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Abstract 

The task of image super-resolution is to up sample a low resolution (LR) image while 

recovering sharp edges and high frequency details. In this paper, a single image super-

resolution algorithm via canonical correlation analysis (CCA) is proposed. This method 

is based on the assumption that the corresponding LR and high resolution (HR) images 

have high correlation coefficients when transformed into a special space. The proposed 

approach includes two stages: training and testing. In the training stage, a couple of 

canonical bases for transformation are calculated with the prepared coupled training 

sets. In the testing stage, the HR image can be recovered by using the canonical bases 

obtained in the training stage. In addition, an iterative back projection algorithm is used 

to further improve the image quality. The experiments demonstrate that our algorithm can 

reconstruct richer details, with fewer artifacts. Moreover, this algorithm is of less 

complexity. 

 
Keywords: Image super-resolution, Canonical Correlation Analysis, Iterative Back 

Projection, Coherent subspace, Correlation 

 

1. Introduction 

Image super-resolution (SR) attempts to reconstruct a high-resolution (HR) image 

from one or more low-resolution (LR) images. HR images are needed in many 

practical applications such as medical image diagnosis, computer vision, satellite 

imaging and entertainment [1]. Though CCD and CMOS sensors have been widely 

used to capture HR images, it is hard to obtain an image at a desired resolution level 

due to the limitations of imaging environments and expensive imaging equipment. 

So far, many image SR methods have been proposed. Generally, these methods can be 

divided into three main classes: interpolation-based SR methods, reconstruction-based SR 

methods and example-learning-based SR methods. Interpolation-based SR methods 

determine a function model utilizing the known pixels to calculate the unknown pixels. 

Some mature methods have already existed, such as linear interpolation and bicubic 

interpolation [2], etc. Reconstruction-based SR methods are based on prior knowledge of 

the image degradation to restore HR images. Representative reconstruction-based SR 

methods include the projection-onto-convex-sets (POCS) approach [3], iterative back 

projection (IBP) [4], and maximum a posterior (MAP) method [5]. The above 

interpolation-based and reconstruction-based SR methods are based on a strict and proper 

mathematical model. Without the limitation of the strict mathematical models, numerous 

literatures have demonstrated that example-based SR methods are effective. Numerous 
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literatures have proved that example learning based SR methods can obtain preferable 

results. 

Example-learning-based SR methods, which predict the high-frequency details lost in a 

given LR image by learning the relationship between the HR and LR images from a 

training data set. These example-learning-based methods can be divided into three 

classes: nearest neighbor embedding based SR methods, sparse representation based SR 

methods and regression based SR methods. Since Freeman et al. [6] proposed an example 

learning-based SR method, which estimated the final HR image patches using the 

relationship learned by the HR and LR training image patches through Markov Random 

Field (MRF), numerous example-learning-based SR methods have been reported in the 

literatures. 

Nearest-neighborhood-embedding-based SR methods are based on some assumptions 

about the space relationship between the LR and HR local patches. Chang et al. [7] 

adopted locally linear embedding (LLE) [8] which assumes the manifolds of small image 

patches in the LR and HR image with similar local geometry. Under this assumption, the 

neighbor-embedding-based (NE) method was proposed to estimate the target HR image 

patches by linearly combining the HR counterparts of neighbors. Numerous scholars have 

done a lot of improvement on the basis of NE [9-12, 14]. To avoid using external training 

sets, Glasner et al. [10] used the input LR image itself to form training set which starts the 

research about self-learning. It is based on the observation that the local features of a 

natural image repeat themselves many times within and across different scales of the 

original image. Gao et al. [11] found the k -nearest neighbors ( k -NNs) for linear 

embedding in a unified feature subspace mapped by LR-HR image patches, which were 

aimed at reducing the difference between the LR-HR counterparts. Zhang et al. [12] 

partitioned the whole training data set into a set of subsets by clustering the histograms of 

oriented gradient (HoG) [13], which could effectively reduce computational complexity 

while preserving SR quality. Recently, Chen et al. [14] proposed a method based on low-

rank matrix recovery and neighborhood embedding. In Chen's method, the image patches 

matrix was decomposed into a low-rank component and a sparse component, and then NE 

algorithm was performed on each component. Obviously, it would inevitably add 

complexity when the number of training set was increased. 

