
International Journal of Signal Processing, Image Processing and Pattern Recognition

Vol.8, No.7 (2015), pp.141-150

http://dx.doi.org/10.14257/ijsip.2015.8.7.13

ISSN: 2005-4254 IJSIP

Copyright ⓒ 2015 SERSC

An Accelerated Iterative Hard Thresholding Method for Matrix

Completion

Juan Geng
1
, Xingang Yang

2,3
, Xiuyu Wang

4
and Laisheng Wang

3

1
 College of Mathematics and Statistics, Hebei University of Economics and

Business

 050064 Shijiazhuang, China
2
 Department of Safety Engineering, China Institute of Industrial Relations

100048 Beijing, China
3
College of Science, China Agricultural University

100083 Beijing, China
4
Department of Information Technology, Shijiazhuang Information Engineering

Vocational College

050035 Shijiazhuang, China

hebeigengjuan@163.com, xingang2005@126.com, wangxy0311@126.com,

wanglaish@126.com

Abstract

The matrix completion problem is to reconstruct an unknown matrix with low-rank or

approximately low-rank constraints from its partially known samples. Most methods to

solve the rank minimization problem are relaxing it to the nuclear norm regularized least

squares problem. Recently, there have been some simple and fast algorithms based on

hard thresholding operator. In this paper, we propose an accelerated iterative hard

thresholding method for matrix completion (AIHT). Then we report numerical results for

solving noiseless and noisy matrix completion problems and image reconstruction. The

numerical results suggest that significant improvement can be achieved by our algorithm

compared to the other reported methods, especially in terms of CPU time.

Keywords: Matrix completion, nuclear norm, iterative hard thresholding method,

image reconstruction

1. Introduction

The rank minimization problem states that a low rank unknown matrix 1 2n nX R is

to be recovered from a linear measurement b = 𝒜(𝑋). It has led to many impact

applications, such as, image recovery [1, 2], collaborative prediction [3], pattern

recognitions [4], etc. One of its special cases is the matrix completion problem, where

𝒜(X) is a subset of the entries of X . In [5, 6], the authors showed that under suitable

conditions with very high probability, most 1 2n n matrices of rank r can be perfectly

recovered by solving the convex optimization program:

 min ‖𝑋‖∗

s. t. 𝒫Ω(𝑋) = 𝒫Ω(𝑀), (1)

where 1 2n nM R is a matrix with 1n rows and 2n columns, ‖𝑋‖∗ is the nuclear

norm of the matrix X , i.e. the sum of its all singular values,  is the set of indices of

samples and 𝒫Ω is the orthogonal projector onto the span of matrices vanishing outside

of  .

 Corresponding author.

International Journal of Signal Processing, Image Processing and Pattern Recognition

Vol.8, No.7 (2015)

142 Copyright ⓒ 2015 SERSC

Indeed, the nuclear norm minimization (1) can be viewed as a standard linear SDP

problem which can be directly solved by interior-point methods and some SDP solvers

such as SeDuMi [7] and SDPT3 [8]. Since these methods use second-order information,

the memory requirement for computing descent directions quickly becomes too large as

the problem size increases. Therefore, some researchers developed a number of efficient

methods using only first–order information. Cai et al. [9] proposed the singular value

thresholding (SVT) algorithm, which is essentially a gradient method for solving the dual

of a regularized approximation of (1). In addition, Toh et al. [10] studied the accelerated

proximal gradient Lagrangian (APGL) method which solves the Lagrangian version of

(1), and the proximal point algorithm (PPA) in [11] solving the general nuclear norm

minimization problem with linear equality and second-order cone constraints. Recently,

Meka et al. [12] proposed a simple and fast algorithm SVP (Singular Value Projection)

based on the classical projected gradient algorithm, and this method which directly

approaches the non-convex rank minimization problem is typically built upon iterative

hard thresholding. On the basis of the work of Meka, Tanner et al. [13] introduced a

simple and efficient alternating projection algorithm NIHT (Normalized Iterative Hard

Thresholding) which uses an adaptive stepsize calculated to be exact for a restricted

subspace.

