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Abstract 

This paper proposes a novel image compression algorithm using curvelet transform. 

The proposed research decomposed the original image  into curvelet coefficients by using 

fast discrete curvelet transform, after that the different scales of quantized curvelet 

coefficients were selected for lossy compression by the help of cutoff threshold. The 

proposed method was compared with image compression method based on wavelet 

transform. Experimental results show that the compression performance of our method 

gains much improvement based on PSNR, MSE and memory size. Moreover, the 

algorithm works fairly well for declining block effect at higher compression ratios. 

 

Keywords: Curvelet Transform, Wavelet Transform, Peak Signal to Noise Ratio and 

Mean Square Errors 

 

1.  Introduction 

The basic objective of image compression is the reduction of size for transmission or 

storage while maintaining suitable quality of reconstructed images. Since the lossy 

schemes can produce much higher compression ratios than the lossless ones, for this 

purpose many compression techniques have been introduced in [1]. Most of them are 

efficient for low bit rates.  

In the past few years, wavelets [2, 3] and related multi-scale representations pervade all 

areas of signal processing. The reason for the success of wavelets is the fact that wavelet 

bases represent well a large class of signals, and therefore allow us to detect roughly 

isotropic features occurring at all spatial scales and locations. However, there has been a 

growing awareness to the observation that wavelets may not be the best choice for 

presenting natural images recently. This observation is due to the fact that wavelets are 

blind to the smoothness along the edges commonly found in images. In other word, the 

wavelet can’t provide the ‘sparse’ representation for an image, so the second generation 

curvelet transform are use for image compression. 

 

2. Curvelet Transform 

The E. J Candes and D.L Donoho were introduced new transform called curvelet 

transform. The curvelet transform is a special member of the multi-scale geometric 

transforms [5-7]. It is a transform with multi-scale pyramid with many directions at each 

length scale. Curvelets will be superior over wavelets in following cases:  

 Optimally sparse representation of objects with edges. 

 Optimal image reconstruction in severely will posed problems.  

 Optimal sparse representation of wave propagators. 

 Reduce redundancy smartly from the image. 
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The curvelet transform based coding performance is better for compression over 

wavelet transform based coding for gray scale and color images. If the coefficient neglect 

large, the curvelet transform has better reconstruction over wavelet transform and remove 

the redundancy from the image, so it is beneficial for image encryption. 

 
2.1 Continuous-Time Curvelet Transforms 

In 2000, Candes and Donoho introduced the curvelet transform [7, 4]. The continuous 

curvelet transform can be defined by a pair of windows W(r) (a radial window) and V (t) 

(an angular window), with variables W as a frequency domain variable, and r and θ as 

polar coordinates in the frequency-domain. 

∑ 𝑤2∞
𝑗=−∞ (2𝑗𝑟) = 1,    𝑟 ∈ (

3

4
,

3

2
) … … … (𝟏)                                                             

∑ 𝑣2∞
𝑙=∞ (𝑡 − 1) = 1,    𝑡 ∈ (−  

1

2
,

1

2
) … … (𝟐) 

A polar ‘wedge’ represented by 𝑈𝑗 is supported by W and V, the radial and angular 

windows. 𝑈𝑗 is defined in the Fourier domain by 

𝑈𝑗(𝑟, 𝜃) = 2−
3𝑗

4 𝑊(2𝑗𝑟)𝑉 (
2⌊𝑗/2⌋𝜃

2𝜋
) … … …        (𝟑)                                               

The curvelet transform can be defined as a function of x = (x1, x2) at scale 2−𝑗, 

orientation 𝜃𝑙, and position 𝑥𝑘
(𝑗,𝑙)

by 

 𝜃𝑗,𝑙,𝑘(𝑥) =  𝜑𝑗 (𝑅𝜃𝑡
(𝑥 − 𝑥𝑘

(𝑗,𝑙)
))  … … … … . . (𝟒) 

 

Figure 1. Curvelet Tiling in the Frequency Domain 

Where 𝑅𝜃 is the rotation in radians.  Figure 1 illustrates the polar ‘wedges’ represented 

by 𝑈𝑗. Further details are presented in [5]. 