To reduce the complexity, sparse representation-based SR methods, which can 

represent the images of main information and details using fewer coefficients were 

developed. These methods consider the corresponding HR and LR images which can be 

transformed into a unified feature subspace in which these images can be sparsely 

represented by the same coefficients. Sparse representation was first applied in the super-

resolution reconstruction by Yang et al. [19]. Mandal et al. [20] adopted gradient features 

to perfect edge information on basis of sparse representation. Zerde et al. [21] proposed a 

method including several important modifications to the local sparse-land model which 

was similar to Yang et al. [19]. Zhang et al. [22] learnt a multi-scale dictionary for 

representing the similar redundancies of local patterns within the same scale and across 

different scales, which can lead to photo-realistic results. 

Another kind of example-learning-based SR method is regression-based SR methods. 

This kind of method is aimed at building a proper regression model through the training 

data set. For example, Kim et al. [23] adopted kernel ridge regression to learn a map from 

the LR image to the HR image. Zhang et al. [24] employed a non-local-means filter to 

learn a non-local prior and the steering kernel regression to learn the local prior. Yang et 

al. [25] proposed a fast SR algorithm based on in-place examples, in which a derived 

function of first-order regression was learnt. In addition, some other approaches have 

been proposed [26, 27]. 

At present, CCA has appeared in numerous literatures. The reconstruction stage is 

operated on the coherent subspace decided by CCA. For example, Huang et al. [15] 

proposed a SR method for the human face. This method performed a NE procedure on a 
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coherent feature obtained by canonical correlation analysis [18]. Recently, a vehicle logo 

super-resolution using CCA was reported in An et al. [15] to improve the vehicle 

recognition rate. Instead of one-dimensional CCA, two-dimensional CCA was used to 

reconstruct a face image [17]. 

Inspired by the idea of CCA, we will propose learning-based super resolution via 

Canonical Correlation Analysis (LCCA) in this paper. CCA technology provides a 

method to map the LR and HR patches into a cosine similarity subspace. In the coherent 

subspace, the correlation between the LR and HR patch features becomes maximized. We 

call the mapped LR and HR features as CCA features. In that way, we can reconstruct HR 

image patches according to the CCA features. In the training phase, we first change the 

high- and low- resolution training image patches into the transform domain, and obtain 

the optimal base vectors via canonical correlation analysis. In the testing phase, we 

reconstruct the test low-resolution image in the transform domain and convert it to the 

pixel domain to gain the initial result. Finally, an iterative back projection algorithm is 

used to further improve the image quality. Compared with k -NNs, we get lower 

computational costs because the proposed method avoids finding nearest-neighbors in 

millions of training samples. The experimental results show that the proposed LCCA can 

reconstruct richer details compared with the state-of-the-art SR methods. 

The remainder of this paper is organized as follows. In Section 2, we present the 

proposed method. The algorithm implementation details and the choice of parameters are 

demonstrated in Section 2. Then, Section 4 shows the quality evaluations and visual 

effects of the proposed method and compares our method with several other SR methods. 

Finally, in Section 5 we conclude the paper. 

 

2. The Proposed LCCA algorithm 

In this section, we first introduce how to generate the training data, and then we 

present the proposed method of SR reconstruction in detail.  

 

 

Figure 1. The Schematic of CCA 

The main question of restoring an HR image from a LR image is how to establish 

the relationship between the HR and LR images effectively.  To address this 

problem, we apply Canonical Correlation Analysis to establish the coherent 

subspace to restore the HR image. Canonical Correlation Analysis (denoted as 

CCA) was first introduced by Hotelling [18], which was aimed at finding bases for 

two sets of random vectors such that the correlation between the projections of the 

vectors onto the bases is maximized. In CCA, the mutual information of two sets is 

considered. We apply CCA to find the transformation for HR and LR feature spaces 

that maximize the correlation between the intrinsic geometries of HR and LR 

images. The schematic of CCA is shown in Figure 1. At present, the sparse 

representation model has been widely used, and proved very effective. Yang et al. 

[19] first put forward a SR method by coupled dictionaries. Yang’s method mapped 

these feature spaces into the unified feature subspace where they had the biggest 

similarity based on distance. Unlike the Yang’s method, the CCA is used to 
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determine the coherent subspace, where they have the biggest similarity based on 

the inner product. 

Figure 2 illustrates the flowchart of the whole reconstruction schemes of our 

algorithm. There are two key steps for single image super-resolution via CCA: 

training and testing. In the training phase, CCA is used to learn a pair of the best 

mapping matrices. These matrices are used to reconstruct the HR image from the 

given test LR image in the testing phase. 