The iterative hard thresholding algorithm is actually a gradient descent method and its

descent direction is negative gradient direction. The main disadvantage of this method is

its slow convergence speed. The motivation of this paper is speed up the iterative hard

thresholding algorithm by combining the current gradient and directions of several

previous iterative steps and use this new direction as search direction. From the

computational results on synthetic data and image in-painting, we can see that our

proposed algorithm can obtain more accuracy solution in less time than SVP and NIHT.

The remainder of this paper is organized as follows. Section 2 shows the necessary

notations and preliminaries of matrix completion problem. In section 3 the accelerated

iterative hard thresholding method for matrix completion (AIHT) is presented. In section

4 we experimentally compare AIHT to SVP and NIHT algorithms on randomly generated

matrices and low-rank image recovery problem. Finally, we give a brief summary in

Section 5.

2. Notations and Preliminaries on Matrix Completion

Firstly, we briefly introduce some notations used in this paper. As is used before,
1 2n nX R is a 1 2n n matrix of rank r and ijX its (i, j)-th entry. u is a vector and

iu its i-th component. The inner product of two vectors u and v is denoted by ,u v ,

and the inner product between two matrices is denoted by ,X Y = trace ()X Y . The

singular values of X are ordered as 1 1() () () () 0i i rX X X X         .

X

 denotes the nuclear norm of matrix X and

F
X denotes the Frobenius norm

defined by
2

,
F

X X X . Other notation will be introduced as it occurs.

In this paper, we consider the following problem:

 min φ(𝑋) =
1

2
‖𝒜(𝑋) − 𝑏‖2

2

s.t. () { : () }X r X rank X r  C . (2)

Meka et al. [12] computed the Euclidean projection onto the non-convex set ()rC

using singular value decomposition, and proposed a simple and fast algorithm SVP

(Singular Value Projection) based on the classical projected gradient algorithm. In their

method, the classical projected gradient descent update iteration is

 𝑋𝑘+1 = 𝒫𝑟(𝑋𝑘 − 𝜂𝑘𝒜∗(𝒜(𝑋𝑘) − 𝑏)), (3)

International Journal of Signal Processing, Image Processing and Pattern Recognition

Vol.8, No.7 (2015)

Copyright ⓒ 2015 SERSC 143

where the 𝒜∗ is the adjoint of the linear operator 𝒜 , and 𝒫𝑟(𝑋) is called hard

thresholding operator and defined as:

 𝒫𝑟(𝑋) ≔ 𝑈Σ𝑟𝑉∗ where
(,)

(,) :
0 .

r

i i i r
i i

i r

 
  


 (4)

In (3), the stepsize k is selected as a fixed constant. Tanner et al. in [13] presented

the Normalized IHT (NIHT) algorithm by selecting the stepsize as

 𝜇𝑘
𝑢 =

‖𝑃𝑢
𝑘𝒜∗(𝑏−𝒜(𝑋𝑘))‖

𝐹

2

‖𝒜(𝑃𝑢
𝑘𝒜∗(𝑏−𝒜(𝑋𝑘)))‖

𝐹

2, (5)

where *:k
U k kP U U and kU is the top r left singular vectors of kX . Through careful

observations of the update iterations of SVP and NIHT, we discover that the search

directions of them are negative gradient direction ∇φ(𝑋) = 𝒜∗(𝒜(𝑋) − 𝑏). However,

the main drawback of this method is the need for a large amount of iterations, leading to

its slow rate of convergence. In this paper, we apply the so-called linear semi-iterative

methods (or polynomial acceleration methods) to the iterative hard thresholding

algorithm. The new algorithm combines the current gradient and directions of several

previous iterative steps and uses this new direction as search direction. Hence, it

accelerates the original iterative hard thresholding algorithm.

3. The Accelerated Iterative Hard Thresholding Method

In 1951, Landweber [14] suggested to solve the following integral equations

iteratively,
1 1()k k kx x K g Kx     ， 1,2,k  . (6)

where K is the adjoint operator of K , 0x is a initial guess, and
1

*0 2 K K


  .