 

2.2 Digital Curvelet Transforms 

In the continuous time definition (2.1), the window 𝑈𝑗 smoothly extracts frequencies 

near the dyadic corona and near the angle. Coronae and rotations are not especially 

adapted to Cartesian arrays. Instead, it is convenient to replace these concepts by 

Cartesian equivalents here, ‘‘Cartesian coronae” based on concentric squares (instead of 

circles) and shears, as shown in figure 2. Define the ‘‘Cartesian” window 

𝑈𝑗̃(𝜔) =   𝑊𝑗̃(𝜔)𝑉𝑗(𝜔) … … … … … … … …         (𝟓) 

𝑊𝑗̃(𝜔) is a window of the form.  

𝑊𝑗̃(𝜔)   = √𝜑𝑗+1
2 (𝜔) − 𝜑𝑗

2(𝜔)      𝐽 ≥ 0 …      (𝟔)      

Where 𝜑 is defined as the product of low-pass one-dimensional windows. 
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𝜑𝑗(𝜔1, 𝜔2) =   𝜑(2𝑗𝜔1)𝜑(2𝑗𝜔2) … … ….       (𝟕)                     

The function 𝜑 obeys 0 ≤ 𝜑 ≤ 1, might be equal to 1 on [-1/2, 1/2], and vanishes 

outside of [-2, 2]. The digital curvelet transform coefficient is obtained by 

𝑐(𝑗, 𝑙, 𝑘) =  ∫ 𝑓(𝜔)𝑈𝑗̃
̇  (𝑆𝜃𝑙

−𝑙𝜔)𝑒𝑙 〈𝑆𝜃𝑙

𝑇 𝑏, 𝛼𝑥〉 𝑑𝜔 … (𝟖)  

 

 

Figure 2. Digital Curvelet Tiling of Space and Frequency 

3.  Flowchart for Image Compression Based On Curvelet Transforms  
 

 

Figure 3. Curvelet based Image Compression 



International Journal of Signal Processing, Image Processing and Pattern Recognition 

Vol.8, No.7 (2015) 

 

 

202   Copyright ⓒ 2015 SERSC 

4.  Algorithm for Image Compression Based On Curvelet Transforms 

This research proposes a novel image compression algorithm using curvelet transform. 

The original image was decomposed into curvelet coefficients using fast discrete curvelet 

transform, after that the different scales of quantized curvelet coefficients were selected 

for lossy compression and arranged in descending order. Then we set the cutoff threshold 

for curvelet coefficients. The proposed method was compared with image compression 

method based on wavelet transform. Experimental results show that the compression 

performance of our method gains much improvement based on PSNR and MSE. 

Moreover, the algorithm works fairly well for declining block effect at higher 

compression ratios. 

Step 1: Calculate the cuvelet coefficient of the image planes using following equations 

𝑐(𝑗, 𝑙, 𝑘) =  ∫ 𝑓(𝑥)𝜓𝑗,𝑙,𝑘(𝑥) 𝑑𝑥
𝑅2

        … … …    (𝟗) 

Where R denote the real line. 

Step 2: Calculate the size of compressed image according to given compression ratio 

(CPR). 

Step 3: Arrange the Curvelet coefficients in descending order C. 

Step 4: Find out the cutoff threshold for Curvelet coefficients (CL) as given below 

𝑁 = 𝐶𝑃𝑅 ∗ 𝐼𝑚𝑎𝑔𝑒 𝑆𝑖𝑧𝑒 … … … ..                     (𝟏𝟎) 

𝐶𝑢𝑡𝑜𝑓𝑓 = 𝐶𝐿 ∗ (𝑁) … … … … … ..                    (𝟏𝟏)     
Where CL is the curvelet coefficients array arrange in descending order. 

Step 5: Remove all the coefficients below cutoff 

𝐶1 = 𝑐 > 𝐶𝑢𝑡𝑜𝑓𝑓 … … … … … …                    (𝟏𝟐) 

C1 = C > Cutoff 

Step 6: Perform inverse curvelet transform of C1 to get compressed image. 