 

Figure 2. Flowchart of our Proposed Algorithm 

2.1. Training Stage 

In this subsection, we will introduce the training stage. Among the manifold learning 

methods, Canonical Correlation Analysis (denoted as CCA) has been widely used in 

recent years. CCA was first introduced by Hotelling [18], which was a multivariable 

statistical analysis to describe the relationship between two sets of variables. CCA can 

find canonical variables of the two sets that have the maximum correlations. 

In the training stage, we respectively map the HR and LR image patch feature into a 

subspace in which the correlation between the canonical variables is maximized. CCA is 

applied to find the optimal mapping matrices. In our experiments, there are many pairs of 

HR and LR images in the training set. sX  and sY  are the corresponding  LR and HR 

features extracted from the training sets, respectively. 

We transform the image patch features into column vectors to form the data sets. 

Hereafter, we obtain a set of training HR and LR image patch feature set: 

{ , }s sN K N P

s sY X
 

 　 , where sN represents the number of LR and HR image 

patches, K and P represent the dimension of HR and LR image patch feature, 

respectively. CCA finds a sequence of uncorrelated linear 

combinations{ , 1,2,..., }s mX v m M for the LR patches { , 1,2,..., }i

s s sX x i N  , and a 

corresponding sequence of uncorrelated linear combinations { , 1,2,..., }s mY u m M  for 

the HR patches { , 1,2,..., }i

s s sY y i N  , such that the correlations in formula (1) are 

successively maximized. 
2( , )s m s mCorr X v Y u                                                                                                       (1) 

Note that at most min( , )M K P  directions can be found. Solving the above question, 

the optimal mapping matrices can be calculated. Then an algorithm is used to calculate 

the mapping matrices { , 1,2,..., }mU u m M  and { , 1,2,..., }mV v m M  . 
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The CCA solution [28] is computed using generalized Singular Value Decomposition 

(SVD) of the sample cross-covariance matrix /T

s s sY X N . The optimization problem can 

be written as: 

( ) 1

( ) 1

{ , } arg min ( )
T T

s s
T T

s s

T T

s s
u Y Y u

v X X v

u v u Y X v




                                                                                      (2) 

We can obtain the optimal mapping matrices through Eq. (2). To solve the above 

optimization problem, first of all, we need to compute the SVD of Q  with formula (4) 

[28], 
1 1

2 2( ) ( )( )T T T

s s s s s sQ Y Y Y X X X
 

                                                    (3) 

The decomposition can be considered as a SVD problem, 
* *TQ U DV                                                                                                                  (4) 

where 
*U and

*V represent the left and right singular vectors of Q . Secondly, with the 

learned singular vectors, the solution of Eq. (2) can be given by: 

    

1

*2

1

*2

( )

( )









T

s s

T

s s

U Y Y U

V X X V

                                                                                                         (5) 

So far, the optimal mapping matrices have been obtained. The procedure of computing 

the mapping matrices via CCA is summarized in Algorithm 1. 

 

Algorithm 1: Computing the mapping matrices via CCA. 

Input: 

Training data: Training HR image sY  and LR image sX ; 

Output: 

Mapping matrices:U andV  

1. Up sampling the LR image into an HR version sX  with the bicubic interpolation. 

2. Partition sY and sX  into a sequence of q q  image patches with s  pixels 

overlapped in raster-scan order. Construct the training patch normalized feature 

set { , 1,2,..., }i

s s sX x i N   and the intensity set { , 1,2,..., }i

s s sY y i N  . 

3. Compute the mapping matricesU andV using Eq. (5) . 

 
2.2. Testing Stage 

Given a LR test image tX as an input, we estimate the target HR image tY with the help 

of the computedU andV . The test LR image is represented as a set of small overlapping 

image patches with the same process in the training stage. For each patch, we construct its 

feature in the whole image. Then the test LR patch feature set is denoted 

as { , 1,2,..., }j

t t tX x j N  , where tN  represents the number of test LR image patches. 

Mapping tX onto the transform domain V , we can reconstruct the target HR image 

intensity set tY on the transform domain. 

We implement the reconstruction stage on the transform domain. First of all, we map tY  

and tX onto the mapping matricesU andV , respectively, to obtain the HR and LR image 

CCA features. The relationship between the HR and LR image CCA features obeys the 

following:  
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t tX V YU E                                                                                                              (6) 

where tN K
E


¡ represents the error matrix. To solve the above least square problem, we 

first write the loss function of residual sum of squares as (assuming E is uncorrelated): 

( ) (( ) ( ))T

t t t t tRSS Y tr X V YU X V YU                                                                      (7) 

Then the derivative of the residual sum of squares is calculated and set to zero. So the 

least square estimate of the loss function is expressed in the following form: 
1( )T T

t tY X VU UU                                                                                                     (8) 

To avoid the singular case, we need to add a regularization item, 

i.e.
T TUU UU I  , 

where is set to a small positive value (e.g.,
61 10 ), and I is a unit matrix which has the 

same size with the matrix
TUU , noting 
1

0 ( )T T

t tY X VU UU I                                                                                            (9) 

Through this procedure, we obtain the HR image patches 0tY . 

