
International Journal of Signal Processing, Image Processing and Pattern Recognition 

Vol.8, No.7 (2015), pp.141-150 

http://dx.doi.org/10.14257/ijsip.2015.8.7.13 

 

 

ISSN: 2005-4254 IJSIP  

Copyright ⓒ 2015 SERSC 

An Accelerated Iterative Hard Thresholding Method for Matrix 

Completion 
 

 

Juan Geng
1
, Xingang Yang

2,3
, Xiuyu Wang

4 
and Laisheng Wang

3
 

1
 College of Mathematics and Statistics, Hebei University of Economics and 

Business 

 050064 Shijiazhuang, China 
2
 Department of Safety Engineering, China Institute of Industrial Relations 

100048 Beijing, China 
3
College of Science, China Agricultural University 

100083 Beijing, China 
4
Department of Information Technology, Shijiazhuang Information Engineering 

Vocational College 

050035 Shijiazhuang, China 

hebeigengjuan@163.com, xingang2005@126.com, wangxy0311@126.com, 

wanglaish@126.com  

Abstract 

The matrix completion problem is to reconstruct an unknown matrix with low-rank or 

approximately low-rank constraints from its partially known samples. Most methods to 

solve the rank minimization problem are relaxing it to the nuclear norm regularized least 

squares problem. Recently, there have been some simple and fast algorithms based on 

hard thresholding operator. In this paper, we propose an accelerated iterative hard 

thresholding method for matrix completion (AIHT). Then we report numerical results for 

solving noiseless and noisy matrix completion problems and image reconstruction. The 

numerical results suggest that significant improvement can be achieved by our algorithm 

compared to the other reported methods, especially in terms of CPU time. 

 

Keywords: Matrix completion, nuclear norm, iterative hard thresholding method, 

image reconstruction 

 

1. Introduction 

The rank minimization problem states that a low rank unknown matrix 1 2n nX R  is 

to be recovered from a linear measurement  b = 𝒜(𝑋). It has led to many impact 

applications, such as, image recovery [1, 2], collaborative prediction [3], pattern 

recognitions [4], etc. One of its special cases is the matrix completion problem, where 

𝒜(X) is a subset of the entries of X . In [5, 6], the authors showed that under suitable 

conditions with very high probability, most 1 2n n  matrices of rank r  can be perfectly 

recovered by solving the convex optimization program: 

 min ‖𝑋‖∗ 

s. t. 𝒫Ω(𝑋) = 𝒫Ω(𝑀),                     (1) 

where 1 2n nM R  is a matrix with 1n  rows and 2n  columns, ‖𝑋‖∗ is the nuclear 

norm of the matrix X , i.e. the sum of its all singular values,   is the set of indices of 

samples and 𝒫Ω is the orthogonal projector onto the span of matrices vanishing outside 

of  .  

                                                             
 Corresponding author. 
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Indeed, the nuclear norm minimization (1) can be viewed as a standard linear SDP 

problem which can be directly solved by interior-point methods and some SDP solvers 

such as SeDuMi [7] and SDPT3 [8]. Since these methods use second-order information, 

the memory requirement for computing descent directions quickly becomes too large as 

the problem size increases. Therefore, some researchers developed a number of efficient 

methods using only first–order information. Cai et al. [9] proposed the singular value 

thresholding (SVT) algorithm, which is essentially a gradient method for solving the dual 

of a regularized approximation of (1). In addition, Toh et al. [10] studied the accelerated 

proximal gradient Lagrangian (APGL) method which solves the Lagrangian version of 

(1), and the proximal point algorithm (PPA) in [11] solving the general nuclear norm 

minimization problem with linear equality and second-order cone constraints. Recently, 

Meka et al. [12] proposed a simple and fast algorithm SVP (Singular Value Projection) 

based on the classical projected gradient algorithm, and this method which directly 

approaches the non-convex rank minimization problem is typically built upon iterative 

hard thresholding. On the basis of the work of Meka, Tanner et al. [13] introduced a 

simple and efficient alternating projection algorithm NIHT (Normalized Iterative Hard 

Thresholding) which uses an adaptive stepsize calculated to be exact for a restricted 

subspace. 

