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Abstract 

Complementary filters coupled with MEMS IMU are preferred in applications where 

computational simplicity, low power and low cost is of prime importance. Such 

algorithms are equipped with fixed filter’s gain, however improvements can be realized 

by changing the filter’s gain as per the dynamic situation experienced by the platform. 

This paper is intended to evaluate the performance of conventional fixed gain 

complementary algorithm against adoptive gain complementary filter for attitude 

estimation using MEMS IMU as a test subject. As only IMU (Inertial Measurement Unit) 

has been exploited without using any aided sensory system, so the mandate is limited to 

evaluate performance of these algorithms on the basis of Euler angles roll and pitch 

estimation. Significant performance improvement is observed by varying filter gain in 

accordance with dynamic situation experienced by the system. 
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1. Introduction 

Complementary algorithms and the likes are the results of the decades-long 

research in the pursuit for computationally simple algorithms. Attitude estimators 

can be categorically considered computationally simple with excellent performance 

in most applications. They are efficient, robust and can be applied to complex 

algorithms as well, however each category has its pros and cons. The 

computationally simple algorithm’s performance, in which complementary filters 

fall, degrades if some pre-requisite conditions are not met. Complementary filtering 

searches and explores redundancy of the sensor in order to successfully discard 

measurement disturbances in complementary frequency regions, without deforming 

the signal. It is interesting that complementary filters do not consider noise 

stochastic description which results in slight loss of performance. However it is 

favorable in the presence of irregular measures that arise out of the expected 

variance [1]. The second class is computationally expensive solution but so far it is 

only the de-facto standard for AHRS system. However this category, apart from 

computational complexity, may not be employed robustly and may exhibit linearity 

error problems. Kalman filters and the likes fall in this category. The application of 

these estimators ranges from underwater, aerial and on-surface applications 

involving UUVs, ROVs, AUVs navigation systems, medical fields, robots and 

robotic appliances, gaming applications and augmented reality system to industrial 

control systems [2-4]. The choice of filtering architectures for Inertial Navigation 

System (INS) can be found in the literature ranging from classical methodologies, to 
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lately proposed algorithms [5, 6]. Extended Kalman Filter (EKF) is the most well 

known and widely used filtering algorithms [6-10], and the Unscented Kalman Filter 

(UKF) has been there as an alternative to the EKF [6], [11, 12], which numerically 

approximates the mean and covariance of the state estimate parameterized in 

Euclidean spaces. Recently, there has been growing interest in the design of 

nonlinear observers that are tentatively stable and produce explicit regions of 

attraction [13-18]. So far, a number of complementary filters have been worked out 

and successfully implemented. Initially, in some limited applications, linear 

complementary filters have been proposed [9]. Next, the nonlinear complementary 

filters with fixed gain have been designed and developed for a number of 

applications [10-14]. Nevertheless, these schemes fail when the system undergoes 

high dynamics and some pre-requisite conditions like steady state conditions are not 

satisfied. Complementary filters with switching gain have therefore been developed 

to alleviate the fixed gain complementary filter’s restrictions [15-18]. 

 For attitude estimation problem, both internal and external sensory sys tems have 

been in use. For a complete 3-D attitude and orientation estimation, both classes of 

these sensors are needed. MEMS based INS system is evolving technology having 

inherent noise issues with the benefits of low cost and low power. With MEMS IMU 

alone, complementary filters estimates attitude in terms of Euler roll and pitch 

angles as biases are effectively diminished by accelerometers. However, yaw 

estimation is not observable to accelerometer. A complete AHRS (Attitude Heading 

& Reference System) uses IMU along with Magnetometer or external sensory 

system such as GPS, APS etc [18-24].  

The research presented in this paper is based on miniature sized MEMS MPU 

6050. We propose a complementary filter with time varying gain in comparison with 

the conventional complementary filter having fixed gain. The performance of the 

two attitude estimators are compared against the accurate but computationally 

complex Unscented Kalman filter. The paper has been arranged in the following 

mode. The paper consists of four sections followed by a conclusion. Section 2 

presents a general overview regarding complementary algorithm and MEMS IMU. 