Later, Hanke [15] considered the linear semi-iterative methods for (6). In the semi-iterative

method full use is made of all information available at time step k by adding the respective

residual to a weighted arithmetic mean of all approximations,
1 0 1

1, , ()k k k
k k k kx x x K g Kx         ， 1,2,k  ，

1, , 1k k k    ， 0k  . (7)

If k  and 2, , 0k k k    , (7) is actually the Landweber’s method. A special

example of semi-iterative is called  -method [15], the iteration step of which is
1 1 2 1() ()k k k k k

k kx x x x K g Kx          (8)

where

1 1  ， 1
4 2
4 1





4(2 2 1)(1)

(2 1)(2 4 1)
k

k k

k k

 


 
   


   

(1)(2 3)(2 2 1)
1

(2 1)(2 4 1)(2 2 3)
k

k k k

k k k




  
   

 
     

 1 0x x  . (9)

In this paper, we apply the  -method to the iterative hard thresholding and obtain the

update iteration,

𝑋𝑘+1 = 𝒫𝑟(𝑋𝑘 + 𝜇𝑘(𝑋𝑘−𝑋𝑘−1) + 𝜔𝑘𝒜∗(𝑏 − 𝒜(𝑋𝑘))), (10)

where 1 0X X  and k , k are shown in (9). In this iteration, the new search

direction is the linear combination of the search direction of previous two steps and the

current gradient. Thus we obtain an accelerated iterative hard thresholding method for

matrix completion (AIHT). Now, based on the above discussion, we proposed the

complete AIHT method in Algorithm 1.

International Journal of Signal Processing, Image Processing and Pattern Recognition

Vol.8, No.7 (2015)

144 Copyright ⓒ 2015 SERSC

Algorithm 1. Accelerated iterative hard thresholding method for matrix completion

(AIHT)

Input：M ,𝒜,b = 𝒜(𝑀), , r , L

Initialization：𝑋−1 = 𝑋0 = 𝒫𝑟(𝒜∗(𝑏))

for 1k  to L

1）Compute： 1 1  ， 1
4 2
4 1





4(2 2 1)(1)

(2 1)(2 4 1)
k

k k

k k

 


 
   


   

, 2k 

(1)(2 3)(2 2 1)

1
(2 1)(2 4 1)(2 2 3)

k

k k k

k k k




  
   

 
     

, 2k 

2）Compute：𝑋̅𝑘+1 = 𝑋𝑘 + 𝜇𝑘(𝑋𝑘−𝑋𝑘−1) + 𝜔𝑘𝒜∗(𝑏 − 𝒜(𝑋𝑘))

 3）Compute：𝑋𝑘+1 = 𝒫𝑟(𝑋̅𝑘+1)

 4）Repeat steps 2）-3）until stooping criterion is valid.

End for

Output： 1opt kX X  .

4. Numerical Experiments

This section is divided into four parts. In the first subsection, we firstly identify a

proper value of parameter  . In the second subsection, we create random matrices and

samples sets, and then use our algorithm to solve some examples of the noiseless matrix

completion problem. In the third subsection, we present some numerical results on noisy

matrix completion problem. In the last subsection, as an application to image processing,

we evaluate the effectiveness of our algorithms in low-rank image recovery. We compare

AIHT algorithm with the original iterative hard thresholding method (SVP) and the

Normalized IHT (NIHT). All results demonstrate our algorithm performs well and more

effective. All experiments are performed under MATLAB (Version R2012b), and all the

computational results are obtained on a desktop computer with a 3.20GHz CPU and 4 GB

of memory.

In our trails, we generate random matrices 1n r
LM R and 2n r

RM R , with i.i.d.

Guassian entries. Then we set T
L RM M M and sampled randomly a subset  of m

entries uniformly. In our tests, we used 1 2n n n  . We use rd to denote the “degree of

freedom” defined by (2)r n r for a matrix with rank r, and 2SR m n to denote the

sampling ratio which means the number of measurements divided by the number of

entries of the random matrix. Let *X be the optimal solution produced by our algorithm,

we use the relative error to measure the quality of *X to original M , i.e.

*RelErr
FF

X M M  .

4.1 Parameter 

There is a main parameter  in AIHT algorithm, hence we have to firstly identify a

proper value of  . For different value of  , we test our algorithm on four scenarios of

(, ,)n r SR and to see which one is more suitable. Figure 1 compares the relative error and

CPU time on cases (500,10,0.2) , (500,50,0.4) , (1000,50,0.2) and (1000,50,0.4) .