The iterative hard thresholding algorithm is actually a gradient descent method and its 

descent direction is negative gradient direction. The main disadvantage of this method is 

its slow convergence speed. The motivation of this paper is speed up the iterative hard 

thresholding algorithm by combining the current gradient and directions of several 

previous iterative steps and use this new direction as search direction. From the 

computational results on synthetic data and image in-painting, we can see that our 

proposed algorithm can obtain more accuracy solution in less time than SVP and NIHT. 

The remainder of this paper is organized as follows. Section 2 shows the necessary 

notations and preliminaries of matrix completion problem. In section 3 the accelerated 

iterative hard thresholding method for matrix completion (AIHT) is presented. In section 

4 we experimentally compare AIHT to SVP and NIHT algorithms on randomly generated 

matrices and low-rank image recovery problem. Finally, we give a brief summary in 

Section 5. 

 

2. Notations and Preliminaries on Matrix Completion 

Firstly, we briefly introduce some notations used in this paper. As is used before, 
1 2n nX R  is a 1 2n n  matrix of rank r  and ijX  its (i, j)-th entry. u  is a vector and 

iu  its i-th component. The inner product of two vectors u  and v  is denoted by ,u v , 

and the inner product between two matrices is denoted by ,X Y = trace ( )X Y . The 

singular values of X  are ordered as 1 1( ) ( ) ( ) ( ) 0i i rX X X X         . 

X

 denotes the nuclear norm of matrix X  and 

F
X  denotes the Frobenius norm 

defined by 
2

,
F

X X X . Other notation will be introduced as it occurs. 

In this paper, we consider the following problem: 

 min  φ(𝑋) =
1

2
‖𝒜(𝑋) − 𝑏‖2

2 

s.t.   ( ) { : ( ) }X r X rank X r  C .              (2) 

Meka et al. [12] computed the Euclidean projection onto the non-convex set ( )rC  

using singular value decomposition, and proposed a simple and fast algorithm SVP 

(Singular Value Projection) based on the classical projected gradient algorithm. In their 

method, the classical projected gradient descent update iteration is 

                       𝑋𝑘+1 = 𝒫𝑟(𝑋𝑘 − 𝜂𝑘𝒜∗(𝒜(𝑋𝑘) − 𝑏)),              (3) 
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where the 𝒜∗  is the adjoint of the linear operator 𝒜 , and 𝒫𝑟(𝑋)  is called hard 

thresholding operator and defined as: 

                𝒫𝑟(𝑋) ≔ 𝑈Σ𝑟𝑉∗ where 
( , )

( , ) :
0 .

r

i i i r
i i

i r

 
  


              (4) 

In (3), the stepsize k  is selected as a fixed constant. Tanner et al. in [13] presented 

the Normalized IHT (NIHT) algorithm by selecting the stepsize as 

                         𝜇𝑘
𝑢 =

‖𝑃𝑢
𝑘𝒜∗(𝑏−𝒜(𝑋𝑘))‖

𝐹

2

‖𝒜(𝑃𝑢
𝑘𝒜∗(𝑏−𝒜(𝑋𝑘)))‖

𝐹

2,                      (5) 

where *:k
U k kP U U  and kU  is the top r  left singular vectors of kX . Through careful 

observations of the update iterations of SVP and NIHT, we discover that the search 

directions of them are negative gradient direction ∇φ(𝑋) = 𝒜∗(𝒜(𝑋) − 𝑏). However, 

the main drawback of this method is the need for a large amount of iterations, leading to 

its slow rate of convergence. In this paper, we apply the so-called linear semi-iterative 

methods (or polynomial acceleration methods) to the iterative hard thresholding 

algorithm. The new algorithm combines the current gradient and directions of several 

previous iterative steps and uses this new direction as search direction. Hence, it 

accelerates the original iterative hard thresholding algorithm. 

 

3. The Accelerated Iterative Hard Thresholding Method  

In 1951, Landweber [14] suggested to solve the following integral equations 

iteratively, 
1 1( )k k kx x K g Kx     ， 1,2,k  .             (6) 

where K  is the adjoint operator of K , 0x  is a initial guess, and 
1

*0 2 K K


  . 