Section 3 provides details of the three filters: the conventional complementary filter 

(CCF), modified gain complementary filter (MGCF) and unscented Kalman filter 

(UKF). Section 4 presents simulation result for roll and pitch estimated by the three 

schemes along with the associated error for each scheme followed by experimental 

results with MEMS MPU. Finally, the conclusion is provided based on the 

simulation and experimental results.   

 

2. Complementary Filter and MEMS IMU Modeling 
 
2.1. Complementary Filter 

A Complementary Filter (CF) in the very basic form of filters which falls under the 

category of computationally less expensive and acceptably accurate sensor fusion method. 

It can be applied to a number of orientation applications. Both linear and nonlinear 

implementations of the filters exist and have been extensively researched. For IMU case, 

estimations based on low frequency response of gyro are not reliable as the bias drift issue 

makes it impractical. On the other hand, estimations based on low frequency 

measurements from accelerometer are highly reliable. The reverse is not true for 

accelerometer. The CF combines the high-pass filtered estimations from gyro 

measurements with low pass filtered estimations from accelerometer measurements to 

alleviate the bias issue as depicted in fig.1. A number of variants of CF exist, fixed-gain 

and recently variable/switched gain CF are being the most significant. 
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Figure 1. Basic Complementary Filter 

2.2. Attitude Estimation from Gyro 

MEMS IMU is fitted with tri-axial gyros, tri-axial accelerometers and is a miniature 

size sensor package with the benefits of low cost and low power. Using either gyro or 

accelerometer alone for attitude estimation does not suffice due to gyro bias and 

accelerometer inability to distinguish between gravity, rotational and translation 

acceleration. Sensor fusion algorithms are used to eliminate this problem by either 

combining the estimations based on reliable low frequency accelerometer output with 

estimations from high frequency gyro’s components (complementary filters methodology) 

or by de-biasing gyro estimations from accelerometer’s components as in Kalman filter 

approach.    

Euler angles roll, pitch and yaw defining the orientation can be determined from tri-

axis gyros measuring rotation rate. The measurement of MEMS gyro can be modeled as: 
b b

gyro n v    
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Where, n


 and v


 represent the gyro noise and the associated bias respectively. 

The relationship between rate of Euler angle and gyro output is governed by: 

 

1 sin tan cos tan

0 cos sin

0 sin / cos cos / cos

x

y

z

    

   

     

 

    
    
    
        

                                     (2) 

 

Where, ,  ,     represent roll, pitch and yaw in radian respectively. 

If the gyroscope were free from bias, simple integration of Eq.2 would make it possible 

to estimate attitude from gyroscope alone. However, as shown in Fig.2, the estimates 

quickly drift in short duration if only gyroscope is used without any additional sensors. 
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Figure 2. Attitude Estimation based on Gyroscope Data Only 

2.3. Attitude Estimation from Accelerometer 

Accelerometer is used to measure gravity along with rotational and translational 

acceleration. Euler roll and pitch angles are computed by using accelerometer gravity 

vector measurement. However, yaw is not observable in this case. Therefore some 

additional sensory system is used. The tri-Accelerometers measure specific force as 

folows:  
b

accel a aa a n v    
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                                        (3) 

Here, 
an  and 

av  represent noise and bias of accelerometer respectively. Bias in 

accelerometer case is negligibly small. The specific force measured by accelerometers 

constitutes linear/translational, centripetal/rotational acceleration along with gravity. 

MEMS tri-axial accelerometer measuring gravity, linear and rotational acceleration can be 

modeled as: 
b b b b ba V V g                                                         (4) 

Here, 
b

V  is translational acceleration w.r.t body coordinates, 
b bV  is rotational 

acceleration and 
bg is gravity in body coordinates. The problem with accelerometer is; it 

cannot distinguish between these vectors. In situations where linear and rotational 

accelerations can be assumed negligible, the specific force measured by accelerometer 

can be model as:   
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Roll and pitch Euler angles can be estimated from accelerometers by employing the 

fact that the predominant specific force measured by accelerometer is the gravity vector. 