 
2.3. Post-processing Procedure 

In the previous phase of CCA, as some image patches details may be weakened when 

they are weighted average in the overlapping pixels, we add the IBP procedure to 

complement the image details. IBP mentioned in many literatures [11, 12, 14, and 35] can 

be used to improve the image details. We use the IBP to increase the sharpness and details 

of the image. With the obtained image 0tY , an IBP [4] algorithm is applied to enhance the 

quality of the HR result. This method is based on the idea that the recovered image should 

procedure the same image as the one observed if passing it through the LR image 

generation model. The generation process of the observed LR image tX from the original 

HR image tY is 

t tX DBY                                                                                                                   (10) 

where B and D are the operator of blurring and down-sampling, respectively. 

So, the final HR image can be obtained from 
2 2*

02 2
arg min

t

t t t t t
Y

Y DBY X Y Y                                                                       (11)  

Here,  is a balancing parameter, whose value (in our experiment, we set it to 1) has 

little influence on the result, but much on iterative time. The gradient-descent method is 

utilized to solve the above problem, 
1

0( ( ) ( ))n n T T n n

t t t t t tY Y B D X DBY Y Y                                                            (12) 

where
n

tY denotes the HR image after the n th iteration, and , whose value (between 0.5 

and 1) has little influence on the SR result,  is the step size of the gradient descent. In 

our experiments, we set the maximum number of iterations as 20. The procedure of SR 

reconstruction for a test LR image is summarized in Algorithm 2. 

 

Algorithm 2: SR reconstruction for a test LR image. 

Input: 

Mapping matrices: U andV ; 

Test LR image: tX ; 

Output: 

The target HR image: 
*

t
Y
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1. Up sampling the LR image into a HR version tX  with the bicubic interpolation. 

2. Partition tX  into a sequence of q q image patches with s pixels overlapped in raster-scan 

order. 

3. Calculate each patch’s mean value and construct the patch feature 

set { , 1,2,..., }j

t t tX x j N  . 

4. Compute the HR image patch intensity set{ , 1,2,..., }j

t ty j N by Eq. (9). Add the mean 

values to each HR image patch. 

5. Synthesis the HR image 0tY  by sequentially merging all HR image patches 

in{ , 1,2,..., }j

t ty j N with averaging multiple predictions for the overlapping pixels between 

the adjacent patches; 

6. Enhance the obtained HR image 0tY  via IBP algorithm by Eq. (12) to get the target HR 

image
*

tY . 

 

3. Experimental Settings and Parameter Selection 

In this section, we first introduce the experimental settings, then do experiments on 

different patch size and determine the best patch size. Thereafter we go to discuss the IBP 

effect on our proposed algorithm. 

 
3.1 Experimental Settings 

In our experiments, we magnify the input LR image by a factor of three. To simulate 

the real image system, all the training HR images are blurred by a 7 7 Gaussian filter 

with standard deviation 1 and down-sampled by a factor of 3 and 4 to generate the 

corresponding training LR images. The training HR images are selected from the software 

package for Yang et al. [19]. Figure 3 shows some sample images from the software 

package. In our experiments, 100,000 image patches are randomly extracted from the 

training image pairs to build the training data set. To avoid uninformative image patches 

affecting the learning efficiency, we exclude the patches with small variances from the 

training data set. The test images are selected from the Berkeley Segmentation Database 

[31] and shown in Figure 4. 

 

 

Figure 3. Some Training Sample Images from Dataset 
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Figure 4. Test Images; We Refer them from Left to Right and from Top to 
Bottom as the First to the Ninth Image 

For all the training images and testing images, we need to extract their features to learn 

the best mapping matrices. In some related works, people have suggested extracting 

different features for the LR image patches. Freeman et al. [6] used the high-pass filter to 

extract the edge information from the LR input patches as the feature. Chang et al. [7] and 

Yang et al. [9] used the first-order and second order gradients of the patches as the 

representation. In this paper, we use the first-order and second-order derivatives as the 

feature for the LR patches. The four 1-D filters used to extract the derivatives are: 

1 2 1

3 4 3

[ 1,0,1], ,

[1,0, 2,0,1], .