Later, Hanke [15] considered the linear semi-iterative methods for (6). In the semi-iterative 

method full use is made of all information available at time step k  by adding the respective 

residual to a weighted arithmetic mean of all approximations, 
1 0 1

1, , ( )k k k
k k k kx x x K g Kx         ， 1,2,k  ， 

1, , 1k k k    ， 0k  .                           (7) 

If k   and 2, , 0k k k    , (7) is actually the Landweber’s method. A special 

example of semi-iterative is called  -method [15], the iteration step of which is 
1 1 2 1( ) ( )k k k k k

k kx x x x K g Kx                         (8) 

where 

1 1  ， 1
4 2
4 1





 

4(2 2 1)( 1)

( 2 1)(2 4 1)
k

k k

k k

 


 
   


   

 

( 1)(2 3)(2 2 1)
1

( 2 1)(2 4 1)(2 2 3)
k

k k k

k k k




  
   

 
     

 

                                  1 0x x  .                            (9) 

In this paper, we apply the  -method to the iterative hard thresholding and obtain the 

update iteration, 

𝑋𝑘+1 = 𝒫𝑟(𝑋𝑘 + 𝜇𝑘(𝑋𝑘−𝑋𝑘−1) + 𝜔𝑘𝒜∗(𝑏 − 𝒜(𝑋𝑘))),     (10) 

where 1 0X X   and k , k  are shown in (9). In this iteration, the new search 

direction is the linear combination of the search direction of previous two steps and the 

current gradient. Thus we obtain an accelerated iterative hard thresholding method for 

matrix completion (AIHT). Now, based on the above discussion, we proposed the 

complete AIHT method in Algorithm 1. 
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Algorithm 1. Accelerated iterative hard thresholding method for matrix completion 

(AIHT) 

Input：M ,𝒜,b = 𝒜(𝑀), , r , L  

Initialization：𝑋−1 = 𝑋0 = 𝒫𝑟(𝒜∗(𝑏))  

for 1k   to L  

1）Compute： 1 1  ， 1
4 2
4 1





 

4(2 2 1)( 1)

( 2 1)(2 4 1)
k

k k

k k

 


 
   


   

, 2k   

                  
( 1)(2 3)(2 2 1)

1
( 2 1)(2 4 1)(2 2 3)

k

k k k

k k k




  
   

 
     

, 2k   

2）Compute：𝑋̅𝑘+1 = 𝑋𝑘 + 𝜇𝑘(𝑋𝑘−𝑋𝑘−1) + 𝜔𝑘𝒜∗(𝑏 − 𝒜(𝑋𝑘))  

    3）Compute：𝑋𝑘+1 = 𝒫𝑟(𝑋̅𝑘+1)  

    4）Repeat steps 2）-3）until stooping criterion is valid. 

End for 

Output： 1opt kX X  . 

 

4. Numerical Experiments 

This section is divided into four parts. In the first subsection, we firstly identify a 

proper value of parameter  . In the second subsection, we create random matrices and 

samples sets, and then use our algorithm to solve some examples of the noiseless matrix 

completion problem. In the third subsection, we present some numerical results on noisy 

matrix completion problem. In the last subsection, as an application to image processing, 

we evaluate the effectiveness of our algorithms in low-rank image recovery. We compare 

AIHT algorithm with the original iterative hard thresholding method (SVP) and the 

Normalized IHT (NIHT). All results demonstrate our algorithm performs well and more 

effective. All experiments are performed under MATLAB (Version R2012b), and all the 

computational results are obtained on a desktop computer with a 3.20GHz CPU and 4 GB 

of memory.  

In our trails, we generate random matrices 1n r
LM R  and 2n r

RM R , with i.i.d. 

Guassian entries. Then we set T
L RM M M  and sampled randomly a subset   of m  

entries uniformly. In our tests, we used 1 2n n n  . We use rd  to denote the “degree of 

freedom” defined by (2 )r n r  for a matrix with rank r, and 2SR m n  to denote the 

sampling ratio which means the number of measurements divided by the number of 

entries of the random matrix. Let *X  be the optimal solution produced by our algorithm, 

we use the relative error to measure the quality of *X  to original M , i.e. 

*RelErr
FF

X M M  . 

 

4.1 Parameter   

There is a main parameter   in AIHT algorithm, hence we have to firstly identify a 

proper value of  . For different value of  , we test our algorithm on four scenarios of 

( , , )n r SR  and to see which one is more suitable. Figure 1 compares the relative error and 

CPU time on cases (500,10,0.2) , (500,50,0.4) , (1000,50,0.2)  and (1000,50,0.4) . 