The roll and pitch estimation based on Eq.5 can be written as: 
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It should be noted that this equation assume zero linear and rotational acceleration and 

so cannot be employed in situations involving high dynamic. Roll angles estimated from 

accelerometers data only are depicted in Fig3 using Eq.6. However, as can be observed, 

the results are very noisy and may not be acceptable in term of accuracy in many 

situations.  

 

  
(a) (b) 

Figure 3. (a) Attitude Estimation based on Accelerometer Data Only, (b) 
Zoom-in 

A phenomenon called gimbal lock or singularity problem occurs as soon as pitch 

reaches in vicinity of 90 degrees. Quaternion based algorithms are preferred to avoid this 

situation. 

 

3. Attitude Estimating Algorithms 

Orientation estimating algorithms recursively collect inputs from measuring 

devices/sensors remove the errors and produce a reliable attitude estimate. The measuring 

sensors may be either internal (IMU etc) or external or aided (GPS etc) whereas the data 

fusion algorithm may be computationally simple (complementary filter) or complex 

(Kalman filter). High accuracy comes with price but there are many applications where 

the less expensive MEMS sensors and computationally inexpensive algorithms can be 

employed efficiently.  

 
3.1. Conventional Complementary Filter (CCF) 

As demonstrated by Eq.2 and Eq.6, attitude can be determined from gyro as well as 

Accelerometers. Where gyro inherits the bias issue (low frequency), accelerometer low 

frequency response is reliable but not at the high frequencies. All complementary filters, 

in one form or the other, fuse the two attitude estimation in such a fashion that low pass 

filtering is performed on accelerometer attitude estimation where as high frequency 

filtering for gyros there by removing the errors and produce a reliable estimate. The 

conventional fixed gain complementary filters usually employ quaternion representation, 
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measure inertial direction measurement ( )v from accelerometer data and fuses with gyro 

angular rate ( )  in the following equation: 

ˆ b b

p I
K e K e                                                                 (7) 
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Here, 
b

  is the angular velocity given by gyro (in body coordinates), 𝐾𝑝 ,  𝐾𝑖  are 

proportional and integral gains respectively-the adjustable and tuning parameters, v  is 

the measured inertial direction based on accelerometer data, v̂  is the estimated inertial 

direction, e is the error between the two whereas q̂ is the estimated orientation expressed 

in quaternion and  is a quaternion product operator.  

 
3.2. Modified Gain Complementary Filter (MGCF) 

Modified gain complementary filter is an extension of conventional fixed gain 

complementary filter where the filter gain changes according to system dynamics. The 

proportional and integral gain in term of resonant frequency and damping factor can be 

written as: 
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Figure 4. Modified Gain Complementary Filter (MGCF)  
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The damping ratio determines the overshoot at cutoff frequency and should be selected 

such that to ensure smooth frequency response as well as fast bias estimation. Usually, 

damping ratio 1   is fixed and so proportional and integral gain can be tuned on by using 

cutoff frequency. Selecting different cutoff frequencies for different dynamics varies the 

filter gain and hence enables the filter to cope with different situations. To measure the 

dynamics, accelerometer and/or gyro measurement can be exploited. A dimensionless 

parameter   can be employed in the following manner: 
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Where ( )ka is accelerometer measurement in unit of g. In general, the higher the value 

of  , the higher is the vibration and dynamic situation and vice versa. The whole idea is 

summarized in Figure 4. 

 
3.3. Unscented Kalman Filter (UKF) 

 Kalman filter is still the most employed and de facto standard attitude estimator inspite 

of computational complexity and linearity problem. The states for UKF are defined as: 
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  and   are roll and pitch in radian respectively. The process and measurement 

model can be written as: 
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Where  , ( )w t , accela and ( )r t  are gyro rotation rate in radian per second, white 

Gaussian process noise, accelerometer measured specific force in unit of g and 

measurement noise respectively.  

