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Abstract 

The denoising of acoustic emission (AE) signal plays an important role in structural 

health monitoring. This paper proposes the improved spatially selective noise filtration 

(SSNF) which can eliminate the Gaussian white noise well. Firstly, through the 

comparison of different vanishing moments, “db5” is chose as the mother wavelet. And 

the Mallat algorithm is used in the composition and reconstruction of signal processing. 

Secondly, according to the signal noise ratio of wavelet reconstructed coefficients of AE 

signal, two coefficients are chosen to the next step. Lastly, the denoising algorithm uses 

the high degree of correlation between coefficients to realize the improved SSNF. 

Compared with the SSNF, the improved SSNF can avoid “glitches” and realize real-time 

denoising. And according to the simulation results, the improved SSNF can realize real-

time denoising of AE signal. 
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1. Introduction 

Plenty of constructions bring about great convenience by the rapid social progress 

and continuous technology development. But the structural damages will also bring 

great loss to the possession and human life. Thus, to avoid these tragedies, the 

structural health monitoring is necessary and important. The acoustic emission (AE) 

detection is powerful for the nondestructive evaluation and damage monitoring of 

structures [1]. The fatigue damage of structures will produce AE signals. There are 

two types of signals in the AE system; namely burst signals and continuous signals. 

The duration of burst signal is short (in the range of a few microseconds to a few 

milliseconds). Meanwhile the continuous signal is emitted close to each other or the 

burst is very high rate where the signals occurred very close and sometimes even 

overlap [2]. Many AE phenomena are very weak, so they are difficult to be detected. 

Due to the sensitivity of fiber sensor, the signals are received by AE detectors [2] 

[3]. Detectors change mechanical vibration into electrical signal. Then the AE 

signals will be amplified, processed and recorded. 

By processing the AE signal, researchers can determine the location of internal 

crack and monitor the health of structure accurately. Based on the Kaiser effect, the 

AE phenomena are irreversible. The AE signals of damages need to be found out as 

soon as possible. But noises will affect the accuracy of results. Many denoising 

methods have been presented, such as Donoho and adaptive threshold extimation 

[4]. Because of the characteristic of AE, these methods are not fit the AE signal. 

And to the best knowledge of authors, few literatures focus on the real-time 

denoising of AE signal. Elimination of the noise influence is significantly vital for 

getting accurate signal [2]. For ensuring the feasible of AE detection, this paper 
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proposes the improved spatially selective noise filtration. And the improved 

algorithm can realize the real-time denoising. According to the simulation results, 

the proposed algorithm improves the performance of denoising of AE signal. 

This paper is structured as follows: Section 2 introduces the AE. And Section 3 

introduces the wavelet transform, including Mallat algorithm and vanishing 

moments of mother wavelet. The improved spatially selective noise filtration is 

expatiated in Section 4. Section 5 presents the simulation results and analyses. And 

Section 6 draws the conclusions. 

 

2. Acoustic Emission 

The AE is defined as a transient elastic wave generated by the rapid release of energy 

within a material [5]. Figure 1 shows a typical AE waveform along with feature 

parameters, such as threshold, amplitude, rise time, duration, etc. [5-6]. 

As shown in Figure 1, maximum amplitude is related to the maximal value of an AE 

waveform. Rise time means the time between the first overshoot of the predefined 

threshold and the maximum amplitude. Duration is the time between the first and the last 

overshoot of the threshold. The waveform shown in Figure 1 is called a hit because it is 

the result of acoustic signals hitting the AE detectors [7]. 

 

Threshold

Rise time

Maximum 

amplitude

Duration

 

Figure 1. Typical AE Waveform 

3. Wavelet Transform 
 

3.1. Mallat Algorithm 

There are many ways to process the AE signal, such as wavelet transform (WT), 

correlation figure, fast Fourier transform (FFT), etc. This paper chooses WT to 

decompose the AE signal. WT is called as “the digital microscope”. It can process the 

signal with multi-resolution and it can be applied well in time and frequency. 

In 1988, Mallat put forward the multiresolution analysis (MRA). In order to obtain 

wavelet coefficients quickly, fast wavelet transform (FWT) has been presented, namely 

Mallat algorithm [8]. Mallat algorithm can be comparable with the FFT. It reduces the 

difficulty of getting wavelet coefficients greatly, and opens up a shot cut of wavelet 

analysis application [9]. Because of Mallat algorithm, wavelet analysis reveals the actual 

value. Mallat algorithm is based the following thought. 