From Figure 1 (a), we can see that the four examples use the relatively short CPU time 

when 8 10  . And from Figure 1 (b), we also can see that when 10 12  , there 

are the best results on the relative errors. This is not a thorough approach to evaluate 
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different   values, however we find there is an overall nice result when   around 10 . 

Therefore, considering both solution quality and speed, 10   appeared to be a good 

choice for our algorithm. 

  
(a) CPU time (s)                      (b)Relative error 

Figure 1. Recovery Results of Four Examples with   between 2 and 22 

(x-axis) by AIHT. (a): CPU Time in Seconds; (b): Relative Error; All Results 
are Averages of 10 Independent Trials 

4.2 Numerical Results for Noiseless Matrix Completion 

In this subsection, we compare the AIHT algorithm with the original IHT method 

(SVP) and the Normalized IHT (NIHT). Firstly, we report the results by the three 

algorithms of using different ranks and percentage of entries. Then, we divide the 

problems into “easy problems” and “hard problems”. By the term “easy problems”, we 

mean problems in which the ratio rm d  is larger than 3, otherwise problems are called 

“hard problems”. We demonstrate that AIHT algorithm outperforms SVP and NIHT on 

both easy problems and hard problems. 

  
(a) CPU time (s)                   (b) Relative error 

Figure 2. Recovery Results of 1000 1000  Matrices with r  between 5 and 

60 (x-axis) by AIHT, SVP and NIHT. We choose uniformly at random 20% of 
the entries of the matrix. (a): CPU time in seconds; (b): relative error. All 

results are averages of 10 independent trials. 
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(a) CPU time (s)                     (b) Relative error 

Figure 3. Recovery results of 1000 1000  matrices with 50r   and SR from 

0.1 to 0.6 by AIHT, SVP and NIHT. (a): CPU time in seconds; (b): relative error. 
All results are averages of 10 independent trials. 

In the following two experiments, we compare three algorithms with the sampling 

ration fixed or the rank fixed. We set 1000n   and a fixed sampling ratio 0.2 in the first 

test (Figure 2), and a fixed rank 50 in the second test (Figure 3). Figure 2 plots how the 

three algorithms perform as the rank increases, and Figure 3 plots how they perform as 

the sampling ratio increases. It is to be expected that, when the sampling ratio is fixed, the 

complexity of the problem increases with the increase of the rank. On the other hand, 

when the rank is fixed, the complexity increases with the decrease of the sampling ratio. 

In terms of the completion speed, AIHT outperforms SVP and NIHT, which can be seen 

from Figure 2 (a) and Figure 3 (a). In Figure 2 (a), the CPU time used by SVP is more 

than 1000 seconds when 35r  , and NIHT is more than 500 seconds when 60r  , 

while our AIHT algorithm can always obtain the satisfied results in 100 seconds. 

Compared with the CPU time, the advantage in accuracy of AIHT is not too obvious. In 

Figure 2 (b), we can observe that NIHT and AIHT perform better than SVP in terms of 

accuracy, and between AIHT and NIHT, NIHT is slightly inferior. In the second 

experiment, the accuracy of the three methods is strikingly similar.  

Table 1. Numerical Results of Easy Problems 

Objectives SVP  NIHT  AIHT 

(n, r, m/dr) T RelErr  T RelErr  T RelErr 

         (200, 5, 6) 7 2.12e-6  2 1.62e-6  1 9.36e-7 

(200, 10, 5) 5 1.69e-6  2 1.26e-6  2 5.33e-7 

(200, 15, 3) 12 2.40e-6  4 2.25e-6  4 5.00e-7 

(500, 10, 6) 12 1.71e-6  3 1.32e-6  1.5 1.20e-6 

(500, 20, 5) 9 1.65e-6  3 1.47e-6  1.4 6.76e-7 

(500, 30, 3) 21 2.12e-6  7 1.97e-6  3 1.36e-6 

(800, 10, 6) 262 1.80e-6  46 1.32e-6  33 1.16e-6 

(800, 30, 5) 203 1.59e-6  59 1.17e-6  33 1.17e-6 

(800, 50, 3) 504 2.05e-6  145 1.88e-6  71 1.22e-6 

(1000, 10, 6) 101 1.79e-6  20 1.68e-6  11 1.40e-6 

(1000, 50, 5) 50 1.56e-6  27 1.41e-6  19 6.43e-7 

(1000, 60, 3) 148 2.02e-6  45 1.87e-6  20 1.75e-6 

Table 2. Numerical Results of Hard Problems 

Objectives SVP  NIHT  AIHT 

(n, r, m/dr) T RelErr  T RelErr  T RelErr 
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(200, 5, 2.5) 125 6.43e-6  21 6.38e-6  6 4.05e-6 