 

 

 



International Journal of Signal Processing, Image Processing and Pattern Recognition 

Vol.8, No.7 (2015) 

 

 

104   Copyright ⓒ 2015 SERSC 

4. Results and Discussion 
 
4.1. Simulated Data Results 

Matlab simulated data was used mimicking low and high dynamic situations. Damping 

factor was fixed at 2 for both CCF and MGCF. Based on Eq. 13, MGCF gain was tuned 

for different dynamic situation as: 

a. Zero dynamics/acceleration: For ( ) 0, 01,k  zero linear and rotational acceleration 

assumption per Eq. 5 is fully valid thereby trusting fully on accelerometer measuring 

gravity; cut off frequency in this case is assumed 0.1 rad/s.  

b. Low dynamics: For 0, 01 ( ) 0, 25,k   accelerometer estimation is trusted less. To 

ensure this, cutoff frequency is switched to 0.07 rad/s (which controls filter gain by 

Eq. 12) 

c. Medium dynamics:  Cut off frequency is 0.035 for 0, 25 ( ) 0,35.k   

d. High dynamics: cut off frequency is zero when ( ) 0,35.k   

  
(a) (b) 

Figure 5. a. Simulation of Euler Roll Angle Determination UKF, CCF and 
MGCF, b Close View 

Figures 5, 6 depict low acceleration roll and pitch estimation using CCF, MGCF and 

UKF in comparison with reference. It is obvious from these results that for a system under 

dynamic state, MGCF is more accurate in comparison with CCF with the cost of a little 

computational burden. Table1 summarizes RMSE in roll and pitch estimation for the three 

estimators which further verify this conclusion. Also, the three algorithms were tested for 

computational complexity based on execution time. Taking execution time of CCF as one 

unit, it was observed that MGCF takes 1.37 units and UKF takes 6.95 units which further 

demonstrate the efficiency of VGCF.  
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(a) (b) 

Figure 6. (a) Simulation of Euler Pitch Angle Determination by UKF, CCF 
and MGCF, (b) Close View 

  
(a) (b) 

Figure 7.  (a) Error in Roll Determination, (b) Close View 

  
(a) (b) 

Fig. 8 (a) Error in Pitch Determination, (b) Close View 
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Table 1. Root Mean Square Error (RMSE) for CCF, MGCF and UKF 

Algorithm       RMSE roll (deg) RMSE pitch (deg) Simulated Data 

CCF 1.84 2.03  

Moderate 

dynamic system 

MGCF  1.07 1.32 

UKF 0.35 0.41 

 

4.2. Experimental Data Result 

Experiments were carried out using MEMS MPU 6050 by mimicking low, medium 

and high dynamic situations. The measurements thus obtained were subjected to all the 

aforementioned algorithms for comparison. It was noted that for system under low and 

medium dynamics, the model and algorithms perform efficiently accurate; with MGCF 

closely following UKF. Damping factor was fixed to a value of 2 and cutoff frequency 

was selected 0.05 for CCF. The MGCF filter gain for low and medium dynamic test was 

tuned from cutoff frequency as: 

a. Cut-off frequency is 0.1 rad/s for ( ) 0, 025k   

b. Cut-off frequency is 0.07 rad/s for 0,025 ( ) 0,035.k   

c. Cut-off frequency is 0.05 rad/s for 0,035 ( ) 0,05.k   

d. Cut-off frequency is 0 for ( ) 0, 05.k   

Figures 8 and fig 9 depict low and medium dynamics test evaluation where MGCF 

closely follow UKF in comparison with CCF. Fig 10 shows the dynamic indicator 

parameter and fig.11 and fig.12 indicate the filter gain/tuning parameters (𝐾𝑝  & 𝐾𝑖 ) 

variations. However, CCF and UKF algorithms fail for system under high dynamics for 

prolong duration (as Eq. 5 is no more valid) whereas MGCF total dependence on gyro 

results in bias error. 