 

5.  Simulation Result 
 

5.1  PSNR and MSE for Image Compression 

The proposed algorithm is evaluated on color images and compared with traditional 

image compression methods based on wavelet transform, which pervade all areas of 

signal processing. As an objective measure of reconstructed image quality by the PSNR 

(Peak Signal to Noise Ratio) and MSE (Mean Square Error).  

A lower value for MSE means lesser error, and as seen from the inverse relation 

between the MSE and PSNR, this translates to a high value of PSNR. Logically, a higher 

value of PSNR is good because it means that the ratio of Signal to Noise is higher. Here, 

the 'signal' is the original image, and the 'noise' is the error in reconstruction. So, a 

compression scheme having a lower MSE (and a high PSNR), can be recognized as a 

better one. We evaluated the performance of image compression with an un-optimized 

MATLAB 7.0 code. Performance was measured on a machine with Intel Core 2 Duo 2.00 

GHz CPU with 2 GB of RAM running on Windows XP.  

Table 1, 2 and 3 shows the simulation results of various standard images (from Signal 

Image Processing Institute SIPI) of different size. In these tables we simulate the result on 

120 × 120, 256× 256, and 512 × 512 standard 24-bit color, 96 dpi JPEG images. It is clear 

that the PSNR and MSE value on 120 × 120 in table 1 and figure 4, 5 and 256 × 256 in 

table 2 and figure 6, 7 shows that the image reconstruction quality for curvelet transform 

is better than that of wavelet transform. The figure 4, 5, 6, 7, 8 and 9 indicate that curvelet 

show better PSNR and MSE for 120 ×120, 256×256 and 512×512 Lena 24-bit color 

image compare to wavelet transform respectively. The higher PSNR and lower MSE 

value show the better reconstruction quality of the image. The image data are highly 

redundant, so in the case of curvelet the redundancy of the image is highly reduced which 

in turn gives the advantage in the image encryption.  
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Table 1. PSNR and MSE for Different Compression Ratio of Different Color 
Image 

Lena 120×120  (PSNR) 

Compression 

Ratio 

1:20 1:30 1:40 1:50 1:60 1:70 1:80 1:90 1:100 

Curvelet 40.01 32.41 24.03 14.79 11.46 9.06 8.34 7.38 6.64 

Wavelet 37.87 29.31 22.26 12.44 8.97 7.12 5.96 5.16 4.57 

Lena 120×120 (MSE) 

Compression 

Ratio 

1:20 1:30 1:40 1:50 1:60 1:70 1:80 1:90 1:100 

Curvelet 8.11 15.71` 24.03 33.33 36.67 38.52 39.78 40.74 41.48 

Wavelet 10.25 18.81 25.86 35.68 39.15 41.00 42.16 42.96 43.55 

Baboon 120×120 (PSNR) 

Compression 

Ratio 

1:20 1:30 1:40 1:50 1:60 1:70 1:80 1:90 1:100 

Curvelet 35.99 29.54 23.93 16.00 12.60 10.73 9.48 8.56 7.87 

Wavelet 32.16 25.90 21.37 12.62 9.56 7.90 6.84 6.08 5.50 

Baboon 120×120 (MSE) 

Compression 

Ratio 

1:20 1:30 1:40 1:50 1:60 1:70 1:80 1:90 1:100 

Curvelet 12.13 18.58 24.19 32.12 35.52 37.39 38.64 39.56 40.25 

Wavelet 15.96 22.23 26.75 35.50 38.56 40.22 41.28 42.04 42.62 

Pepper 120×120  (PSNR) 

Compression 

Ratio 

1:20 1:30 1:40 1:50 1:60 1:70 1:80 1:90 1:100 

Curvelet 38.85 31.59 25.23 19.14 15.42 13.07 11.47 10.35 9.49 

Wavelet 37.25 29.30 23.18 14.58 11.32 9.47 8.12 7.12 6.35 

Pepper 120×120 (MSE) 

Compression 

Ratio 

1:20 1:30 1:40 1:50 1:60 1:70 1:80 1:90 1:100 

Curvelet 9.27 16.53 22.89 28.99 32.70 35.05 36.65 37.77 38.63 

Wavelet 10.87 18.82 24.94 33.54 36.80 38.65 40.00 41.01 41.77 
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Figure 4. MSE of Curvelet vs. Wavelet for Different Compression Ratio 