(200, 10, 2) 68 4.44e-6  15 4.39e-6  5 4.00e-6 

(200, 15, 1.7) 86 5.07e-6  22 4.99e-6  7 4.95e-6 

(500, 10, 2.5) 95 3.63e-6  15 3.69e-6  6 3.35e-6 

(500, 30, 2) 74 3.37e-6  18 3.12e-6  7 2.63e-6 

(500, 50, 1.7) 104 3.83e-6  33 3.56e-6  9 2.83e-6 

(800, 10, 2.5) 1609 4.20e-6  265 4.06e-6  144 4.08e-6 

(800, 30, 2) 1861 3.98e-6  379 3.06e-6  160 3.63e-6 

(800, 50, 1.7) 2045 4.62e-6  658 3.92e-6  251 3.90e-6 

(1000, 10, 2.5) 866 3.85e-6  89 3.85e-6  38 3.41e-6 

(1000, 50, 2) 460 3.13e-6  109 2.89e-6  43 2.61e-6 

(1000, 60, 1.7) 2280 3.91e-6  941 3.71e-6  311 3.50e-6 

 

In next two tests, we decide to test the three algorithms on two special types of 

problems --“easy problems” and “hard problems”, which are mentioned in the beginning 

of this subsection. The average results of 10 independent trials are listed in Table 1 and 

Table 2. In the tables, we use “T” to denote the CPU time of every algorithm. 

In Table 1 we report the numerical results of easy problems by AIHT, SVP and NIHT 

for different scenarios of ( , , )rn r m d . As can be seen, in cases (200, 5, 6), (200, 10, 5), 

(200, 15, 3), (200, 20, 5) and (1000, 50, 5), AIHT is able to complete the test matrices 

with higher accuracy than others. In the other cases, the accuracy of the three methods is 

almost the same. In terms of running time, the CPU time of AIHT is far less than the other 

two methods, and the SVP algorithm takes the most time. Similar phenomenon can be 

observed in Table 2, which demonstrates the comparison results on hard problems. The 

accuracy of the three algorithms is similar, and all can be reach to about 610 . However 

the amount of time required by the three methods is dramatically different, and AIHT 

performs better. 

In general, the above simulated examples show that AIHT is superior to the SVP and 

NIHT, since the former has the better reconstruction property and faster speed. 
 

4.3 Numerical Results for Noisy Matrix Completion 

In this subsection, we take the noisy case into consideration. As regards matrix 

completion with noise, Candès et al. [16] gave novel results showing that matrix 

completion is provably accurate even when the few observed entries are corrupted with a 

small amount of noise. We tested this problem by using the AIHT algorithm, and compare 

it with the SVP and NIHT methods. Firstly, we created random matrices and sampled sets 

as above. Then we corrupted the observations ijM  by noise as in the following model: 

ij ij ijB M    , ( , )i j   

where the noise matrix   is an n n  matrix with i.i.d. Gaussian entries and 0   is 

a constant. For our numerical experiments, we take 210   and 

1 ( )
10 F

    . 

Table 3. Numerical Results for Noisy Data ( 210  ) 

Objectives SVP  NIHT  AIHT 

(n, r, m/dr) T RelErr  T RelErr  T RelErr 

         (200, 5, 6) 3 4.50e-3  1.3 4.37e-3  1.2 4.36e-3 

(200, 10, 5) 3 4.84e-3  1.7 4.81e-3  1.5 4.81e-3 

(200, 15, 3) 5 6.61e-3  2.5 6.53e-3  2 6.53e-3 

(500, 10, 6) 29 4.61e-3  13 4.44e-3  10 4.39e-3 
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(500, 20, 5) 29 4.89e-3  26 4.85e-3  12 4.83e-3 

