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Abstract 

The edge detection is usually used for controlling the automation of pattern 

recognition in intelligent machines, traffic control and mobile devices security systems. 

Due to the complex of image control, the dimensions are increasing so that the single 

wavelet is not able to address some applications, thus, high-dimensional wavelet basis is 

needed. This paper introduces a construction of dual wavelet for fulfilling the gap. A dual 

wavelet through the compactly support set/functions which can form the Riesz basis is 

built up. Based on the mathematic presentation of the construction of the dual wavelet, 

which is a dual orthogonal with scale function and duality, the constructed dual wavelet 

is used for an application testing with fingerprint. The proposed approach is compared 

with Sobel and Canny filter. It is observed that from the results, the proposed dual 

wavelet outperforms the Sobel and Canny filter in terms of effectiveness and computation 

time. 
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1. Introduction 

Wavelet analysis is an emerging discipline which is rapidly developed over the last 

decade. It covers a broad impact of applications in real-life cases such as mathematical 

applied uses, quantum mechanics acoustic data processing, vision science, and other areas 

of computer science and technology, especially in signal processing, image processing, 

pattern recognition, and voice analysis [1]. In the wavelet theory, all wavelet transforms 

may be considered forms of time-frequency representation for continuous-time (analog) 

signals and so are related to harmonic analysis. Almost all practically useful discrete 

wavelet transforms use discrete-time filter banks [2]. These filter banks are called the 

wavelet and scaling coefficients in wavelets nomenclature. These filter banks may contain 

either finite impulse response (FIR) or infinite impulse response (IIR) filters [3]. The 

wavelets forming a continuous wavelet transform (CWT) are subject to the uncertainty 

principle of Fourier analysis respective sampling theory: Given a signal with some event 

in it, one cannot assign simultaneously an exact time and frequency response scale to that 

event. 

The history of wavelet could be traced back to 1910 when Haar proposed the first 

orthogonal basis [4]. A significant breakthrough of the wavelet analysis was made by 

Meyer who created a smooth function with certain decay   [5]. The binary extension and 

movement 
/2{ 2 (2 t k) : j,k }k j j

j      consist of the orthogonal basis of 
2 ( )L  . 

The significance of this transform brings opportunities to realize wavelet in real 

applications. For example, in 1987, computer scientist Mallat with Meyer used the 

wavelet analysis in computer vision domain to analyze the multi-dimensional resolution 

in image processing [6]. 

As the complexity of real-life application is tremendously increasing, the wavelet 

analysis is developing rapidly. For example, the dimensions of the wavelet is increasing 
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so as to meet the scientific applications from geographical cases, aerospace applications 

and so on. Due to the complexity of high dimensional wavelet basis, the construction of n-

dimensional wavelet is very difficult. For the construction of non-tensor product of 

compactly supported wavelets, current studies are very limited [7]. In order to address the 

complex and huge data-based applications such as digital image processing, the 

compactly supported wavelets cannot performs well. 

This paper introduces a construction of dual wavelet so as to address the high-

dimensional and non-constructed data applications such as digital virtual human image, 

biological image processing, and 3D objects recognition and tracing. Applications of the 

constructed dual wavelet are based on the image processing to presenting the 

effectiveness and efficiency by comparing with other approaches through the experiments 

of edge detection. The edge detection is usually used for controlling the automation of 

pattern recognition in intelligent machines, traffic control and mobile devices security 

systems [8]. Due to the complex of image control, the dimensions are increasing so that 

the single wavelet is not able to address some applications. High-dimensional wavelet 

basis is needed. The proposed dual wavelet is based on the advantages of biorthogonality 

which is used for constructing linear filter that could meet the high-dimensional 

applications [9-11]. 

The rest of this paper is organized as follows. Section 2 gives a basic concept of dual 

wavelet in terms of its construction and compactly supported set. Section 3 presents the 

construction of dual wavelet including the scaling function, validation, and duality of the 

dual wavelet. Section 4 demonstrates the numerical examples of the dual wavelets. 

Experiments and applications are discussed in section 5 through an image processing 

case. Specifically focus is placed on the edge detection. This section compares the 

proposed approach with other methods. Section 6 concludes this paper by giving the 

findings and future research directions. 