International Journal of Signal Processing, Image Processing and Pattern Recognition 

Vol.8, No.7 (2015) 

 

 

Copyright ⓒ 2015 SERSC  181 

If  jV  is a given MRA, it can be decomposed into two subspace  1jV 
 and 

 1jW 
.  , ,

( )j k j k
x

Z  
and  , ,

( )j k j k
x

Z  
respectively are the orthonormal basis of the 

scale space  jV
 
and the wavelet space  jW . For the function ( ) Jf x V , the 

composition can be expressed as  ,J n
 
or  1, 1,,J k J k   : 

, , 1, 1, 1, 1,( ) J n J n J k J k J k J k

n k k

f x c c d     

  

    
Z Z Z

                               (1) 

where J Z ,  1,J kc 
 
is the approximation sequence, and  1,J kd 

 
is the detail sequence. 

1 1j jV W  , so we can get 1, , , 1, , , 1,, ,J k J n J n J k J n J n J k

n n

c c c     

 

      
Z Z

 according to 

Eq. (1). And because of ( ) 2 (2 )m

m

x h x m 


 
Z

 and ( ) 2 (2 )m

m

x g x m 


 
Z

, we 

can get: 

, 1, 2

, 1, 2

,

,

J k J m k m
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h

g

 

 

 

 
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                                                     (2) 

So the decomposition algorithm is calculated as: 

1, , 2 ,

2

1, , 2 ,

2

J k J n n k J n n k

n n k k

J k J n n k J n n k

n n k k

c c h c h

d c g c g
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  
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 
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                                        (3) 

It is observed that  1,J kc   
and  1,J kd   

are calsulated by  ,J kc ;  2,J kc   
and  2,J kd   

are calsulated by 1,J kc  , etc. 

According to Eq. (1), if the decomposition level is 1 2N N . The function ( )f x
 
can be 

decomposed as: 

1

1 1

2

, , , ,

1

( )
N

N k N k j k j k

k j N

f x c d 
  

 
   

 
 

Z

                                         (4) 

Because of , , , , , 1, 1, , 1, 1,, , ,J n J n J n J n J n J k J k J n J k J k

n k k

c c c d        

  

          
Z Z Z

, we 

can get , 1, 1, , 1, 1, ,, ,J n J k J k J n J k J k J n

k k

c c d      

 

      
Z Z

. 

So the reconstruction algorithm is defined as: 

, 2 1, 2 1,

2 1, 2 1, 2 1 2 1

1, 1,
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( ) ( 0 0)
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                      (5) 

where  1,J kc 
  and  1,J kd 

  are obtained from  1,J kc   and  1,J kd   by adding zero in odd 

index. 

In Mallat algorithm, the space pyramidal decomposition is shown as Figure 2(a). And 

Figure 2(b) illustrates the space pyramidal reconstruction. 
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(a) Mallat Decomposition

(b) Mallat Reconstruction
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Figure 2. The Space Pyramidal of Mallat 

To sum up, the Mallat algorithm use filter and down sampling to realize the wavelet 

decomposition. And then up sampling and reconstruction filter are used to reconstruct the 

wavelet coefficients [10]. Figure 3 shows the diagram of Mallat algorithm. Boundary 

extension is necessary in Mallat algorithm of time-limited signal processing. There are 

many kinds of boundary extension methods. Periodic extension is used in this paper. 
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Figure 3. The Diagram of Mallat Algorithm 

3.2. Vanishing Moments of Wavelet 

In order to detect kinds of singularities in signal, the wavelet function should 

have enough vanishing moments during the singular signal detection. And the 

wavelet function should be chose based on the singularity of signal. AE signal 

processing use many kinds of mother wavelets. The Daubechies family of wavelets 

has the characteristics of orthogonality and compact support [11-12]. It can avoid 

energy cross leakage, so frequency resolution can be ensured easier. It could display 

every mutation of AE signals. So “dbN” of Daubechies wavelet is used as the basis 

function for processing the AE signal. “N” is the vanishing moment of wavelet 

function. Greater vanishing moment will make flatter filters. Vanishing moment can 

change the wavelet coefficients of each layer. It can also influence the computation 

speed. So the proper vanishing moment need to be chose. 

Mallat algorithm is used to decompose and reconstruct the AE signal with noise. 