  
(a) (b) 

Figure 8. Roll Angle Determination, (a) Using CCF, MGCF & UKF, (b) Close 
View 
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(a) (b) 

Figure 9. Pitch Angle Determination, (a) Using CCF, MGCF & UKF, (b) Close 
View 

  
(a) (b) 

Figure 10. Dynamic Indicator,   (a) variation of  during Roll Estimation, 

(b) Close View 

  
(a) (b) 

Figure 11. Variation of Filter Gain per System Dynamics (a) Proportional 
Gain, (b) Close View 
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(a) (b) 

Figure 12. Variation of Filter Gain per System Dynamics (a) Integral Gain, (b) 
Close View 

5. Conclusion 

In this research, a low cost, low power, miniature MEMS MPU 6050 was subjected to 

three types of attitude estimators - CCF, MGCF and UKF; computationally simple, 

medium and complex in that order. It was observed that roll and pitch Euler angles can be 

accurately determined from low cost MEMS IMU for system under medium dynamics. In 

such situation where attitude is to be estimated from IMU only, the accelerometer 

measuring gravity only assumption results in fairly acceptable accuracy. Moreover, 

whereas the computationally cheap fix gain complementary filters are efficient solution in 

many applications, it was demonstrated that accuracy can be improved by 

varying/switching filter gain with a little computation cost. This is particularly important 

for applications where computational complexity is of prime concern. For system under 

high dynamics, estimates from IMU alone are distorted and some aided sensory system 

is/are to be employed. 

 

References 

[1] R. G. Brown, “Integrated navigation systems and Kalman filtering: A perspective,” Journal of the 

Institute of Navigation, vol. 19, no. 4, (1972), pp.  355–362. 

[2] D. Jung and P. Tsiotras, “Inertial attitude and position reference system development for a small UAV,” 

in AIAA Infotech at Aerospace, Rohnert Park, CA, (2007), May. 

[3] G. Dissanayake, S. Sukkarieh, and E. Nebot, “The aiding of a low-cost strap-down inertial measurement 

unit using vehicle model constraints for land vehicle applications,” IEEE Transactions on Robotics and 

Automation, vol. 17, no. 5, (2001) October, pp. 731–747. 

[4] P. Batista, C. Silvestre, and P. Oliveira, “Position and velocity navigation filters for marine vehicles,” in 

Proceedings of the 17th IFAC World Congress, Seoul, South Korea, (2008), July. 

[5] K. R. Britting, “Inertial Navigation Systems Analysis”, John Wiley & Sons, Inc., (1971). 

[6] O. J. Woodman, “An Introduction to Inertial Navigation”, (UCAM-CL-TR-696, University of 

Cambridge, 2007) 

[7] D. H. Titterton and J. L. Weston, “Strap down Inertial Navigation Technology (Peter Pegerinus, London, 

1997). 

[8] R. Munguia and A. Grau, “Attitude and Heading System based on EKF total state configuration”, IEEE 

Int. Symposium on Industrial Electronics, (2011). 

[9] X. Yun, C. Aparicio and E. R. Bachmann, “Implementation and Experimental Results of a Quaternion-

Based Kalman Filter for Human Body Motion Tracking”, Proceedings of IEEE International Conference 

on Robotics and Automation, (2005), pp. 317-322. 

[10] A. J. Baerveldt  and R. Klang, “A low cost and low weight attitude estimation system for an autonomous 

helicopter”, Proceedings IEEE Int. Conf. Intell. Eng. Syst., (1997), pp. 391–395. 

[11] J. Roberts, P. Corke, and G. Buskey, “Low-cost flight control system for a small autonomous 

helicopter,” in Proceedings of IEEE Int. Conf. on Robotics and Automation, Taipai, September (2003), 

pp. 546–551. 



International Journal of Signal Processing, Image Processing and Pattern Recognition 

Vol.8, No.7 (2015) 

 

 

Copyright ⓒ 2015 SERSC  109 

[12] M. Zimmerman and W. Sulzer, “High bandwidth orientation measurement and control based on 

complementary filtering”, the Symp. Robotics Control (SYROCO), Vienna, Austria, (1991). 

[13] J. F. Vasconcelos, C. Silvestre, P. Oliveira, P. Batista, and B. Cardeira, “Discrete Time-Varying Attitude 

Complementary Filter”, American Control Conference 2009, (2009), pp. 4056-4061. 

