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Abstract 

The next generation wireless communication system requires a higher standard in 

order to provide the customers with high quality of services they demanded. Orthogonal 

Frequency Division Multiplexing (OFDM) is an attractive modulation method and is a 

strong candidate for the modulation technique of future wireless systems which can be 

implemented easily.  In this paper an effort is made to analyze  how well  an OFDM  

system will perform when transmitted over an Additive White Gaussian Noise (AWGN) 

channel in terms of Bit Error Rate (BER), it has also been observed that  pulse shaping the 

channels present in an OFDM system promises to improve the  overall performance of the 

system in terms of the BER of the received signals, different window function like 

Rectangular, Blackman, Gaussian, Hamming, Hanning and Kaiser  and some of the self 

modified pulse shapes  have been used  to study the BER performance due to any one of 

the pulse shapes. 
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1.  Introduction 

High Bandwidth efficiency and high bit error rate are the major requirements of modern 

communication systems to cater to the needs for a variety of new and high quality services 

developed and delivered to the society [1]. The effect of multipath delay, spread and fading 

of signals in the wireless environment is usually unavoidable [2, 3]. Extreme fading of the 

signal amplitude and Inter Symbol Interference (ISI) introduced during the transmission 

through the conventional channel and the frequency selectivity of the channel appearing at 

the receiver side [4, 5] are responsible for a high probability of errors and reduced overall 

performance of the system. Several methods like adaptive equalization and channel coding 

have been developed to reduce the above effect [6, 7]. 

The orthogonal Frequency division multiplexing (OFDM) a multi carrier system can be 

thought of as a solution and is used in several applications such as asymmetric digital 

subscriber lines (ADSL), a system that makes high bit-rates possible over twisted-pair 

copper wires [8, 9], it has also  been accepted for several wireless LAN standards, as well 

as a number of mobile multimedia applications [1, 10] and protocols like IEEE 802.11a 

standard, terrestrial digital video broadcasting (DVB-T) and digital audio broadcasting 

(DAB) [11]. The purpose of this paper is to investigate how OFDM performs in an 

Additive White Gaussian Noise (AWGN) channel for different window function, like 

Rectangular, Blackman, Gaussian, Hamming, Hanning and Kaiser. In this channel only one 

path between the transmitter and the receiver exists and only a constant attenuation and 

noise is considered. 

In this paper, we define the simulation methodology of OFDM in section 2 and simulate 

the OFDM system using Matlab. The mathematical model and theoretically simulated 

constellation diagrams for various pulse shapes are presented and a procedure for symbol 
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error rate is derived and finally a BER simulation of OFDM for various window functions 

is presented. 
 

2. Simulation of OFDM System 

A simplified version of block diagram for an OFDM transmitter and receiver is shown in 

Figure-1. 

 

 

Figure 1.  Transmitter and Receiver of OFDM 

The OFDM signal generated by the system in Figure-1 is at base band; in order to 

generate a radio frequency (RF) signal at the desired transmit frequency, filtering and 

mixing is required. OFDM allows for a high spectral efficiency as the carrier power and 

modulation technique can be individually controlled for each carrier. However in broadcast 

systems these are fixed due to the one-way communication [12]. 

 

3. Simulation Methodology 

A 4-QAM symbols with 1705 carrier is simulated and a 4096 point IFFT is applied to it, 

the generated carrier is then modulated by a pulse shape  tg . The so obtained output is in 

turn applied to a low pass filter for obtaining a continuous time signal which is then 

multiplied to the carrier wave generating a signal )(tx  [13, 14]. 

 

4. Mathematical Model of OFDM 

The expression for an OFDM symbol at t = st    is given as:  
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Where kd = complex modulation symbols, S = number of sub carriers, T= symbol 

duration, cf = carrier frequency. 