A signal is split into an approximation and details. The sampling rate of the AE 

signal of this paper is 2MHz. As illustrated in Figure 4, the signal can be 

decomposed into a tree structure with wavelet details and wavelet approximations at 

5 levels. ( )iA t  stand for the wavelet approximations and ( )iD t denote the wavelet 

details, where 1,2, ,5i  . 
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Figure 4. Wavelet Transform Tree and Wavelet Coefficients 

Table 1 shows both the energy percentage of each layer and simulation time of 

decomposition and reconstruction by using different vanishing moments of mother 

wavelet. 

Table 1. Energy Percentage of Each Layer 

dbN 

Energy Percentage (%) Simulation Time (ms) 

1D  2D  3D  4D  5D  Decomposition Reconstruction 

db1 8.9 22.5 54.3 9.2 4.4 7.12 17.68 

db2 1.3 12.1 78.7 6.9 0.8 7.57 21.97 

db3 0.5 9.9 82.3 6.5 0.7 7.97 23.68 

db4 0.7 6.7 85.1 7.0 0.4 8.52 25.31 

db5 0.7 5.5 86.5 6.7 0.5 8.69 25.37 

db6 0.5 6.0 87.3 6.0 0.2 9.19 26.77 

db7 0.5 4.3 88.4 6.4 0.3 9.61 27.77 

 

According to Figure 4 and Table 1, the energy of wavelet coefficients becomes 

more concentrated while the vanishing moment becomes greater. With the increase 

of vanishing moment, the energy of the third layer becomes higher and higher. The 

energy of the fourth layer has almost no change. And the energy of the other three 

layers become lower and lower. So the vanishing moment changes the distribution 

of wavelet coefficents energy. At the same time, with the growing of vanishing 

moment, decomposition and reconstruction spend more and more time. In this 

paper, based on comprehensive consideration of the simulation time and the energy 

of wavelet coefficients, “db5” is chose as the mother wavelet. 

 

4. Improved Spatially Selective Noise Filtration 
 

4.1. Basical Spatially Selective Noise Filtration 

Firstly, there is a characteristic of AE signal is that the decomposed wavelet 

coefficients have a high degree of correlation. But the coefficients of the noise 
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signal do not have it. Secondly, the lengths of decomposed wavelet are all same. 

These two characteristics have been found by some researches, and spatially 

selective noise filtration (SSNF) has been proposed [13-15]. SSNF is described 

briefly as follows. 

The input signal is: ( ) ( ) ( )f N s N n N  , where ( )s N  is the original signal, ( )n N  is 

the noise signal, N  is the length of the input signal. In this paper, 100000N  . Then 

SSNF perforems following five steps: 

1) Compute the spatial correlation matrixes ( , )Corr m k  for every wavelet scale: 

( , ) ( , ) ( 1, )Corr m k w m k w m k                                           (6) 

where ( , )w m k  denote the wavelet coefficient data, m  is the scale index, 

1,2, ,k N . Estimate the standard deviation 
m  of ( , )w m k . 

2) Then the normalization of the correlation coefficient is got as: 

( )
( , ) ( , )

( )

w

Corr

P m
Nor m k Corr m k

P m
                                         (7) 

where  
2

1

( ) ( , )
N

w

k

P m w m k


 ,  
2

1

( ) ( , )
N

Corr

k

P m Corr m k


 . 

3) If ( , ) ( , )Nor m k w m k , we assume ( , )Nor m k  is produced by signal. Set ( , )w m k  

to ( )sW k , then ( , )w m k  and ( , )Corr m k  are set to zero. If ( , ) ( , )Nor m k w m k , ( , )w m k  

and ( , )Corr m k  remain constant. 

4) Repeat step 2 and step 3 until 2( ) ( 1)w mP m L   , where L  is the number of 

nonzero data in ( , )w m k . 

5) Got the wavelet coefficients ( )sW k  after de-noising. 

There are two important stages: the first stage is step 1 and step 2; the second stage is 

step 4. Step 3 is complicated. It will waste too much time to the calculation. Because of 

the high sampling rate, the denoising of AE signal needs to be sample enough. But the 

step 3 and step 4 will spend too much time. So the SSNF needs to be improved. 