 

2. Dual Wavelet 

In the image processing with high dimensions, the precise decomposition and 

reconstruction is very important. The dual wavelet may be suitable for addressing this 

issue since the scale function could be orthogonal. The main idea of the dual wavelet is 

from the 
2 1

3 1 ,
( )

k

k m n
S


  space where the dual orthogonal wavelet with non-tensor product 

supported set could be constructed. Firstly, Groebner Basis approach is used for getting 

the dual function   of the scale function   . Secondly, using the restricted transition 

operator, the characteristics of Riesz and quadratic integrability of   could be examined. 

Finally, under the scale and dual-scale functions, a matrix extension method is used for 

constructing the dual wavelet based on the scale and dual-scale functions. 

Assume 
2 2( ) ( )x L    is a compactly supported function, there is a limited 

sequence 2{h }j j
 s.t. 

2

( ) (2 )j

j

x h x j 


   then, 

2

/2
( ) 0.25 ( / 2)

iw j

j

j

w h e w 




         (1) 

Mark 
2

( ) 0.25 j

j

j

M z h z


   is the two scale operator of  , where 2

iw

z e


 . 

Let ( )x  is the dual B basis in the space of 
2 1

3 1 ,
( )

k

k m n
S


 , an embedded space 

0 1 1... ...j jV V V V     could be established by ( )x  in 
2 2( )L  . Where,  

2{ (2 ), }j

jV span x l l    , j       (2) 
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The movement 
2{ ( ), }l l    of ( )x  forms the Riesz basis of 0V . 

0 A B     , s.t. 

2

2 2 2|| || || ( ) || || ||l

l

A a a x l B a


         (3) 

2

2 2{ } ( )l l
a a l


   ,   generates a multi-resolution analysis (MRA) of 

2 2( )L . From  , it is possible to construct the dual orthogonal wavelet. The first 

step is to find out the compactly supported function  , which is dual orthogonal with 

 : 

2

,0( ), ( ) ,lx x l l            (4) 

For  , there is a limited sequence 2{ }j j
h


, s.t. 

2

( ) (2 )j

j

x h x j 


  , then 
2

2( ) 0.25 ( )
2

ij w

j

j

w
w h e 





  , 

So 
2

( ) 0.25 j

j

j

M z h z


         (5) 

(5) is the dual scale symbol.  

Lemma 1. Assume 
2 2, ( )L  , then   and   is dual orthogonal. 

Proof.  

 ,0 ( ), ( )l x x l      

       
2

1
( ), ( )

4

iw lw w e 


    

       
2

2

1
( ) ( )

4

iw lw w e dw 


   

       
2 2

2

[0,2 ]

1
( 2 ) ( 2 )

4

iw l

k

w k w k e dw



   
 

     

       
22

2

[0,2 ]

1
( 2 ) ( 2 )

4

iw l

k

e w k w k dw



   
 

    

       
2

2( 2 ) ( 2 ) 1, . .
k

w k w k a e w   


      □ 

Lemma 2. If 
2

( 2 ) ( 2 ) 1
k

w k w k   


   , 
2. .a e w , then 

(( 1) ) (( 1) ) 1
E

M z M z 



   , where 1 2

1 2 1 2( , ) ,(( 1) ) (( 1) ,( 1) )E z z z         . 

Proof.  

 
2

1 ( 2 ) ( 2 )
k

w k w k   


    

 
2

( /2 ) ( /2 )( ) ( / 2 ) ( ) ( / 2 )i w k i w k

k

M e w k M e w k       



    

 
2

( /2 ) ( /2 )( ) ( ) ( / 2 ) ( / 2 )i w k i w k

k

M e M e w k w k        



    
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2

( /2 2 ) ( /2 2 )( ) ( ) ( / 2 2 ) ( / 2 2 )i w l i w l

E l

M e M e w l w l   



          

 

      

 
2

( /2 ) ( /2 )( ) ( ) ( / 2 2 ) ( / 2 2 )i w i w

E l

M e M e w l w l 



        

 

      

 
2

( /2 ) ( /2 )( ) ( ) ( / 2 2 ) ( / 2 2 )i w i w

E l

M e M e w l w l 



        

 

       

 
( /2 ) ( /2 )( ) ( )i w i w

E

M e M e 



   



  

 (( 1) ) (( 1) )
E

M z M z 



     □ 

Construction of the dual orthogonal wavelet follows the steps: (1) find out the 

dual orthogonal function   of  . { }j jV  ,   and { }j jV   forms the MRA in 

2 2( )L ; (2) work out the 
  in 1V  and 



  in 1V , E  , s.t. 