T

T

f f f

f f f

  

  
                                                                                               

(13) where the superscript “T” means transpose. Applying the four filters generates four 

vectors for each patch, which are concatenated into one vector as the final representation 

of the LR patch. For the HR image patches, we vector the intensity values of pixels in the 

HR image patch and subtract its mean value to receive the HR patch feature intensity set. 

To validate the effectiveness of the proposed method, we conduct experiments on many 

sorts of color images. Although Root-Mean-Square Error (RMSE) and Peak Signal to 

Noise Ratio (PSNR) are widely used as the image quality evaluation indicator, the image 

quality represented by PSNR-value is not completely consistent with the human intuition. 

Therefore, we add structural similarity (SSIM) [29] and feature similarity (FSIM) [30, 32] 

criterion as the image quality evaluation indicators. Since human eyes are more sensitive 

to luminance component than chrominance components, we transform RGB values to 

YCbCr color space, and the SR reconstruction is only performed on the luminance(Y) 

channel. We directly magnify the chrominance (Cb and Cr) channels by the bicubic 

interpolation. 
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3.2 Effects of Patch Size 

 The image patch size could greatly affect the results of example-learning-based SR 

methods. If the image patch is too big, some details cannot be restored properly. 

Alternatively, unwanted artifacts will be introduced if too small patch size is used, e.g., 

noise appears in smooth regions and jagged effects appear on edges in the SR results. In 

order to avoid the interference of IBP on the parameters, we verify the effects of patch 

size of the CCA method without IBP. To validate the effect of image patch size, we 

conduct experiments on different patch sizes of 3 3 with two pixels overlapped, 5 5  

with four pixels overlapped, 7 7  with six pixels overlapped and 9 9  with eight pixels 

overlapped. 

To assess the quality of the SR reconstruction objectively, we record the result without 

the post-processing procedure and utilize four indices, i.e., the RMSE, PSNR SSIM and 

FSIM to evaluate the performance of the SR results. We compare the results of CCA 

without IBP with the results of the bicuic interpolation to illustrate the effects of patch 

size. The curve lines of these four indices are shown in Figure 5. As shown in Figure 5(a), 

the RMSE-value of CCA-NIBP is bigger than the bicubic when the patch size is 3. The 

RMSE-values of CCA-NIBP are smaller than the results of the bicubic when the patch 

size is bigger than 3 and reach the smallest value when the patch size is 7. The inverse 

tendency could be found in the curve lines for the values of PSNR (Figure 5(b)), SSIM 

(Figure 5 (c)) and FSIM (Figure 5 (d)). 

Figure 6 shows part of the reconstructed SR results of the third test image via different 

patch size for visual observation. When the patch size is 3, the reconstructed SR image is 

unsatisfactory. The SR results have lots of artifacts within the image, which is worse than 

the result of the bicubic interpolation. A lot of details are reconstructed when the patch 

size is 9 9 , but some ghosts are produced. The best reconstructed image is obtained 

when the patch size is 7 7 . Therefore, we use 7 7  in the following experiments. 
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Figure 5. Performance Results of the Nine Images with Different Patch Size 
for Contrast. (a) RMSE; (b) PSNR; (c) SSIM; (d) FSIM 
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Figure 6. Visual Comparison of Parts of the Third Test Image with Different 

Patch Size; (a) Bicubic. (b) The Result of 3 3  Patch Size; (c) The Result of  

5 5 Patch Size; (d) The Result of 7 7  Patch Size. (e) The Result of 9 9  

Patch Size; (f) The Original Image; (Refer to Electric Version and Zoom in 
for Better Comparison) 

3.3 Robustness of CCA 

To study the robustness of the CCA procedure, we do experiments on 235 images 

selected from the Berkeley Database with the CCA procedure, which is performed on the 

bicubic version of the LR images. We verify the CCA effects compared with the bicubic. 

As the change of SSIM and FSIM values is little and close to zero, we only utilize two 

indices, i.e., the RMSE and PSNR to evaluate the effectiveness of the CCA procedure. 

The statistics histogram of the decrease of RMSE and the increase of PSNR compared 

with the bicubic results are shown in Figure 7. As shown in Figure 7, for all the 235 

images, the results via CCA have a rise in both RMSE and PSNR values. The 

experimental results indicate that the CCA method can effectively improve the image 

resolution. 