From Figure 1 (a), we can see that the four examples use the relatively short CPU time

when 8 10  . And from Figure 1 (b), we also can see that when 10 12  , there

are the best results on the relative errors. This is not a thorough approach to evaluate

International Journal of Signal Processing, Image Processing and Pattern Recognition

Vol.8, No.7 (2015)

Copyright ⓒ 2015 SERSC 145

different  values, however we find there is an overall nice result when  around 10 .

Therefore, considering both solution quality and speed, 10  appeared to be a good

choice for our algorithm.

(a) CPU time (s) (b)Relative error

Figure 1. Recovery Results of Four Examples with  between 2 and 22

(x-axis) by AIHT. (a): CPU Time in Seconds; (b): Relative Error; All Results
are Averages of 10 Independent Trials

4.2 Numerical Results for Noiseless Matrix Completion

In this subsection, we compare the AIHT algorithm with the original IHT method

(SVP) and the Normalized IHT (NIHT). Firstly, we report the results by the three

algorithms of using different ranks and percentage of entries. Then, we divide the

problems into “easy problems” and “hard problems”. By the term “easy problems”, we

mean problems in which the ratio rm d is larger than 3, otherwise problems are called

“hard problems”. We demonstrate that AIHT algorithm outperforms SVP and NIHT on

both easy problems and hard problems.

(a) CPU time (s) (b) Relative error

Figure 2. Recovery Results of 1000 1000 Matrices with r between 5 and

60 (x-axis) by AIHT, SVP and NIHT. We choose uniformly at random 20% of
the entries of the matrix. (a): CPU time in seconds; (b): relative error. All

results are averages of 10 independent trials.

International Journal of Signal Processing, Image Processing and Pattern Recognition

Vol.8, No.7 (2015)

146 Copyright ⓒ 2015 SERSC

(a) CPU time (s) (b) Relative error

Figure 3. Recovery results of 1000 1000 matrices with 50r  and SR from

0.1 to 0.6 by AIHT, SVP and NIHT. (a): CPU time in seconds; (b): relative error.
All results are averages of 10 independent trials.

In the following two experiments, we compare three algorithms with the sampling

ration fixed or the rank fixed. We set 1000n  and a fixed sampling ratio 0.2 in the first

test (Figure 2), and a fixed rank 50 in the second test (Figure 3). Figure 2 plots how the

three algorithms perform as the rank increases, and Figure 3 plots how they perform as

the sampling ratio increases. It is to be expected that, when the sampling ratio is fixed, the

complexity of the problem increases with the increase of the rank. On the other hand,

when the rank is fixed, the complexity increases with the decrease of the sampling ratio.

In terms of the completion speed, AIHT outperforms SVP and NIHT, which can be seen

from Figure 2 (a) and Figure 3 (a). In Figure 2 (a), the CPU time used by SVP is more

than 1000 seconds when 35r  , and NIHT is more than 500 seconds when 60r  ,

while our AIHT algorithm can always obtain the satisfied results in 100 seconds.

Compared with the CPU time, the advantage in accuracy of AIHT is not too obvious. In

Figure 2 (b), we can observe that NIHT and AIHT perform better than SVP in terms of

accuracy, and between AIHT and NIHT, NIHT is slightly inferior. In the second

experiment, the accuracy of the three methods is strikingly similar.

Table 1. Numerical Results of Easy Problems

Objectives SVP NIHT AIHT

(n, r, m/dr) T RelErr T RelErr T RelErr

 (200, 5, 6) 7 2.12e-6 2 1.62e-6 1 9.36e-7

(200, 10, 5) 5 1.69e-6 2 1.26e-6 2 5.33e-7

(200, 15, 3) 12 2.40e-6 4 2.25e-6 4 5.00e-7

(500, 10, 6) 12 1.71e-6 3 1.32e-6 1.5 1.20e-6

(500, 20, 5) 9 1.65e-6 3 1.47e-6 1.4 6.76e-7

(500, 30, 3) 21 2.12e-6 7 1.97e-6 3 1.36e-6

(800, 10, 6) 262 1.80e-6 46 1.32e-6 33 1.16e-6

(800, 30, 5) 203 1.59e-6 59 1.17e-6 33 1.17e-6

(800, 50, 3) 504 2.05e-6 145 1.88e-6 71 1.22e-6

(1000, 10, 6) 101 1.79e-6 20 1.68e-6 11 1.40e-6

(1000, 50, 5) 50 1.56e-6 27 1.41e-6 19 6.43e-7

(1000, 60, 3) 148 2.02e-6 45 1.87e-6 20 1.75e-6

Table 2. Numerical Results of Hard Problems

Objectives SVP NIHT AIHT

(n, r, m/dr) T RelErr T RelErr T RelErr

International Journal of Signal Processing, Image Processing and Pattern Recognition