2

,0 ,

2

2

( ), ( ) ,

( ), ( ) 0

( ), ( ) 0

lx x l E l

x x l E l

x x l E l



 





     

  

  

    

    

    

 

The Riesz basis of 1V  is formed by 
2{ ( ), ( ), , }x l x l E l      . The Riesz 

basis of 1V  is from 
2{ ( ), ( ), , }x l x l E l



      . Since 1( )x V  , 1( )x V


  , 

then: 

2

( ) (2 ),l

l

x g x l E   


    

2

( ) (2 ),
l

l

x g x l E
 

  


    

We can get: 

( ) ( ) ( / 2),w M z w E


          (6) 

( ) ( ) ( / 2),w M z w E
 

          (7) 

Where, 

2

1 2( ) ( , ) 0.25 ,l

l

l

M z M z z g z E   


    

2

1 2( ) ( , ) 0.25 ,l

l

l

M z M z z g z E
  




    

 

3. Construction of Dual Wavelet 

The construction of dual wavelet is firstly to work out the dual scale function  , 

which could be obtained when the ( )M z  meets the condition 

(( 1) ) (( 1) ) 1
E

M z M z 



   . Then, the dual wavelet is converted ( )M z  into 

,q E   , s.t. 
2 2( ) ( ) 0.25

E

p z q z 


 . The following sections reports on the 
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establishing of the scaling function and validation of 
1 2

H(z , z ) . The duality of the 

constructed wavelet is presented as well in this section. 

 

3.1 Scaling Function 

For considering a binary polynomial 1 2, ,..., [ ]sf f f K z , if there is a binary 

polynomial 1 2, ,..., [ ]sg g g K z , s.t. 
1

1
s

i i

i

f g


 , where 
2z , [ ]K z  is the 

polynomial circle in complex domain. Based on the Buchberger algorithm for 

getting Groebner basis, the Hilbert Nullstellensatz theorem can get, given an I , 

[ ] {1}I K z  , which is the Greobner basis of I . 

Lemma 3. If 1 2, ,..., [ ]sf f f K z  has no public Zero point in 
2

, 

1 2, ,..., [ ]sg g g K z  exists, s.t. 
1

1
s

i i

i

f g


 . 

Proof. Assume that if , 1, 2,...i s  is sequenced by 1 2z z . Let 1 2{ , ,..., }tG h h h  

denotes the Groebner basis of 1 2, ,..., sI f f f   through Buchberger algorithm. 

Since there is no public Zero point of 1 2, ,..., [ ]sf f f K z  in 
2

, th  is a non-zero 

constant via Hilbert Nullstellensatz theorem. According to the Buchberger 

algorithm, i ih f , 1, 2,...i s . 

Let ih , i s  is the non-zero residue from the division of some Spoly multiple 

polynomial with 1 2 1, ,..., ih h h   through Buchberger algorithm. Thus, we can get: 

1 2

1

1

( , )
i

j

i l l i j

j

h Spoly h h w h




        (8) 

Where, 1 2l l , and 1 2, {1,2,..., 1}l l i  . 
j

iw  is obtained from the division of 

multiple polynomial. As the definition of Spoly, (8) could be converted into 
1

1

i
j

i i j

j

h r h




 . 

Then, we can get: 

1

1

1

1
2

2

1

1

1

...

s
s

s i j

j

s
s

s i j

j

t
t

t i j

j

h r h

h r h

h r h






























        (9) 

Where, [ ], 1,2,... 1, 1,...,j

ir K z j t i s t     . t  is input into th  according to the 

sequence 1 2 1, ,...,t t sh h h   . Then we can get: 
1 1

s s
t t

t j j j j

j j

h e h e f
 

   . th  is a non-zero 

constant. And 
1

1 /
s

t

j j t

j

e f h


 , then /t

j j tg e h .    □ 
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,p E    is a Laurent multiple polynomial. If ,p E    has no zero point in 

2( \{0} ) , ( ),f p denom p E     . Where ( )denom p  presents the denominator 

of p . According to the lemma 3, we can get: 

1 ( )
E E

f g p denom p g    
  

         (10) 

Let 0.25 ( ) ,q denom p g E     , then 
2 2( ) ( ) 0.25

E

p z q z 


 . Thus, 

2

1 2( , ) ( )
E

M z z q z z






 . However, this 1 2( , )M z z  cannot meet the 

,0(( 1) )M 

   and the smoothness is inadequate. This paper improve it by: 

1 2 1 2 1 2

1 2

1 1
( , ) (1 ) (1 ) (1 ) ( , )

8

m m m

m
M z z z z H z z

z z
       (11) 

Where, 1m   , 1 2( , )H z z  is a Laurent multiple polynomial. 

