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Abstract 

To analysis the signal whose frequency changes as time, this article presents a new 

time-frequency analysis method based on short-time fractional Fourier transform (FRFT) 

and integration of midpoints. This method uses window functions to divide the signal to 

many pieces, then the FRFT is used to calculate the frequency modulation (FM) rate of 

each piece.  A chirp signal can be built based on the FM rate and the intermediate 

frequency (IF) signal is obtained by mixing the chirp signal and the primary signal. The 

frequency of the midpoints can be estimated by the chirp-z transform (CZT), therefore the 

frequency of every piece can be calculated. This method avoids the impact that the quick 

change of frequency leads to the error of short-time Fourier transform. It also can reduce 

the error brought by the estimation of chirp rate. Therefore, the method can improve the 

accuracy of time-frequency analysis. This article also puts forward a method to search 

the order of fractional Fourier transform, and the computer simulation and measurement 

verifies the effectiveness of the proposed algorithm.  

 

Keywords: fractional Fourier transform; integration of midpoints; time-frequency 
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1.  Introduction 

The signal to be processed generally has time parameters and frequency parameters. 

The frequency of non-stationary signals changes as time and there is a time-frequency 

distribution of the signal. The time-frequency distribution of the radar signal can be used 

to check the linearity of linear frequency modulation signal [1], separate the different 

signals [2] and calculate the Doppler frequency. The time-frequency analysis plays an 

important role in many fields, such as earthquake [3], sonar [4], oscillating detection [5, 

6]. It is significant and necessary to do time-frequency analysis. 

In signal processing field, the most used fast Fourier transform (FFT) can calculate the 

frequency of the signal. However, FFT is a holistic conversion from the time domain to 

the frequency domain and it does not have time resolution. Because of the defect of FFT, 

Gabor presented the short-time Fourier transform (STFT) [7] in 1946 and it contains two 

steps: use window function to choose a subsection and do FFT. Because the time of 

window function is short enough to regard the segmented signal as stationary signal, we 

can obtain the time-frequency distribution through moving the window function. There is 

no crossing-term, but its self-term is not concentrated. When the frequency of segmented 

signal changes tremendously, the bandwidth of FFT is too wide and STFT cannot 

calculate the exact frequency of the segmented signal. The common time-frequency 

analysis methods have Wigner-Ville Distribution (WVD) [8] and wavelet [9]. The WVD 

is affected by the crossing-term and there are some ways to restrain the crossing-term 

[10]. Wavelet transformation needs to choose a suitable wavelet base according to the 

signal types, but sometimes we do not know the type of the signal. 
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Fractional Fourier transform (FRFT) can overcome the shortcomings of traditional 

STFT.  Especially for chirp signal, FRFT has a good time-frequency aggregation and does 

not have crossing-term, therefore FRFT has an advantage in the time-frequency analysis 

of linear frequency modulation signal. References [1] presents an infinitesimal method to 

measure the linearity of the VCO, but this method is seriously affected by noise and not 

very accurate. We need to use a high sampling frequency to sample the transmitting 

signal of FMCW radar system and the little error can lead to a big mistake. This article 

presents an innovative method to obtain the time-frequency distribution and achieve a 

high resolution time-frequency analysis. 

The remainder of this article is organized as follows. The methods used to obtain the 

FM rates and the frequencies of midpoints are introduced in Section II. In Section III we 

take advantage of computer to simulate and achieve the proposed algorithm. Finally, 

Section IV concludes the article. 

 

2.  Time-Frequency Distribution 
 
2.1 Definition of FRFT 

Reference [11] presents a detailed instruction and here give a brief explain. The FRFT 

is given by 

                      ( ) F [s( )] ( ) ( , )dp

p pS u t s t K t u t



                                               (2.1) 

p  is the older of FRFT and the kernel of FRFT is ( , )pK t u , then   
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  is the impulse function and n is inter.   is the angle of rotation and 2/ p . 

 

2.2 Calculation of FM Rate  

Supposing the primary non-stationary signal is given by 

   

32

32
0 1( ) exp( 2 ( ....))

2 3

k tk t
s t A j f f t     ， [0, ]t T                      (2.3) 

During a very short time, the non-stationary signal can be regarded as stationary signal. 

When we use a short-time window to cut off the signal to pieces, the time length of 

widow is wT  and the window moves to right (2 1) / 2wi T   every piece. The signal of 

every piece is given by 

          

32

32
0 1( ) [ exp( 2 ( ....))] ( (2 1) )

2 3 2

w
i

k t Tk t
s t A j f f t w t i                            (2.4) 

If the window function is rectangle, the primary non-stationary signal 

satisfies
1

( ) ( )
N

i

i

s t s t


 , / wN T T . 

After weighted by window function, every piece signal can be regard as a chirp signal 

and the time is from zero to wT . Because the length of the piece is very short, the power 

series which is bigger than three of ( )is t  can be ignored and the equation (2.4) can be 

changed as 
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where 02 fi   is the initial phase of ( )is t  and fi  is the initial frequency of ( )is t . Ki  is 

the FM rate of ( )is t . 