 

Figure 5. MSE of Curvelet vs. Wavelet for Different Compression Ratio 

Table 2. PSNR and MSE for Different Compression Ratio of Different Color 
Image 

Lena 256×256  (PSNR) 

Compression 

Ratio 

1:20 1:30 1:40 1:50 1:60 1:70 1:80 1:90 1:10

0 

Curvelet 45.18 38.6

8 

31.9

3 

24.9

7 

21.8

2 

19.8

3 

18.4

2 

17.2

9 

16.38 

Wavelet 38.63 28.2

5 

21.6

1 

18.0

8 

15.8

2 

14.3

8 

13.8

3 

12.6

6 

12.11 

Lena 256×256 (MSE) 

Compression 

Ratio 

1:20 1:30 1:40 1:50 1:60 1:70 1:80 1:90 1:10

0 

Curvelet 2.94 9.44 16.1

9 

23.1

5 

26.3

0 

28.2

9 

29.7

1 

30.8

3 

31.74 

Wavelet 9.49 19.8

8 

26.5

1 

30.0

4 

32.3

0 

33.7

4 

34.7

4 

35.4

7 

36.02 

Baboon 256×256  (PSNR) 

Compression 1:20 1:30 1:40 1:50 1:60 1:70 1:80 1:90 1:10
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Ratio 0 

Curvelet 42.24 34.9

8 

29.1

6 

22.7

8 

19.1

6 

17.0

8 

15.6

9 

14.6

9 

13.94 

Wavelet 34.69 26.9

3 

18.7

4 

15.4

7 

13.6

9 

12.5

3 

11.7

1 

11.0

8 

10.59 

Baboon 256×256 (MSE) 

Compression 

Ratio 

1:20 1:30 1:40 1:50 1:60 1:70 1:80 1:90 1:10

0 

Curvelet 5.88 13.1

4 

18.9

7 

25.3

4 

28.9

7 

31.0

5 

32.4

3 

33.4

3 

34.19 

Wavelet 13.43 21.2

0 

29.3

9 

32.6

5 

34.4

3 

35.6

0 

36.4

2 

37.0

4 

37.53 

Pepper 256×256  (PSNR) 

Compressio

n Ratio 

1:20 1:30 1:40 1:50 1:60 1:70 1:80 1:90 1:100 

Curvelet 48.0

3 

39.6

9 

32.5

3 

25,1

1 

20.9

9 

18.4

7 

16.8

0 

15.6

0 

1.71 

Wavelet 43.0

8 

32.3

2 

19.8

7 

16.3

6 

14.4

3 

13.0

4 

11.9

9 

11.1

9 

10.57 

Pepper 256×256 (MSE) 

Compressio

n Ratio 

1:20 1:30 1:40 1:50 1:60 1:70 1:80 1:90 1:100 

Curvelet 0.12 8.43 15.5

9 

23.0

1 

27.1

3 

29.6

5 

31.3

2 

32.5

2 

33.42 

Wavelet 5.04 15.8

0 

28.2

5 

31.7

6 

33.6

9 

35.0

8 

36.1

3 

36.9

3 

37.55 

Airplane 256×256  (PSNR) 

Compressio

n Ratio 

1:20 1:30 1:40 1:50 1:60 1:70 1:80 1:90 1:100 

Curvelet 49.0

6 

40.1

3 

32.2

4 

24.6

7 

20.8

7 

18.0

1 

16.0

7 

14.7

8 

13.97 

Wavelet 43.9

3 

30.8

7 

20.2

9 

16.1

3 

14.1

4 

12.9

6 

11.7

4 

11.3

1 

10.72 

Airplane 256×256 (MSE) 

