be defined as: 

0

( ) ( ) ( )
M

i j j

j

t A t t


  X s n                                               (1) 

where i represents receiving antenna; ( )ts  means excitation signal; M indicates the 

target point; jA is the amplitude of j target echo; j  expresses the double time delay 

between antenna and target and ( )tn  denotes the additive noise. Suppose that there 

are L groups of antennas, and then the antenna signals can be combined into a two-

dimension matrix, expressed as: 

1 2 3[ ( ) , ( ) , ( ) ( ) ]T T T T

Lt t t tB X X X X…                              (2) 

In CS, the object is spare signal or signal with spare transform domain, so 

sparsification processing has to be carried out for signal received by the antenna. 

Firstly, the imaging area should be discretized and the partition grid is recorded 

as 1 2 3{ , , }N   C … , in which N represents the number of all grid points in 

imaging area and two-dimensional discrete area expands into a one-dimensional by 

row. If the target located in j , then the reflection coefficient is nonzero. The sparse 

dictionaryψ can be expressed as: 

,

2
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where the denominator represents the energy of the emission signal and ( )j   is the 

double time delay between j
th

 grid point and i
th

 group antenna. Suppose that the 

target appears in every grid point, and then the sparse dictionary iψ of the i
th

 group 

antenna can be gained by Equation (3), with a size of tN N . As for the received 

target echo iX , the sparsification processing can be carried out according to the 

following equation: 

i iX ψ σ                                                                      (4) 

whereσ represents the reflection coefficient of the target location. In terms of the 

imaging result, the relative reflection coefficient σ of every point in the imaging area 

can be calculated. 

In CS, instead of directly measuring signal iX , we measure its projection on a 

basis iΦ . Measurements can be written as 

i i iβ Φ X                                                                         (5) 

where iΦ  is the measurements matrix, which size is tM N , and tM N ; M also 

called measurements dimension, you can find a detailed description about how to 

select the measurements matrix in [16]. In this paper, we use Gaussian random 

matrix in order to reconstruct the matrixσ , M must satisfied the following equation 

[17]. 

2log ( / 1)M K N K                                                   (6) 

Thenσ can be achieved by solving the following convex optimization problem. 

arg minσ σ β =Φψσ，                                              (7) 
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We select L1-magic to solve the sparse constraint optimization problem in 

Equation (7). Matching reconstruction algorithm based on greed mode is often used 

to solve Equation (5). The algorithm selects the elements that are most suitable for 

the measurement values from the over-complete dictionary during each time of 

iteration to approach the original signal via greed thought. The dictionary is updated 

after iteration for each time to expand the element support set till the signal can be 

approached via the element support set within the allowable error scope. These 

algorithms mainly include OMP, STOMP, ROMP and CoSaMP, and we will 

compare the imaging performance among these four algorithms in the following 

section. 

 

3. Imaging Results and Discussions 
 

3.1. Imaging Results 

According to the simulation model parameters set in section 2.1, simulation is 

conducted using the numerical calculation software GprMax for electromagnetic 

field via FDTD. Figure 2 gives the forward modeling results. 
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Figure 2. Impulse Radar Forward Results 

The imaging area, with a size of 0.2m×0.3m, is discretized and divided into 20×

30 grids. Gaussian random measurement matrix is designed to carry out 

compression measurement for data. Sparsification is conducted for the radar forward 

modeling data under the complete dictionary of Equation (3). Under the noiseless 

conditions in which the measurement dimension M=20 and sparseness K=2, sparse 

dictionary, measurement matrix and measurement value are substituted into OMP, 

STOMP, ROMP and CoSaMP algorithms respectively. Figure 3 shows the imaging 

results. 
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Figure 3. CS Matching Algorithms Imaging Results 

CS imaging algorithm can accurately find out the target location without the 

redundant sidelobe jamming according to Figure 3. In the above simulations, 

measurement dimension, sparseness and radar data are all ideal values. In reality, 

we cannot predict the sparseness of the scene and optimum measurement dimension. 

Moreover, radar data often carry the noises. All these uncertainties will affect the 

imaging result. The following part will analyze how K, M and the noises have 

influence on the imaging result. 

 

3.2. Effect of Sparseness 

In ground penetrating radar compressed sensing imaging, iterations of  the 

matching reconstruction algorithm are closely related to sparseness of target 

imaging scene, and iterations will directly affect the ultimate imaging result, so it’s 

quite necessary to analyze the effect of sparseness on the algorithm. In the scene, 

two point targets are set, and the sparseness K is 2. Under the situation where the 

scene sparseness is unknown, if K set in the procedure is less than true K in the 

scene, the imaging result gained through simulation will be incomplete and not all 

the target locations can be found out. Figure 4 shows the imaging result of OMP 

algorithm (results of other algorithms are similar) when K=1. If K is greater than the 

true value, other redundant noises will also occur except the true target location. 

Figure 5 shows the imaging result of OMP algorithm when K=6. 
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Figure 4. OMP Algorithm Imaging 
Results when K =1 

Figure 5. OMP Algorithm Imaging 
Results when K =6 
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According to Figure 4, when K=1, the imaging result only finds out one target 

location. When K=6, noises will occur around the true target location, but the true 

target location can still be obviously seen in the figure. Therefore, matching 

algorithms have a good imaging result when sparseness is unknown as long as the 

sparseness is greater than the true sparseness. Figure 6 presents the signal to noise 

ratios of the imaging results from various algorithms with the increase of K value. 