 

 

3.2 Validation of 
1 2

H(z , z )  

As the increasing of m , the smoothness of 1 2( , )M z z  will increase. The 

validation of 
1 2

H(z , z )  should be carried out. Let’s define: 

' ' 2

1 2

1 2

1 1
( ) ( ) (1 ) (1 ) (1 ) ( )

8

m m m

m
E

M z M z z z p z z
z z






       (12) 

If 
' 2 2 ' 2 2 ' 2 2 ' 2 2

(0,0) 1 2 (0,1) 1 2 (1,0) 1 2 (1,1) 1 2{ ( , ), ( , ), ( , ), ( , )}p z z p z z p z z p z z  has no public zero point 

in 
2( \{0} ) , then 

1 2
H(z , z )  exits. 

Lemma 4. Assume ( )F z  is the detailed filter operator of compactly support set 

( )f x , which satisfies ( ) ( ) ( / 2)f w F z f w . Riesz basis could be formed by the 

movement 2{ ( )}
k

f x k


  of , ( )f x . Then, ( )F z  could be expressed as 

2( ) ( )
E

F z f z z


 . Thus, 
2{ ( ), }f z E    has no public zero point in 

2( \{0} ) . 

Proof. Assume there are public zero point 
** /2iwz e  in 

2( \{0} ) , then, 

*(( 1) ) 0,F z E    . 

*z  is the public zero point of (( 1) )F z .  

Let 
2

2( ) ( 2 ) ( 2 )
k

B z f w k f w k 


    

 Riesz basis could be formed by 2{ ( )}
k

f x k


 , then, 
2( ) 0B z  , z  . 

 
2( ) (( 1) ) (( 1) ) (( 1) )

E

B z F z F z B z  



     

 
2*( ) 0B z   

That is conflict with the 
2( ) 0B z  . So, there is no public zero point of 

2{ ( ), }f z E    in 
2( \{0} ) .    □ 
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3.3 Duality of the Constructed Wavelet 

The duality of the constructed wavelet ensure that the Riesz basis is in a closed 

space. If the ( )M z  is dual: 1 2 2 1( , ) ( , )M z z M z z  and 
*

( )M z  satisfies: 

*(( 1) ) (( 1) ) 1
E

M z M z 



   , 
* *

2

1
( ) ( )

E

M z q z
z






 . 

Define 
2 2 * 2 2 * 2 2

1 2 1 2 2 1

1
( , ) ( ( , ) ( , ))

2
q z z q z z q z z  

   and 
*

2 2

1 2

1 1
( ) ( , )

E

M z q z
z z






  

Where 
(0,0) (1,1)

(1,1) (1,0) (0,1)

or

or

 


 


 

 
 

Then, ( )M z  satisfies: (( 1) ) (( 1) ) 1
E

M z M z 



    and 1 2 2 1( , ) ( , )M z z M z z . 

Proof.  

* 2 2 * 2 2

1 2 1 2 2 1 2 12 2

1 2

1 1 1
( , ) ( , ) ( ( , ) ( , )) ( , )

2E E

M z z q z q z z q z z z M z z
z z

 

  
  

      

From 1 2 2 1( , ) ( , )M z z M z z , we can get 
2 2 2 2

1 2 2 1( , ) ( , )
E E

p z z z p z z z 

 
  

  . 

Due to the uniqueness of 1 2( , )M z z , we can get: 

2 2 2 2

1 2 1 2( , ) ( , )p z z p z z 
  

Then, 
* 2 2 * 2 2

1 2 1 2(( 1) ) (( 1) ) 1 ( , ) ( , ) 0.25
E E

M z M z p z z q z z 

 
  

       

2 2 * 2 2

1 2 1 2(( 1) ) (( 1) ) 4 ( , ) ( , )
E E

M z M z p z z q z z 

 
  

   
 

            
2 2 * 2 2 * 2 2

1 2 1 2 2 12 ( , )( ( , ) ( , )) 1
E E

p z z q z z q z z  
  

     □ 

From the above proof, it is observed that the constructed wavelet is dual  

 

4. Applications of the Constructed Dual Wavelet in Image Edge 

Detection 

The application of the constructed dual wavelet is presented by using image edge 

detection for example to demonstrate how the constructed dual wavelet is able to 

outperform the detection comparing with Sobel and Canny approach [12]. The edge of an 

image is a basic characteristics which is very important for image processing. The image 

division is heavily based on the edge detection. 