(500, 30, 3) 60 6.86e-3  27 6.73e-3  19 6.64e-3 

(800, 10, 6) 114 4.80e-3  37 4.42e-3  31 4.41e-3 

(800, 30, 5) 100 4.85e-3  54 4.81e-3  40 4.81e-3 

(800, 50, 3) 216 6.76e-3  98 6.64e-3  70 6.63e-3 

(1000, 10, 6) 211 5.08e-3  63 4.48e-3  47 4.46e-3 

(1000, 50, 5) 185 4.77e-3  122 4.76e-3  99 4.76e-3 

(1000, 60, 3) 403 6.77e-3  178 6.66e-3  129 6.66e-3 

 

The stopping criterion is as same as the beginning of this section. The computational 

results from AIHT, SVP and NIHT are shown in Table 3. From there, we see that all the 

three methods work well, as the relative error is just about equal to  . By comparison, it 

is evident that the AIHT performs better than SVP and NIHT as regards CUP time. 

Similarly to the noiseless matrix completion problem, the accuracy of the three algorithms 

is similar, and all can be reach to about 310 . 

 

4.4 Application in Low-rank Image Recovery 
 

     
(a)                         (b)                         (c) 

     
(d)                        (e)                         (f) 

Figure 4. “Boat” image. (a) Original 512 512  image with full rank. (b) 

Original image truncated to be rank 40. (c) Selected randomly 30% samples 
from image (b). (d) Recovered image from (c) by SVP algorithm. (e) 

Recovered image from (c) by NIHT algorithm. (f) Recovered image from 
image (c) by AIHT algorithm. 

As an application to image processing, we evaluate the effectiveness of SVP, NIHT and 

AIHT algorithms in low-rank image recovery. In this experiment, we test the image 

“Boat” that has 512 512  pixels with full rank and has been widely used in many 

simulations, since the image has a nice mixture of details, shading area, flat regions, and 

textures. In Figure 4, we used SVD to the original image (a) and truncated this 

decomposition to get the low rank-40 image (b). Comparing with the original image (a), 

the low-rank image (b) loses some details. We randomly selected 30% samples from 

image (b) and obtain image (c). Then, we recover it by the three algorithms respectively. 
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The recovered image is image (d)-(f). In this test, 1.99rm d  , hence it is a hard 

problem, while the three algorithms all provide good recovery effect, and the relative 

error is about 610 . Table 4 lists the numerical results of the three methods for recovering 

the grayscale image. We can see from the table that although the similar precision by the 

three methods, but the CPU time is different remarkably. AIHT is 6 times faster than the 

NIHT and 13 times than SVP to achieve the same accuracy. From these tests, it is obvious 

that our AIHT algorithm can effectively recover the details of the low-rank image (b) in 

less time.  

Table 4. Numerical Results of the Image “Boat”  

 T RelErr 

SVP 937 7.68e-6 

NIHT 441 8.66e-6 

AIHT 72 3.02e-6 

 

5. Conclusion 

The existing algorithms based on hard thresholding operator in matrix completion are 

mostly gradient descent methods and their descent directions are all negative gradient 

directions. However, the main drawback of these methods is the need for a large amount 

of iterations, leading to its slow rate of convergence. In this paper, we apply the so-called 

linear semi-iterative methods (or polynomial acceleration methods) to the original 

iterative hard thresholding algorithm and obtain the new algorithm namely accelerated 

iterative hard thresholding method (AIHT), which combines the current gradient and 

directions of several previous iterative steps. In numerical comparisons, we 

experimentally compare the proposed method with SVP and NIHT algorithms. Thorough 

simulations, we show that the AIHT algorithm is faster than others in the same 

reconstruction performance. In our future work, we will investigate the case of large-scale 

by some other techniques and test its performance for image reconstruction problems. 

 

Acknowledgements  

This work was supported by the National Natural Science Foundation of China (No. 

11271367).  

 

References 

[1] [1] T. Morita and T. Kanade, “A sequential factorization method for recovering shape and motion from 

image streams”, Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 19, no. 8, (1997), 

pp. 858-867. 

[2] [2] C. Tomasi and T. Kanade, “Shape and motion from image streams under orthography: a factorization 

method”, International Journal of Computer Vision, vol. 9, no. 2, (1992), pp. 137-154. 

[3] [3] J. D. M. Rennie and N. Srebro, “Fast maximum margin matrix factorization for collaborative 

prediction”, Proceedings of the 22nd international conference on Machine, (2005), pp. 713-719. 