 

Figure 7. The Decrease of RMSE and the Increase of PSNR Compared with 
the Bicubic Results 
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3.4 Effects of IBP 

To test the effect of the IBP procedure in the proposed method, we do experiments on 

the LCCA method before IBP and after IBP. We perform experiments on the nine images 

shown in Figure 4.Table 1 compares the RMSE, PSNR, SSIM and FSIM values of the 

proposed algorithm with the bicubic interpolation, CCA without IBP (CCA_NIBP) and 

CCA with IBP (CCA_IBP). From Table 1, we can see that the IBP procedure has 

improved the SR performance of our proposed. The IBP method has the ability to 

improve the image quality, and can restore more details. Visual comparison of part of the 

third image obtained by CCA_NIBP and CCA_IBP (magnified by a factor of 3) is shown 

in Figure 8. As show in Figure 8(a), we can observe that the feathers on the head are too 

smooth, and the nostrils are fuzzy. The image in Figure 8 (b) restores some features on the 

head but not clear. In addition, we can see richer texture on feathers and much clearer 

nostrils in Figure 8 (c) than Figure 8(a) and 8(b). Experimental results show that the IBP 

can enhance details. 

Table 1. The Improvement of SR Performance Induced by IBP; For Each SR 
Method, we have Four Columns; The First Column is RMSE, the Second 

Column is PSNR, the Third Column is SSIM, and the Fourth Column is FSIM 

Img CCA_NIBP CCA_IBP Increase 

1 

2 

3 

4 

5 

6 

7 

8 

9 

Avg 

8.2494 

8.7806 

8.8406 

10.0122 

13.6020 

15.8292 

17.0892 

17.0704 

18.6900 

13.1293 

29.8023 

29.2603 

29.2012 

28.1202 

25.4587 

24.1416 

23.4764 

23.4859 

22.6986 

26.1828 

0.8665 

0.9049 

0.8536 

0.8379 

0.7282 

0.7512 

0.7048 

0.7866 

0.7326 

0.7963 

0.9108 

0.9122 

0.9136 

0.8757 

0.8219 

0.8234 

0.8051 

0.8191 

0.7785 

0.8511 

5.0300 

6.3891 

4.4382 

6.5592 

10.3860 

12.0415 

13.1146 

12.9460 

13.5058 

9.3789 

34.0994 

32.0221 

35.1867 

31.7939 

27.8019 

26.5171 

25.7757 

25.8881 

25.5204 

29.4006 

0.9324 

0.9286 

0.9289 

0.8989 

0.8226 

0.8310 

0.8084 

0.8762 

0.8215 

0.8721 

0.9519 

0.9345 

0.9612 

0.9182 

0.8830 

0.8719 

0.8577 

0.8765 

0.8384 

0.8993 

3.2194 

2.3915 

4.4024 

3.4530 

3.2160 

3.7877 

3.9746 

4.1244 

5.1842 

3.7504 

4.2971 

2.7618 

5.9855 

3.6737 

2.3432 

2.3755 

2.2993 

2.4022 

2.8218 

3.2178 

0.0659 

0.0237 

0.0753 

0.0610 

0.0944 

0.0798 

0.1036 

0.0896 

0.0889 

0.0758 

0.0411 

0.0223 

0.0476 

0.0425 

0.0611 

0.0485 

0.0526 

0.0574 

0.0599 

0.0481 

 

 

Figure 8. Visual Comparison of 125*141 Portions Extracted from the Third 
Image Obtained by CCA_NIBP and CCA_IBP (Magnified by a Factor of 3) (a) 

Bicubic; (b) CCA_NIBP; (c) CCA_IBP; (d) The Original Image; (Refer to 
Electric Version and Zoom in for Better Comparison) 

4. Experimental Results and Analysis 

To evaluate the performance of our proposed algorithm, we compare it with the bicubic 

[2], Yang’s method [19] and ANR [34] algorithm, based on the nine test images. First, we 

will demonstrate of the SR results for factors of 3 and 4. Then, the computational 

complexity of the proposed algorithm will be discussed. 

 

4.1 3 x Magnification SR Results 

In this subsection, we will demonstrate the SR results of the factor of 3. Because the 

SR process is only done in the luminance channel of the color images, we compare the 

quantitative difference of this part between the original HR images and the SR outcomes. 
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We will compare the 3x SR results with bicubic, Yang’s method and ANR. Table 2 

tabulates the RMSE, PSNR and SSIM values of those methods. As shown, the bicubic 

gives the worst image quality indices. Yang’s method has greatly improved the image 

quality indices, but not the best. As to the RMSE and PSNR values, the ANR method 

performs best on four of the nine test images, and the proposed algorithm performs best 

on the other five images. As to the SSIM values, our proposed algorithm performs best on 

eight of the nine test images. The quantitative evaluation of the proposed algorithm is 

superior than others according to the average values. 