Compressio

n Ratio 

1:20 1:30 1:40 1:50 1:60 1:70 1:80 1:90 1:100 

Curvelet -0.92 8.00 15.8

8 

23.4

6 

27.2

5 

30.1

1 

32.0

5 

33.3

4 

34.15 

Wavelet 04.1

9 

17.2

5 

27.8

3 

31.9

9 

33.9

9 

35.1

6 

36.3

8 

36.8

1 

37.40 
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Figure 6. PSNR of Curvelet vs. Wavelet for Different Compression Ratio 

 

Figure 7. MSE of Curvelet vs. Wavelet for Different Compression Ratio 

When the size of the image increases the results are contradictory for some images like 

baboon 512×512 and Peeper 512×512 as shown in table 3 and figures 10, 11, 12 and 13 

i.e. the wavelet transform gives higher PSNR and lower MSE for baboon 512×512 image 

for the compression ratio 1:20, 1:30 and 1:40 as shown in figures 5.10 and 5.11 i.e. for 

low compression ratio PSNR are 41.80, 38.43 and 27.64 respectively but in the case of 

curvelet transform it is 40.56, 32.90, 26.39 and the MSE are 6.32, 13.29, and 20.48 but in 

curvelet it is 7.56, 15.22 and 21.73. As the compression ratio increases such as 1:50 or 

above the curvelet give higher PSNR (18.13, 14.29, 12.16, 10.75, 9.75, 8.99) and lower 

MSE over wavelet PSNR (16.66, 11.00, 9.07, 7.84, 6.97, 6.31) and MSE as shown in 

Figures 10 and 11. 

Table 3. PSNR and MSE for Different Compression Ratio of Different Color 
Image 

Lena 512×512  (PSNR) 

Compressio

n Ratio 

1:20 1:30 1:40 1:50 1:60 1:70 1:80 1:90 1:10

0 

Curvelet 47.2

4 

39.40 30.5

9 

15.7

4 

12.1

8 

10.2

5 

8.97 8.02 7.26 
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Wavelet 45.2

3 

36.81 27.7

1 

13.1

7 

9.35 7.35 6.13 5.28 4.66 

Lena 512×512 (MSE) 

Compressio

n Ratio 

1:20 1:30 1:40 1:50 1:60 1:70 1:80 1:90 1:10

0 

Curvelet 0.88 8.72 17.5

3 

32.3

8 

35.9

5 

37.8

7 

39.1

5 

40.11 40.8

6 

Wavelet 2.89 11.32 20.4

1 

34.9

5 

38.7

8 

40.7

7 

41.9

9 

42.84 43.4

6 

Baboon 512×512 (PSNR) 

Compressio

n Ratio 

1:20 1:30 1:40 1:50 1:60 1:70 1:80 1:90 1:10

0 

Curvelet 40.5

6 

32.90 26.3

9 

18.1

3 

14.2

9 

12.1

6 

10.7

5 

9.75 8.99 

Wavelet 41.8

0 

34.83 27.6

4 

14.6

6 

11.0

0 

9.07 7.84 6.97 6.31 

Baboon 512×512 (MSE) 

Compressio

n Ratio 

1:20 1:30 1:40 1:50 1:60 1:70 1:80 1:90 1:10

0 

Curvelet 7.56 15.22 21.7

3 

29.9

9 

33.8

3 

35.9

7 

37.37 38.3

7 

39.1

3 

Wavelet 6.32 13.29 20.4

8 

33.4

6 

37.1

2 

39.0

5 

40.28 41.1

5 

41.8

1 

Pepper 512×512  (PSNR) 

Compressio

n Ratio 

1:20 1:30 1:40 1:50 1:60 1:70 1:80 1:90 1:100 

Curvelet 47.1

9 

38.3

4 

31.1

9 

21.8

4 

17.0

1 

14.1

1 

12.3

1 

11.04 10.10 

Wavelet 47.6

2 

39.1

6 

30.2

0 

15.5

4 

11.7

9 

9.80 8.33 7.24 6.43 

Pepper 512×512 (MSE) 

Compressio

n Ratio 

1:20 1:30 1:40 1:50 1:60 1:70 1:80 1:90 1:100 

Curvelet 0.93 9.78 16.9

3 

26.2

8 

31.1

2 

34.0

1 

35.8

1 

37.08 38.02 

Wavelet 0.50 8.96 17.9

2 

32.5

8 

36.3

3 

38.3

2 

39.7

9 

40.88 41.69 

 