Due to the gray degree of an image in the edge has great change. The wavelet is 

compactly support set which may have multi-scale analysis ability. Let 
2{ (2 ), },j

jV span x k k j     forms multi-scale analysis in { }j jV  . 

Assume the scale space 1jV   has the dual decomposition : 1j j jV V W   ,where 

jW  is the orthogonal complement space. Using the dual wavelet proposed in this 

paper, we carry out some experiments. The fingerprints with two types feature are 

used for this experimental applications. The proposed dual wavelet manner is 

compared with Sobel and Canny for detecting the edge of the fingerprint images. 
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Let an image expressed as { ( , ) | 0,..., , 0,..., }f m n m M n N  , the wavelet 

transfer with the scale of 2 j
 and it is marked as 

2
( , ),jW f m n E   . For making full 

use of the information obtained from the dual wavelet transfer in certain scale, the 

transfer mod could be given: 
(0,1) (1,1)

2 2 2
( , ) ( , ) ( , )j j ja m n W f m n W f m n   

(1,0) (1,1)

2 2 2
( , ) ( , ) ( , )j j jb m n W f m n W f m n   

The dual wavelet transfer mode of pixel ( , )m n  could be: 

2 2

2 2 2
( , ) | ( , ) | | ( , ) |j j jM f m n a m n b m n  , the corresponding argument is: 

2 2 2
( , ) arg( ( , ) ( , ))j j jA f m n a m n ib m n  .  

                          
(a) Original          (b) Sobel                  (c) Canny                     (d) Dual Wavelet 

     
(e) Original                (f) Sobel                    (g) Canny                     (h) Dual 

Wavelet 

Figure 1. Application Results 

 

Figure 2. Computation Results 
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Each pixel is with 8 near pixel, then, the argument has eight directions. Along 

with the direction obtained from argument normalization, the maximum value of the 

mod from wavelet transfer. The maximum value is able to get the image edge. The 

following figure 1 shows the results from the experiments.  Figure 1 (a) and (e) 

shows two types of fingerprint images for using different edge detection approach to 

get the best processing results. Figure 1 (b) and (f) are the results from using Sobel 

filter. It could be observed that the images are most of the same as the original 

images since the Sobel filter uses 3 3 kernels which are convolved with the 

original image to calculate approximations of the derivatives: one for horizontal 

changes, and one for vertical. 

Figure 1. (c) and (g) are from the results of using Canny edge detector which uses 

a multi-stage algorithm to detect a wide range of edges in images. From the 

application experiments in fingerprint, it is observed that this approach performs not 

well as the Sobel filter. The results look unclear due to the number of parameters 

which takes much more computation time. And the effectiveness of this method is 

lagged too. Figure 1 (d) and (h) are the results using the proposed dual wavelet 

approach, which uses 8 directions to calculate the edge pixel. The results –Figure 1 

and Figure 2 from this application outperforms Sobel and Canny methods in terms 

of computation and edge detection effectiveness. 

 

6. Conclusions 

This paper introduce a construction of a dual wavelet through the compactly 

support set/functions which can form the Riesz basis. Based on the mathematic 

presentation of the construction of the dual wavelet, which is a dual orthogonal with 

scale function and duality, the constructed dual wavelet is used for an application 

testing with fingerprint. The test is for edge detection. The proposed approach is 

compared with Sobel and Canny which are widely used in edge detection. It is 

observed that from the results, the proposed dual wavelet outperforms the Sobel and 

Canny filter in terms of effectiveness and computation time. 

Future research directions could be carried out in two aspects. Firstly, the 

constructed dual wavelet is required to test its freedom degree so that the compactly 

support function is able to form the high dimensional wavelet basis (HDWB). With 

the HDWB, the constructed dual wavelet could be used for high dimensional data 

processing such as Big Data analytics. Secondly, more applications will be carried 

out for examining the feasibility and practicality of the proposed dual wavelet not 

only in image processing with other high dimensional pixels, but also in other 

domains like 3-D object tracking and tracing. 
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