Table 2. Summary of RMSE, PSNR and SSIM Results of 9 Test Images (3 x 
Magnifications); For Each SR Method, we have Three Columns; The First 
Column is RMSE, the Second Column is PSNR, and the Third Column is 

SSIM 

Img bicubic   Yang   ANR   CCA   

1 

2 

3 

4 

5 

6 

7 

8 

9 

Av 

5.8719 

7.7336 

5.6409 

7.9411 

12.2368 

14.0763 

15.4824 

16.0440 

15.9830 

11.2233 

32.7552 

30.3632 

33.1038 

30.1332 

26.3775 

25.1610 

24.3340 

24.0245 

24.0576 

27.8122 

0.8972 

0.9039 

0.8943 

0.8607 

0.7541 

0.7682 

0.7388 

0.8051 

0.7580 

0.8200 

5.4024 

6.9827 

5.1956 

7.0786 

11.2307 

12.6686 

13.7191 

14.7731 

14.6266 

10.1864 

33.4791 

31.2503 

33.8181 

31.1319 

27.1226 

26.0762 

25.3843 

24.7413 

24.8279 

28.6480 

0.9096 

0.9096 

0.9025 

0.8803 

0.7907 

0.8103 

0.7886 

0.8465 

0.7848 

0.8470 

4.9866 

6.7060 

4.8402 

6.7162 

11.0703 

12.4818 

13.4775 

14.2151 

14.1845 

9.8531 

34.1747 

31.6016 

34.4336 

31.5884 

27.2476 

26.2052 

25.5386 

25.0758 

25.0945 

28.9956 

0.9219 

0.9170 

0.9145 

0.8910 

0.8003 

0.8160 

0.7958 

0.8539 

0.8002 

0.8567 

4.8133 

6.6022 

4.5980 

6.8254 

10.9928 

12.6631 

13.5094 

13.4767 

14.3858 

9.7630 

34.4819 

31.7370 

34.8795 

31.4483 

27.3086 

26.0800 

25.5181 

25.5391 

24.9721 

29.1072 

0.9290 

0.9204 

0.9221 

0.8908 

0.8086 

0.8165 

0.7994 

0.8687 

0.8049 

0.8623 

 

 

Figure 9. Visual Qualitative Assessment for the Fourth Image with 
Magnification 3x (a) Bicubic; (b) Yang; (c) ANR; (d) CCA; (e) The Original 

Image; (Refer to Electric Version and Zoom in for Better Comparison) 

Visual examples are shown in Figure 9. As shown in Figure 9, the letters “EGA” from 

the bicubic result is blurring. The “M” and “A” in Figure 9(b) are blurring that we could 

hardly see them. The SR result in Figure 9(c) is slightly clearer than the Yang’s but the 

letters are still fuzzy. However, our proposed method can restore clearer letters “MEGA”. 
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Figure 10. Visual Qualitative Assessment for the Flower Image with 
Magnification 3x (a) Bicubic; (b) Yang; (c) ANR; (d) CCA; (e) The Original 

Image; (Refer to Electric Version and Zoom in for Better Comparison) 

Figure 10 shows the visual comparison on the flower image selected from the Berkeley 

Database. We can observe that the result of the bicubic smooth the stamen’s texture. 

Though Yang’s method and the ANR can generate sharp textures, they are not the best. 

By contrast, the outcomes of our approach can provide richer details. 

 

4.2 4 x Magnification SR Results 

In this subsection, we will demonstrate the SR results of 4x magnification. We will 

compare the 4x SR results with bicubic, Yang’s method and ANR. Table 3 tabulates the 

RMSE, PSNR and SSIM values of these methods. For each SR method, we have three 

columns. The first column is the RMSE, the second column is PSNR, and the third 

column is SSIM. 

From Table 3, we can see that the proposed CCA and the ANR method perform better 

than the bicubic and Yang’s method. It is similar to the 3x results, as to the RMSE and 

PSNR values, the ANR performs best on four images of the nine test images, and the 

CCA performs best on the other five images. As to the SSIM values, the CCA performs 

best on eight images of the test images. From the average RMSE, PSNR and SSIM 

values, the proposed method is slightly better than the ANR method. 