Figure 8. PSNR of Curvelet vs. Wavelet for Different Compression Ratio 
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Figure 9. MSE of Curvelet vs. Wavelet for Different Compression Ratio 

 

Figure 10. PSNR of Curvelet vs. Wavelet for Different Compression Ratio 

 

Figure 11. MSE of Curvelet vs. Wavelet for Different Compression Ratio 
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Figure 12. PSNR of Curvelet vs. Wavelet for Different Compression Ratio 

 

Figure 13. MSE of Curvelet vs. Wavelet for Different Compression Ratio 

Table 5. Image Compressed in Byte for Different Compression Ratio 

 1:20 1:30 1:40 1:50 1:60 1:70 1:80 1:90 1:100 

Lena 120×120  

Plain image size 43200 bytes 

 

Curvelet 

Transform 

21600 14400 10800 8640 7200 6171 5400 4800 4320 

Wavelet 

Transform 

24221 17009 13415 11261 9812 8789 8021 7415 6932 

Lena 256×256 

Plain image size 196608 bytes 

Curvelet 

Transform 

98304 65536 49152 39321 32768 28087 24576 21845 19660 

Wavelet 

Transform 

102589 69997 53632 43822 37255 32575 29080 26314 24124 

Lena 512×512 

Plain image size 786432 byte 

Curvelet 

Transform 

393216 262144 196608 157286 131072 112347 98304 87381 78643 

Wavelet 

Transform 

465458 336836 271655 232301 206003 187289 173342 162233 153356 
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The compression and decompression time is measured for different size of color image 

by using curvelet transform is depicted in table 5.  

The size of the compressed image are more in wavelet case as compared to curvelet as 

shown in table 5 and figures 14, 15 and 16, so its take less time for encryption and less 

bandwidth for transmission.  

Table 4. Time for Compression / Decompre-ssion Time Using Curvelet 
Transform 

Lena (24-bit color image) Comp Time in sec. Decomp Time  in sec. 

102×102 0.436 0.416 

120×120 0.452 0.367 

180×180 0.889 0.689 

204×204 1.156 1.018 

256×256 1.332 1.930 

512×512 5.716 4.127 

 

  

Figure 15. Performance of Compress Image for Lena 256×256 Curvelet vs 
Wavelet     

  

Figure 16. Performance of Compress Image for Lena 512×512 Curvelet vs 
Wavelet   
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Figure 14. Performance of Compress Image for Lena 120×120 Curvelet vs 
Wavelet   

The Figure 17(a) show the original 256×256, 24-bit JPEG Lena image. The figure 17 

(b-j) and figure 18(b-j) shows the reconstruction quality of the compressed image by 

using curvelet transform and wavelet transform respectively with different compression 

ratio. In this case curvelet transform base coding give better reconstruction quality or low 

error for higher compression ratio compare to wavelet transform base coding.  

 

     
(a)  (b) 1:20 (c) 1:30  (d) 1:40  (e) 1:50 

 

     
  (f) 1:60        (g) 1:70            (h) 1:80    (i) 1:90      (j) 1:100 

Figure 17. (b-j) Reconstructed Lena Image for Different Compression Ratio 
in Curvelet Transform and (a) Original Lena image 256×256        
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    (f) 1:60            (g) 1:70              (h) 1:80            (i) 1:90             (j) 1:100 

Figure 18. (b-j) Reconstructed Lena Image for Different Compression Ratio 
in Wavelet Transforms  

6. Summary  

In this paper, with the help of simulation results it is clear that curvelet transform gives 

the better performance for PSNR and MSE over the wavelet transform. More over the 

curvelet transforms are more suitable for the image data to represent the singularities over 

geometric structures in the image, than the wavelet counterpart because cuevelet are 

designed to handle the singularities on the curves, where as wavelets are effective for 

point singularities; hence curvelet transforms can be effectively used for the image 

compression with quality reconstruction. Thus curvelet based image compression, 

eliminate the redundancy from the image and achieve higher compression that reduces the 

encryption time. 
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