[4] [4] L. Eldén, “Matrix Methods in Data Mining and Pattern Recognition (Fundamentals of Algorithms)”, 

SIAM, Philadelphia, PA, USA, (2007) 

[5] [5] B. Recht, M. Fazel and P.A. Parrilo, “Guaranteed minimum-rank solutions of linear matrix equations 

via nuclear norm minimization”, SIAM Review, vol. 52, (2010), pp. 471-501. 

[6] [6] E. J. Candès and B. Recht, “Exact matrix completion via convex optimization”, Foundations of 

Computational Mathematics, vol. 9, no. 6, (2009), pp. 717-772. 

[7] [7] J. F. Sturm, “Using SeDuMi 1.02, a Matlab toolbox for optimization over symmetric cones”, 

Optimization Methods and Software, vol. 11, no. 1, (1999), pp. 625–653. 

[8] [8] R. H. TüTüNCü, K. C. Toh and M. J. Todd, “Solving semidefinite-quadrtic-linear programs using 

SDPT3”, Mathematical Programming, vol. 95, (2003), pp. 189–217. 

[9] [9] J. F. Cai, E. J. Candès and Z. W. Shen, “A singular value thresholding algorithm for matrix 

completion”, SIAM Journal on Optimization, vol. 20, no. 4, (2010), pp. 1956–1982. 



International Journal of Signal Processing, Image Processing and Pattern Recognition 

Vol.8, No.7 (2015) 

 

 

150   Copyright ⓒ 2015 SERSC 

[10] [10] K. C. Toh and S. W. Yun, “An accelerated proximal gradient algorithm for nuclear norm 

regularized least squares problems”, Pacific Journal of Optimization, vol. 6, (2010), pp. 615-640. 

[11] [11] Y. J. Liu, D. F. Sun and K. C. Toh, “An implementable proximal point algorithmic framework for 

nuclear norm minimization”, Mathematical Programming, vol. 133, (2012), pp. 399-436. 

[12] [12] R. Meka, P. Jain and I. S. Dhillon, “Guaranteed rank minimization via singular value projection”, 

Advances in Neural Information Processing Systems, (2010), pp. 937–945. 

[13] [13] J. Tanner and K. Wei, “Normalized iterative hard thresholding for matrix completion”, Proceedings 

available online at http://people.maths.ox.ac.uk/tanner/papers/TaWei_NIHT.pdf , (2013) 

[14] [14] L. Landweber, “An iteration formula for Fredholm integral equations of the first kind”, American 

journal of mathematics, (1951), pp. 615-624. 

[15] [15] M. Hanke, “Accelerated Landweber iterations for the solution of ill-posed equations”, Numerische 

mathematik, vol. 60, no. 1, (1991), pp. 341-373. 

[16] [16] E. J. Candès, Y. Plan, “Matrix completion with noise”, Proc IEEE, vol. 98, (2010), pp. 925-936. 

 

Authors 

 
Juan Geng，She received her B. S. degree from Hebei Normal 

University, China (2003) and M. S. degree from Hebei Normal 

University, China (2006). She received the Ph.D. degree from 

China Agriculture University, Beijing, China, in 2014. Her 

research interests include matrix rank minimization, tensor 

completion and image processing.  

 

 

 
Xingang Yang, He received the B. S. degree from 

Agricultural University of Hebei (2005), China and M. S. degree 

from Capital Normal University, China (2008). Currently, he is a 

Ph.D. student in China Agriculture University, China. His research 

interests include matrix rank minimization, meachine learning and 

image processing. 

 

 

 

Xiuyu Wang, He received the B. S. degree from Hebei 

Normal University, China (2003) and M. S. degree from Hebei 

Normal University, China (2009). Currently, he is a instructor at 

Shijiazhuang Information Engineering Vocational College, 

Hebei, China. His research interests include data mining and 

machine learning. 

 

 

 

Laisheng Wang, He received the B. S. degree from Jilin 

University, China (1982) and M. S. degree from Jilin University, 

China (1989). He received the Ph.D. degree from China 

Agricultural University, Beijing, China, in 2001. Currently, he 

is a professor at the school of science, China Agricultural 

University, Beijing, China. His research interests include data 

mining, image processing and pattern recognition. 
 

 

 

http://people.maths.ox.ac.uk/tanner/papers/TaWei_NIHT.pdf