 

4.2. Improved Spatially Selective Noise Filtration 

The concrete steps of  the improved SSNF algorithm are as follows: 
a) Conduct the WT of the AE signal in m  scales and get the wavelet coefficients 

( , )w m k , where 1,2, ,5m  , 1,2, ,k N , N  is the length of input signal. 

b) Calculate the signal noise ratio (SNR) of each wavelet coefficients. Choose 

( , )w m k  and ( 1, )w m k  which SNRs are bigger than others. 

c) Because of the high degree of correlation between ( , )w m k  and ( 1, )w m k . 

Compute the spatial correlation matrixes ( , )Corr m k  as Eq. (6). 

d) Then Eq. (7) is improved as: 

 
2 ( )

( , ) ( , )
( )

w

Corr

P m
Nor m k Corr m k

P m


                                       (8) 

where 

    2 2

1

( , ) ( , )

( )
2

N

k
w

w m k w m k

P m 



 


,  
2

1

( ) ( , )
N

Corr

k

P m Corr m k


 . 

 
2

( , )Corr m k  can make the AE phenomenon more clearly than the ( , )Corr m k  in 

Eq. (7). And if the energy of ( , )w m k  and ( 1, )w m k  are too different, 
( )

( )

w

Corr

P m

P m


 

can make sure the amplitude of denoised signal will not be too small . 
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e) At last ( , )Nor m k  is changed as: 
100

SSNF

1 100( 1)

( , ) ( , )
i

k i

I m i Nor m k
  

                                            (9) 

where 1,2,3, ,
100

N
i  . Compared with ( , )Nor m k , AE phenomenon will be clearer 

in 
SSNF ( , )I m i . Step e can reduce the number of “glitches”. So it will make the 

denoised signal smoother. 

 

5. Simulation Results and Analyses 

The simulation environment of this paper is using MATLAB2010. CPU is Intel 

Core i7-2600, and the main frequency of CPU is 3.4GHz. The memory of computer 

is 4GB. 

Gaussian white noise is added to the AE signal which SNR is -15dB, as shown in 

Figure 5. This signal is used to analyze the performance of the improved SSNF. The 

wavelet coefficients of signal with noise are shown in Figure 6.  

 

-2

0

2

A
m

p
li

tu
d
e

-2

0

2

A
m

p
li

tu
d
e

(a) AE Signal

(b) Signal with Noise
0 5 10 15 20 25 30 35 40 45 50

t/ms

0 5 10 15 20 25 30 35 40 45 50
t/ms

 

Figure 5. AE Signal and Signal with Noise 
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In Figure 6, the SNRs of 
1 5~D D  respectively are -24.45dB, -19.18 dB, -7.53 dB, 

-11.56 dB, -19.41 dB. And the SNR of 
5A  is -26.49 dB. So the SNRs of 

3D  and 
4D  

are bigger than the others. We use these two coefficients to analyze the performance 

of SSNF. Then the improved SSNF uses (3, )w k  and (4, )w k  in step b. So 3m   in 

Eq. (8). The simulation results of SSNF and improved SSNF are shown as Figure 7. 
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Figure 7. Simulation Results of SSNF and Improved SSNF 

Figure 7 exhibits the differents between SSNF and improved SSNF. Compared 

with the SSNF, the improved SSNF has less “glitches” in the simulation results. 

This indicates the AE phenomenon of the result of improved SSNF is clearer than 

SSNF. There are three more simualtion results in Figure 8. The SNRs of Gaussian 

white noise signal are all -15dB in Figure 8(a). And the results of improved SSNF 

are shown in Figure 8(b). To sum up, these simulation results can prove that the 

improved SSNF has a good noise smoothing capability. 
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In addition, the simulation time is also important for an algorithm. The time of 

input signal is 0.05s, and the simulation time of SSNF is about 8.393s. So the SSNF 

cannot realize real-time denoising in the simulation environment of this paper. 

Compared with the SSNF, the average simulation time of improved SSNF is only 

0.01996s. It is less than 0.05s. So the improved SSNF can realize real -time 

denoising of AE signal. 
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6. Conclusions 

This paper proposes an improved SSNF for denoising AE signal. The Mallat 

algorithm is used to decompose the AE signal. Then by comparing the simulation 

results of different vanishing moments, “db5” is chose as the mother wavelet.  

According to the SNRs of wavelet coefficients, 
3D  and 

4D  are chose for the 

improved SSNF. By simulation, the improved SSNF has better performance in 

denoising compared with SSNFB. And the most important is that it has better time 

efficiency in algorithm complexity, which means it can realize real-time denosing of 

AE signal.  
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