As shown in Figure 6, the signal to noise ratio of the image decreases 

continuously with the increase of K. ROMP algorithm decreases more slowly in the 

signal to noise ratio compared with other algorithms, so its performance is better. 

Although the signal to noise ratio of the image declines, the target location can still 

be obviously seen according to Figure 5. 
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Figure 6. Effect of Sparseness 

3. 3. Effect of Measurement Matrix Dimension 

Gaussian random measurement matrix is adopted as the measurement matrix in 

this paper. According to CS theory, the measurement dimension should meet the 

following condition in order to accurately recover the original signal. 

2log ( / 1)M K N K                                                      (9) 

where K indicates the sparseness and N denotes the number of grid points in the 

imaging area. By substituting the simulation model parameter, we gain: 

 22 log (301) 16.4672M                                              (10) 

Supposing that M increases from 2 to 30, we can work out the times of the 

accurate imaging among the 200 simulations. The times of the accurate imaging is 

defined as follows. Relative dielectric constant in the imaging area is 6b  ; Ricker 

pulse signal, the center frequency of antenna is 1GHz, and the formula is given 

according to range resolution [18]:

 

 

2

v
R

B
                                                                      (11) 

where v indicates the propagation velocity of electromagnetic wave in the scene and 

B denotes the signal broadband. Substituting 6b   and 1B GHz in Equation (11), 

we can calculate 0.03R m by Equation (11). It is also known that the grid size of 

imaging scenes is 0.01m×0.01m. Therefore, it can be thought as accurate imaging 

within one grid point extending from the true target all around. Figure 7 shows the 

statistics for the accurate imaging among the 200 times with the different 

algorithms. Figure 7 shows that when M=17, the probability of accurate 
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reconstruction reaches 95%, which meets the requirement for the measurement 

dimension M >16.4672 in theory. According to comparison among these four 

algorithms, the accurate imaging probability of ROMP rises the fastest and its 

performance is also the best. However, with the increase of M, the computation time 

of CPU continues to increase. Fig. 8 shows the variation of CPU execution time 

with M in the 200 cycles. When M <20, CPU execution time increase of various 

algorithms is relatively stable, but the increase is obviously accelerated after 20. 

This shows that the ideal value of M should be less than or equal to 20. The ideal 

value of M is from 17 to 20 in view of M >16.4672. According to Figure 8, the CPU 

execution time of ROMP is lower when M =17~20. On the basis of these factors, 

ROMP has better performance under different conditions of  M. 
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Figure 7. Effect of Measurement    
Matrix Dimension 

Figure 8. CPU Execution Time 
with the Different Sparseness 

3. 4. Effect of Noises 

In GPR, echo signal often carries noises, so it has important significance to 

analyze anti-noise performance of matching algorithms. Generally speaking, the 

form of echo signal in GPR can be expressed as Formula (11): 

   ( ) ( ) ( ) ( ) ( )r d f ts t s t s t s t n t                                  (11) 

where ( )ds t  represents the direct coupling signal among antennas; ( )fs t  indicates 

the echoed signal at stratum medium; ( )ts t  shows the target echo; ( )n t  denotes the 

additive noise; The mathematical expression 
22 2

( ) ( ) ( )d f ts t s t s t  means that 

the energy of the target echo is quite small when compared with ( )ds t  and ( )fs t . In 

the experiment, ( )ds t
 
and ( )fs t  are filtered out in order to better reflect the 

disturbance of the signal to noise ratio when the signal to noise ratio is calculated. 

Noises are introduced by adding small scatterers into the simulation scene. Data of 

the different signal to noise ratios are obtained by changing the number of scatterers 

and dielectric constants. The simulation has set 21 groups of the signal to noise ratio 

data from -10dB to 10dB. Figure 9 presents the accurate imaging statistics of 

various algorithms under the different signal to noise ratios. 
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Figure 9. Effect by Noises 

As shown in Figure 9, the probability of accurate imaging reaches 95% when the 

signal to noise ratio is 1dB. The simulation result shows that the matching 

reconstruction algorithm based on CS has quite a good anti-noise performance and it 

can overcome the effect of noises on the imaging result. In addition, the anti-noise 

performance of the four algorithms is almost the same. 

 

4. Conclusion 

This paper presents the realization process for GPR imaging algorithm based on 

CS and obtains the imaging results of double-target scene via OMP, ROMP, 

STOMP and CoSaMP reconstruction algorithms. Furthermore, the performances of 

various algorithms are compared under different noises environments, measurement 

dimensions and sparseness values. The simulation results show that CS algorithm 

can get a good imaging result via few measurement values, which will greatly 

reduce the measurement data. Moreover, the anti-noise performance of CS 

algorithm is also high, and when the signal to noise ratio of the measurement data is 

1dB, the probability of accurate imaging can still reach 95%. All things considered, 

the regularized matching pursuit algorithm has a better overall performance 

compared with other matching algorithms. Its signal to noise ratio is higher during 

imaging under the same sparseness. In addition, the reconstruction probability is 

higher and CPU execution time is lower under the same measurement dimension.  
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