Vol.8, No.7 (2015)

Copyright ⓒ 2015 SERSC 147

(200, 5, 2.5) 125 6.43e-6 21 6.38e-6 6 4.05e-6

(200, 10, 2) 68 4.44e-6 15 4.39e-6 5 4.00e-6

(200, 15, 1.7) 86 5.07e-6 22 4.99e-6 7 4.95e-6

(500, 10, 2.5) 95 3.63e-6 15 3.69e-6 6 3.35e-6

(500, 30, 2) 74 3.37e-6 18 3.12e-6 7 2.63e-6

(500, 50, 1.7) 104 3.83e-6 33 3.56e-6 9 2.83e-6

(800, 10, 2.5) 1609 4.20e-6 265 4.06e-6 144 4.08e-6

(800, 30, 2) 1861 3.98e-6 379 3.06e-6 160 3.63e-6

(800, 50, 1.7) 2045 4.62e-6 658 3.92e-6 251 3.90e-6

(1000, 10, 2.5) 866 3.85e-6 89 3.85e-6 38 3.41e-6

(1000, 50, 2) 460 3.13e-6 109 2.89e-6 43 2.61e-6

(1000, 60, 1.7) 2280 3.91e-6 941 3.71e-6 311 3.50e-6

In next two tests, we decide to test the three algorithms on two special types of

problems --“easy problems” and “hard problems”, which are mentioned in the beginning

of this subsection. The average results of 10 independent trials are listed in Table 1 and

Table 2. In the tables, we use “T” to denote the CPU time of every algorithm.

In Table 1 we report the numerical results of easy problems by AIHT, SVP and NIHT

for different scenarios of (, ,)rn r m d . As can be seen, in cases (200, 5, 6), (200, 10, 5),

(200, 15, 3), (200, 20, 5) and (1000, 50, 5), AIHT is able to complete the test matrices

with higher accuracy than others. In the other cases, the accuracy of the three methods is

almost the same. In terms of running time, the CPU time of AIHT is far less than the other

two methods, and the SVP algorithm takes the most time. Similar phenomenon can be

observed in Table 2, which demonstrates the comparison results on hard problems. The

accuracy of the three algorithms is similar, and all can be reach to about 610 . However

the amount of time required by the three methods is dramatically different, and AIHT

performs better.

In general, the above simulated examples show that AIHT is superior to the SVP and

NIHT, since the former has the better reconstruction property and faster speed.

4.3 Numerical Results for Noisy Matrix Completion

In this subsection, we take the noisy case into consideration. As regards matrix

completion with noise, Candès et al. [16] gave novel results showing that matrix

completion is provably accurate even when the few observed entries are corrupted with a

small amount of noise. We tested this problem by using the AIHT algorithm, and compare

it with the SVP and NIHT methods. Firstly, we created random matrices and sampled sets

as above. Then we corrupted the observations ijM by noise as in the following model:

ij ij ijB M    , (,)i j 

where the noise matrix  is an n n matrix with i.i.d. Gaussian entries and 0  is

a constant. For our numerical experiments, we take 210  and

1 ()
10 F

    .

Table 3. Numerical Results for Noisy Data (210 )

Objectives SVP NIHT AIHT

(n, r, m/dr) T RelErr T RelErr T RelErr

 (200, 5, 6) 3 4.50e-3 1.3 4.37e-3 1.2 4.36e-3

(200, 10, 5) 3 4.84e-3 1.7 4.81e-3 1.5 4.81e-3

(200, 15, 3) 5 6.61e-3 2.5 6.53e-3 2 6.53e-3

(500, 10, 6) 29 4.61e-3 13 4.44e-3 10 4.39e-3

International Journal of Signal Processing, Image Processing and Pattern Recognition

Vol.8, No.7 (2015)