Then let ( )is t  do FRFT: 
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After normalizing discrete and dimensional [12], the fast algorithm [13] can calculate 

the ( )iS w u . The peak value of ( )iS w u  can be found and the corresponding angle i  

also can be obtained. The FM rate is  

                                                        cot /i i wk Fs T                                                           (2.7) 

 

2.3 High Order Moments of FRFT 

If we use the method of section 2.2 to calculate the FM rate ik , it may lead some big 

errors because the FRFT is sensitive to noise. The high order moments of FRFT can 

restrain the effect of noise and improve the anti-noise performance [14, 15]. In this article, 

we use forth order moments to calculate the FM rate. The forth order moments of FRFT is 

given by 

         
4 4(u) (u m )iP S w du  




                                                (2.8) 

The m  is first order moments of FRFT and it can be obtained by 

                                                    
2(u)im S w udu 




                                                          (2.9) 

When the SNR (signal and noise rate) is about -20 dB, we use the above two equations to 

calculate the forth order moments with   increasing from zero to   gradually, and the 

forth order moments spectrum can be obtained 
 

 

Figure 1. The Forth Order Moments Spectrum of FRFT 
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In the Figure 1, we can find the peak valve of forth order moments and the 

corresponding rotating angle also can be obtained from the abscissa. The FM rate can be 

calculated by the equation (2.7). If the SNR is lower, we can use higher order moments to 

calculate the FM rate at the cost of more calculation complexity.  

 

2.4 Obtain Initial Frequency 

In section 2.2 and 2.3, the FM rate ik  is obtained and we can use it to construct a LFM 

signal 
' (t)is  whose initial frequency is zero.  
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Let 
' (t)is  mix with ( )is t , and the IF signal ( )x t  can be obtained 
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From the above equation, the time-frequency representation of IF signal is 

( ) ( )if t fi Ki k t   . 

In order to calculate the frequency of IF signal, ZFFT (Zoom-FFT) [16] and CZT 

(Chirp Z-transform) [17] can be used. When the FM rate ik  in section 2.2 and 2.3 is an 

unbiased estimation, that is to say,  ik  is equal to iK , then the frequency of IF signal 

( )x t  is equal to the initial frequency of ( )is t  and ( )f t fi . When the FM rate ik  is not 

an unbiased estimation, the calculated frequency 0F  of IF signal ( )x t  can be expressed as 

                                              0
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
                                                            (2.12) 

The estimating time-frequency representation (t)iF


 of ( )is t  during the short time wT  is 

obtained and is given by  

                         0
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2.5  Integration of Midpoints 

If the power series which is bigger than three of ( )is t  is ignored, the time-frequency 

function of ( )is t  is ( )iF t fi Ki t   . 

When the time t is equal to / 2wT , the frequency valve of ( / 2)i wF T


 is equal to the 

frequency valve of ( / 2)i wF T . Therefore, we can get the conclusion: Whether or not the 

FM rate ik  is an unbiased estimation, the midpoints frequency of (t)iF


 is equal to the 

midpoints frequency of ( )iF t  and these points are unbiased estimations 

( / 2) ( / 2)i w i wF T F T


 . Every short window has an unbiased estimation frequency and 

we can exploit linear interpolation method to calculate the frequency of other points. In 

this article, cubic interpolation and cubic spline interpolation are used and the error of the 

two interpolations will be compared in the following text. 
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3.  Simulation and Measurement 
 

3.1 Simulation  

The simulation uses MATLAB to achieve the algorithm of this article. In this 

simulation, the frequency change of the signal is a sine function and the center frequency 

is 600Hz and the max frequency variation is 500 Hz/s. 

    ( ) cos(2 (600 500 cos(2 ))) ( )
2

n

T t
s t t A N t

T
 


                  (3.1) 

In the equation (3.1), T is the length of time, N(t) is white Gaussian noise, nA  is the 

coefficient of white Gaussian noise and the SNR can be changed by changing nA . The 

time-frequency representation of the signal is 

( ) 600 500sin(2 )
t

F t
T

                           (3.2) 

The sampling rate Fs is equal to 20480 Hz/s and the length of window is / 50wT T . 

So the signal is sectioned to 50 pieces. When the SNR is about 5dB, the frequency 

estimation picture and error picture of the proposed algorithm are shown in Figure 2. 

     

Figure 2. The Time-frequency 
Picture 

Figure 3. Local Zoom Image of 
Time-frequency 

In the Figure 2, picture (a) is the frequency estimation picture of the proposed 

algorithm and picture (b) is the error picture of frequency estimation. The error is below 

0.5Hz when the SNR is about 5dB. Figure 3 provides to us the local zoom image for 

certain position in Figure 2. 

Moreover, the simulation also compares the error of the three algorithms: the proposed 

algorithm, WVD [8] and infinitesimal algorithm [1].  

 

Figure 4. Errors Comparing with 
WVD     

Figure 5. Errors Comparing with 
Infinitesimal 
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The Figure 4 is the absolute error picture of WVD and the proposed algorithm. The 

blue line represents the error of the WVD and the red line represents the error of the 

proposed algorithm. 