Figure 11 shows the visual comparison on the tree image selected from the Berkeley 

Database. Compared with the trunk of the original image, the bicubic and the Yang’s 

results are over smooth, The ANR result reconstructs more textures than other methods, 

but few than our proposed algorithm. The SR result of our proposed method restores 

richer details and more robust texture features. Compared with the leaves of the original 

image, the results of bicubic and the Yang’s methods are over smooth. The leaves in the 

original image are in the same texture direction. The ANR reconstructs some leaves in the 

vertical direction. From the observations, our proposed method restores sharper edge and 

richer details in most of the cases. 

 

 



International Journal of Signal Processing, Image Processing and Pattern Recognition 

Vol.8, No.6 (2015) 

 

 

82   Copyright ⓒ 2015 SERSC 

Table 3. Summary of RMSE, PSNR and SSIM Results of 9 Test Images (4 x 
Magnifications); For Each SR Method, we have Three Columns; The First 
Column is RMSE, the Second Column is PSNR, and the Third Column is 

SSIM 

Img bicubic   Yang   ANR   CCA   

1 

2 

3 

4 

5 

6 

7 

8 

9 

Avg 

7.7711 

9.6150 

7.3165 

10.1755 

14.7898 

16.5989 

19.2280 

20.3141 

19.3451 

13.9060 

30.3211 

28.4718 

30.8447 

27.9797 

24.7316 

23.7292 

22.4521 

21.9748 

22.3994 

25.8783 

0.8332 

0.8725 

0.8371 

0.7906 

0.6518 

0.6805 

0.6188 

0.6922 

0.6709 

0.7386 

8.1359 

9.9494 

7.8129 

10.4079 

14.7292 

16.3544 

18.9334 

20.1677 

19.0445 

13.9484 

29.9227 

28.1748 

30.2746 

27.7835 

24.7672 

23.8581 

22.5862 

22.0377 

22.5354 

25.7711 

0.8232 

0.8627 

0.8282 

0.7873 

0.6481 

0.6897 

0.6299 

0.6933 

0.6651 

0.7364 

6.7532 

8.5301 

6.2908 

8.9765 

13.7245 

15.1214 

17.5426 

18.7041 

17.7245 

12.5964 

31.5406 

29.5117 

32.1567 

29.0687 

25.3809 

24.5389 

23.2489 

22.6921 

23.1593 

26.8109 

0.8678 

0.8875 

0.8675 

0.8203 

0.6962 

0.7293 

0.6754 

0.7483 

0.7130 

0.7784 

6.5354 

8.5346 

6.1947 

9.0704 

13.5704 

15.2681 

17.4536 

18.1030 

17.8399 

12.5078 

31.8254 

29.5071 

32.2903 

28.9783 

25.4790 

24.4551 

23.2931 

22.9758 

23.1030 

26.8786 

0.8774 

0.8889 

0.8751 

0.8219 

0.7081 

0.7266 

0.6792 

0.7656 

0.7171 

0.7844 

 

 

Figure 11. Visual Qualitative Assessment for the Tree Image with 
Magnification 4x (a) Bicubic; (b) Yang; (c) ANR; (d) CCA. (e) The Original 

Image; (Refer to Electric Version and Zoom in for Better Comparison) 

4.3 Computational Complexity 

In this subsection, we will analyze the computational complexity of the training stage 

and the test stage. As described in Algorithm 1, the training process takes major cost on 

two parts: computing the mapping matricesU andV . The computation of the mapping 
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matricesU andV is related to two factors: the number of training image patches N and the 

super-resolved image patch size
2s  Hence, it totally takes

2 2 6(5 ) (2 )O N s o S to 

obtainU andV . The test process is affected by only one factor: the number of test image 

patches tN . It takes
4 6(3 ) ( )tO N s O s to reconstruct the target HR image. 

We compare the running time with the bicubic, Yang’s method and the ANR. We will 

show the average running time spent on all the test images on an AMD Core8 CPU with 

3.10GHz and 8G memory PC at windows platform in Table 4. From Table 4, we can 

observe that the proposed method takes 64.97s on average, being 2.3 times faster than the 

Yang’s, but 46.7 times slower than the ANR method. 

Table 4. The Average Running Times for Different Methods (3x) 

Time(s) bicubic Yang ANR CCA 

Avg 0.27 152.57 1.39 64.97 

 

5. Conclusion 

This paper presents a CCA-based method to perform single image SR reconstruction. 

The experimental results of the previous section show that the proposed method balances 

the performance and the computational complexity. In addition, CCA is a good choice to 

provide some transformation tools for the machine learning communication which 

focuses on describing the two related situations (such as illumination change and contrast 

change). However, one of the most important questions for further study is how to 

establish more reliable mapping matrices for two related spaces. 
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