[14] S. O. H. Madgwick, A. J. L. Harrison and R. Vaidyanathan, “Estimation of IMU and MARG orientation 

using a gradient descent algorithm”, IEEE International Conference on Rehabilitation Robotics Rehab 

Week Zurich, ETH Zurich Science City, Switzerland, (2011), June 29 - July 1. 

[15] M. Euston  and P. Coote, “A complementary filter for attitude estimation of a fixed wing UAV”, 

appeared in IEEE Int Conf on Intelligent Robots and Systems, (2008). 

[16] S. Merhav, “Aerospace Sensor Systems and Applications”, Springer-Verlag New York Inc., (1998). 

[17] C. W. Kang and Park, “Attitude estimation with accelerometers and gyros using fuzzy tuned Kalman 

filter”, Proceed of the European Control Conference, Budapest, Hungary, (2009), August. 

[18] T. S. Yoo and S. K. Hong, “Gain-Scheduled Complementary Filter Design for a MEMS Based Attitude 

and Heading Reference System”, Sensors 2011, 11, 3816-3830; doi: 10.3390/s110403816 

[19] M. Wang and Y. C. Yang, “Adaptive filter for a miniature MEMS based attitude and heading reference 

system”, presented in Pro IEEE Pos Loc and Nav Symp, Monterey, CA, USA, (2004) April.  

[20] E. Lefferts, F. Markley, and M. Shuster, “Kalman filtering for spacecraft attitude estimation”, AIAA J. 

Guidance, Control, Navig., vol. 5, no. 5, (1982), September, pp. 417–429. 

[21] S. J. Julier and J. K. Uhlmann, “Unscented filtering and nonlinear estimation,” Proceedings of the IEEE, 

vol. 92, no. 3, (2004) March, pp. 401–422. 

[22] J. L. Crassidis, “Sigma-point Kalman filtering for integrated GPS and inertial navigation,” IEEE 

Transactions on Aerospace and Electronic Systems, vol. 42, no. 2, (2006), pp. 750–756. 

[23] X. Kong ,“INS algorithm using quaternion model for low cost IMU”, Robotics and Autonomous 

Systems, vol. 46, (2004), pp. 221–246. 

[24] F. Caron, E. Duflos and D. Pomorski, “GPS/IMU data fusion using multisensor Kalman filtering: 

introduction of contextual aspects”, Information Fusion, vol. 7, (2004), pp. 221 230. 

 

 

Authors 

 

 Dung Duong Quoc, he was born in 1981. He received the B.S., 

M.S. degrees from the Le Qui Don Technical University, Hanoi, 

Vietnam, in 2007 and 2010, respectively. Now he is pursuing Ph.D. 

degree in Harbin Institute of Technology (HIT), Harbin, China. His 

research interests include sensor technology, testing instruments, and 

signal processing. 

 

 

 

 Jin Wei Sun, (M’09) he was born in 1964. He received the M.S. 

degree in electrical engineering from Harbin Institude of Technology 

(HIT), Harbin, China,  in 1990 and the Ph.D. degree in advanced 

system control and production from Saga University, Saga, japan, in 

2000. He is currently a Professor with HIT. His research interests 

include sensor technology, testing instruments, and signal processing. 

  

 

 

Lei Luo, he was born in 1989. He received the B.S. degree in 

instrumentation science and Technology  from Shenyang University 

of Technology, Senyang, China, in 2012 and the M.S. degree also in 

instrumentation science and Technology from Harbin Institude of 

Technology (HIT), Harbin, China,  in 2014. Now he is pursuing the 

Ph.D. degree in Harbin Institute of Technology. His research interests 

include active noise control, adaptive signal processing, and sensor 

technology. 

 



International Journal of Signal Processing, Image Processing and Pattern Recognition 

Vol.8, No.7 (2015) 

 

 

110   Copyright ⓒ 2015 SERSC 

 

 Van Nhu Le, he was born in 1982. He received the B.S degrees 

from the Le Quy Don Technical University, Hanoi, Vietnam, in 2007 

and M.S degree from Harbin Institute of Technology in 2012. Now 

he is pursuing Ph.D. degree in Harbin Institute of Technology, 

Harbin, China. He currently focuses image processing, optic image 

processing and design optic system. 

 

 