The Figure 5 is the absolute error picture of infinitesimal algorithm and the proposed 

algorithm. The black line represents the error of the infinitesimal algorithm and the red 

line represents the error of the proposed algorithm. From the Figure 4 and Figure 5, the 

time-frequency analysis precision of the proposed algorithm is highest. 

The following Table 1 shows the MSE (mean square errors) at different SNR: 

Table 1. The MSE of the Three Algorithms  

SNR(dB) WVD 
infinitesimal 

algorithm  

proposed algorithm 

with  cubic 

interpolation 

proposed 

algorithm with  

spline 

interpolation 

30 1.4273  0.4344  0.1142  0.0860  

25 1.4276  0.4365  0.1246  0.0979  

20 1.4283  0.4649  0.1239  0.1004  

15 1.4286  0.4571  0.1322  0.1120  

10 1.4305  0.5412  0.1668  0.1455  

5 1.4351  0.5329  0.1222  0.1114  

0 1.4422  0.5851  0.1825  0.1751  

-5 1.4585  0.8546  0.2506  0.2756  

-10 36.6634  1.0520  0.3324  0.3484  

-15 1185.5680  1.3676  0.4504  0.4490  

-20 3410.7154  1.8505  0.5402  0.5475  

-25 3788.5040  2.4912  0.5267  0.5648  

-30 3806.4867  2302.2219  1985.1809  2273.2592  

 

From the Table 1, the proposed algorithm has a better precision than the WVD and the 

infinitesimal algorithm when the SNR is from -30dB to 30dB. 

The two linear interpolation methods have different error. When the SNR is higher 

than 0 dB, the cubic spline interpolation is better. When the SNR is lower than 0 dB, the 

cubic interpolation is better. Therefore, different interpolation methods have different 

effects on the time-frequency analysis of reconstructed signal. It is necessary to choose a 

suitable interpolation method. 

 

3.2 Measurement 

In order to test this algorithm, a signal source system was designed. This system can 

produce the signal which is expected. The system chart is shown in Figure 6.  
 

      

Figure 6. The System Chart of 
Signal Source 

Figure 7. The Time Domain Signal 
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Let the signal source system produce the signal and the representation of this signal is 

( ) cos(2 (600 500 cos(2 )))
2

T t
s t t

T
 


                           (3.3) 

The period T is 5s and the sampling rate Fs is 100 KHz. The oscilloscope is used to 

show the time domain signal as the Figure 7. 

The oscilloscope samples the signal and inputs the signal into computer. The MTLAB 

is used to achieve the three algorithms and the time-frequency distribution images and the 

local zoom images are shown in Figure 8. 

 
                                     (a)                                                                     (b)  

 
                                   (c)                                                                     (d)   

 
                              (e)                                                                    (f) 

Figure 8. The Pictures of Time-frequency Distribution  

In the Figure 8, picture (a), (c) and (d) are the time-frequency distribution images of 

WVD, infinitesimal algorithm and the proposed algorithm. The picture (b), (d) and (f) are 

the corresponding local zoom images. From the local zoom images, we can find that the 

time-frequency distribution of WVD is as stair-step and the time-frequency distribution of 
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infinitesimal algorithm is choppy. Therefore, the time-frequency distributions of two pre-

existing algorithms are not smooth, and the time-frequency distribution of the proposed 

algorithm in this article is smooth. 

From the equation (3.3), the time-frequency representation of the produced signal is 

                        ( ) 600 500sin(2 (1: ) / ( ))f t Fs T Fs T                                           (3.4) 

In order to compare the three algorithms further, we shift the equation (3.4) and let it 

match with the above three calculated time-frequency distribution and calculate the MSE 

(mean square errors) as Figure 9.  
 

 
                       (a)                                          (b)                                          (c) 

Figure 9. MSE Picture of the Three Algorithms                       

The smallest MSE in each image is the final MSE corresponding to each algorithm. 

The MSE of WVD is 2.8656 as picture (a) in Figure 9. The MSE of infinitesimal 

algorithm is 4.2126 as picture (b) in Figure 9. The MSE of proposed algorithm is 0.3656 

as picture (c) in Figure 9. Therefore, the proposed algorithm is better than the WVD and 

infinitesimal algorithm. 

 

4. Conclusion 

In this article, a new method of time-frequency analysis is to be submitted and this 

method can achieve a high precision. This method sections the signal into short-time 

pieces and uses FRFT to calculate the FM rates of the every piece signal. An ideal chirp 

signal is produced to mix with the short-time pieces signal and the IF signal can be 

obtained. Some spectrum-zooming methods are used to calculate the frequency of the IF 

signal and we can obtain the unbiased estimation frequency of midpoints. Linear 

interpolation methods can connect these unbiased estimation points and the high precision 

time-frequency distribution can be obtained. The simulation and measurement compare 

the proposed algorithm with WVD and infinitesimal algorithm, which testify the proposed 

algorithm is better than the two pre-exciting algorithms. 
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