148 Copyright ⓒ 2015 SERSC

(500, 20, 5) 29 4.89e-3 26 4.85e-3 12 4.83e-3

(500, 30, 3) 60 6.86e-3 27 6.73e-3 19 6.64e-3

(800, 10, 6) 114 4.80e-3 37 4.42e-3 31 4.41e-3

(800, 30, 5) 100 4.85e-3 54 4.81e-3 40 4.81e-3

(800, 50, 3) 216 6.76e-3 98 6.64e-3 70 6.63e-3

(1000, 10, 6) 211 5.08e-3 63 4.48e-3 47 4.46e-3

(1000, 50, 5) 185 4.77e-3 122 4.76e-3 99 4.76e-3

(1000, 60, 3) 403 6.77e-3 178 6.66e-3 129 6.66e-3

The stopping criterion is as same as the beginning of this section. The computational

results from AIHT, SVP and NIHT are shown in Table 3. From there, we see that all the

three methods work well, as the relative error is just about equal to  . By comparison, it

is evident that the AIHT performs better than SVP and NIHT as regards CUP time.

Similarly to the noiseless matrix completion problem, the accuracy of the three algorithms

is similar, and all can be reach to about 310 .

4.4 Application in Low-rank Image Recovery

(a) (b) (c)

(d) (e) (f)

Figure 4. “Boat” image. (a) Original 512 512 image with full rank. (b)

Original image truncated to be rank 40. (c) Selected randomly 30% samples
from image (b). (d) Recovered image from (c) by SVP algorithm. (e)

Recovered image from (c) by NIHT algorithm. (f) Recovered image from
image (c) by AIHT algorithm.

As an application to image processing, we evaluate the effectiveness of SVP, NIHT and

AIHT algorithms in low-rank image recovery. In this experiment, we test the image

“Boat” that has 512 512 pixels with full rank and has been widely used in many

simulations, since the image has a nice mixture of details, shading area, flat regions, and

textures. In Figure 4, we used SVD to the original image (a) and truncated this

decomposition to get the low rank-40 image (b). Comparing with the original image (a),

the low-rank image (b) loses some details. We randomly selected 30% samples from

image (b) and obtain image (c). Then, we recover it by the three algorithms respectively.

International Journal of Signal Processing, Image Processing and Pattern Recognition

Vol.8, No.7 (2015)

Copyright ⓒ 2015 SERSC 149

The recovered image is image (d)-(f). In this test, 1.99rm d  , hence it is a hard

problem, while the three algorithms all provide good recovery effect, and the relative

error is about 610 . Table 4 lists the numerical results of the three methods for recovering

the grayscale image. We can see from the table that although the similar precision by the

three methods, but the CPU time is different remarkably. AIHT is 6 times faster than the

NIHT and 13 times than SVP to achieve the same accuracy. From these tests, it is obvious

that our AIHT algorithm can effectively recover the details of the low-rank image (b) in

less time.

Table 4. Numerical Results of the Image “Boat”

 T RelErr

SVP 937 7.68e-6

NIHT 441 8.66e-6

AIHT 72 3.02e-6

5. Conclusion

The existing algorithms based on hard thresholding operator in matrix completion are

mostly gradient descent methods and their descent directions are all negative gradient

directions. However, the main drawback of these methods is the need for a large amount

of iterations, leading to its slow rate of convergence. In this paper, we apply the so-called

linear semi-iterative methods (or polynomial acceleration methods) to the original

iterative hard thresholding algorithm and obtain the new algorithm namely accelerated

iterative hard thresholding method (AIHT), which combines the current gradient and

directions of several previous iterative steps. In numerical comparisons, we

experimentally compare the proposed method with SVP and NIHT algorithms. Thorough

simulations, we show that the AIHT algorithm is faster than others in the same

reconstruction performance. In our future work, we will investigate the case of large-scale

by some other techniques and test its performance for image reconstruction problems.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No.

11271367).

References

[1] [1] T. Morita and T. Kanade, “A sequential factorization method for recovering shape and motion from

image streams”, Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 19, no. 8, (1997),

pp. 858-867.

[2] [2] C. Tomasi and T. Kanade, “Shape and motion from image streams under orthography: a factorization

method”, International Journal of Computer Vision, vol. 9, no. 2, (1992), pp. 137-154.

[3] [3] J. D. M. Rennie and N. Srebro, “Fast maximum margin matrix factorization for collaborative

prediction”, Proceedings of the 22nd international conference on Machine, (2005), pp. 713-719.

[4] [4] L. Eldén, “Matrix Methods in Data Mining and Pattern Recognition (Fundamentals of Algorithms)”,

SIAM, Philadelphia, PA, USA, (2007)

[5] [5] B. Recht, M. Fazel and P.A. Parrilo, “Guaranteed minimum-rank solutions of linear matrix equations

via nuclear norm minimization”, SIAM Review, vol. 52, (2010), pp. 471-501.

[6] [6] E. J. Candès and B. Recht, “Exact matrix completion via convex optimization”, Foundations of

Computational Mathematics, vol. 9, no. 6, (2009), pp. 717-772.

[7] [7] J. F. Sturm, “Using SeDuMi 1.02, a Matlab toolbox for optimization over symmetric cones”,

Optimization Methods and Software, vol. 11, no. 1, (1999), pp. 625–653.

[8] [8] R. H. TüTüNCü, K. C. Toh and M. J. Todd, “Solving semidefinite-quadrtic-linear programs using

SDPT3”, Mathematical Programming, vol. 95, (2003), pp. 189–217.

[9] [9] J. F. Cai, E. J. Candès and Z. W. Shen, “A singular value thresholding algorithm for matrix

completion”, SIAM Journal on Optimization, vol. 20, no. 4, (2010), pp. 1956–1982.

International Journal of Signal Processing, Image Processing and Pattern Recognition

Vol.8, No.7 (2015)

150 Copyright ⓒ 2015 SERSC

[10] [10] K. C. Toh and S. W. Yun, “An accelerated proximal gradient algorithm for nuclear norm

regularized least squares problems”, Pacific Journal of Optimization, vol. 6, (2010), pp. 615-640.

[11] [11] Y. J. Liu, D. F. Sun and K. C. Toh, “An implementable proximal point algorithmic framework for

nuclear norm minimization”, Mathematical Programming, vol. 133, (2012), pp. 399-436.

[12] [12] R. Meka, P. Jain and I. S. Dhillon, “Guaranteed rank minimization via singular value projection”,

Advances in Neural Information Processing Systems, (2010), pp. 937–945.

[13] [13] J. Tanner and K. Wei, “Normalized iterative hard thresholding for matrix completion”, Proceedings

available online at http://people.maths.ox.ac.uk/tanner/papers/TaWei_NIHT.pdf , (2013)

[14] [14] L. Landweber, “An iteration formula for Fredholm integral equations of the first kind”, American

journal of mathematics, (1951), pp. 615-624.

[15] [15] M. Hanke, “Accelerated Landweber iterations for the solution of ill-posed equations”, Numerische

mathematik, vol. 60, no. 1, (1991), pp. 341-373.

[16] [16] E. J. Candès, Y. Plan, “Matrix completion with noise”, Proc IEEE, vol. 98, (2010), pp. 925-936.

Authors

Juan Geng，She received her B. S. degree from Hebei Normal

University, China (2003) and M. S. degree from Hebei Normal

University, China (2006). She received the Ph.D. degree from

China Agriculture University, Beijing, China, in 2014. Her

research interests include matrix rank minimization, tensor

completion and image processing.

Xingang Yang, He received the B. S. degree from

Agricultural University of Hebei (2005), China and M. S. degree

from Capital Normal University, China (2008). Currently, he is a

Ph.D. student in China Agriculture University, China. His research

interests include matrix rank minimization, meachine learning and

image processing.

Xiuyu Wang, He received the B. S. degree from Hebei

Normal University, China (2003) and M. S. degree from Hebei

Normal University, China (2009). Currently, he is a instructor at

Shijiazhuang Information Engineering Vocational College,

Hebei, China. His research interests include data mining and

machine learning.

Laisheng Wang, He received the B. S. degree from Jilin

University, China (1982) and M. S. degree from Jilin University,

China (1989). He received the Ph.D. degree from China

Agricultural University, Beijing, China, in 2001. Currently, he

is a professor at the school of science, China Agricultural

University, Beijing, China. His research interests include data

mining, image processing and pattern recognition.

http://people.maths.ox.ac.uk/tanner/papers/TaWei_NIHT.pdf