The above “(1)” is also expressed [12] as:  
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Where k=carrier number, 

l=OFDM symbol number, m=transmission frame number, K=number of transmitted 

carriers, S =symbol duration, U =inverse of the carrier spacing, Δ=duration of the guard 

interval, cf =central frequency of the radio frequency (RF) signal, k′=carrier index relative 

to the center (   2/minmax

' KKkk  ) frequency, kimC ,, =complex symbol for the 

carrier K of the data symbol frame from number 0, 1, 2, 3….67 in frame number m. The 

guard interval between the consecutive symbols of OFDM can also reduce the effect of ISI, 

thus the size of the guard interval can also be a parameter for reducing the ICI and thus 

wavering the requirement of equalization at the receiving end. 

 

A. OFDM Pulse Shaping 

The pulse shaped OFDM for complex envelope of one radio frequency N-sub carrier is 

given as [15, 16] 
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where, cfi ,12   is the carrier frequency, kf  is the sub carrier frequency of the 

thk sub carrier, and ,1,....,2,1,0, kdk  is the complex modulation symbol transmitted 

on the 
thk  sub carrier assuming kd  has zero mean and normalized average symbol energy 

and further assuming that the modulation (data) symbols are uncorrelated and are given as 
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kd  denotes the complex conjugate of kd . The band limited pulse-shaping 

function is denoted by  tg , but 
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Table 1. Types of Pulses Shaping Function 
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4 Hamming pulse g(n)=   1/2cos460540 n  

5 Hanning 

Pulse g(n) =   1/2cos1
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Where β 

is an adjustable parameter and  uI0 is modified 

Zeroth-order Bessel function.  

 

Is taken to ensure the sub carrier orthogonality [3], which can be defined as  
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Where 


1
is the minimum sub carrier frequency spacing required. The Fourier transform 

for the pulse g(t) should have spectral nulls at the frequencies ,....
2

,
1





 to ensure sub 

carrier orthogonality. 

  Modulation of the OFDM signal [13] is done by applying the pulse g(t), and an 

exhaustive analysis has been carried out by varying the pulse shape g(t) of discrete version 

g(n) in order to search for a better combination off the bit error rate and modulating pulse 

shape as given in Table-I. 

 

B. Constellation Diagrams 

The alphabets used for a 4-QAM  jQAM 114    are as shown in Figure-2. 

Constellation diagrams [9] are used to graphically represent the quality and distortion of a 

pulse shaped OFDM signal. 

 

 

Figure 2.  Orginal Constallarion Plot for 4-QAM 
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Figure 3.  Simulated of Original 4-QAM Constellation 

There is always a combination of modulation errors that occurs and is difficult to 

separate and identify. The original constellation and the received constellations for SNR 

value of 2, 6, 12 dB of OFDM are simulated and presented in Figure-3 and Figure-4 to 

Figure-6. 

 

 

Figure 4.  Simulated of Received 4-QAM Constellation for SNR=2dB 

 

Figure 5.  Simulated of Received 4-QAM Constellation for SNR=6dB 
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Figure 6.  Simulated of Received 4-QAM Constellation for SNR=12dB 

  An AWGN channel is considered, for simulation the sampled signal for the 
thk  sub 

channel. After the receiver Fast Fourier transforms (FFT) processing is written as [16], [17] 
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Where kN  Gaussian random variables (RVs) with zero mean and variance
2  for real 

and imaginary components, kd denote the data symbol for the 
thk  sub carrier where N is 

the number of sub carriers. 

 

C. Effect on ICI 

The second term in “(8)” represents the ICI caused by the frequency offset (FO). The Kc  

sequence (ICI coefficients) depends on the FO and is given by [18] 
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where  is the normalized frequency offset which is the ratio between the FO and the 

adjacent sub carrier spacing. For zero frequency offset, Kc  reduces to the unit impulse 

sequence. The variance of the signal constellation,
2

kd , will be independent of k if all 

sub carriers use the same modulation format, which is the normal case. The variance of the 

ICI on the 
thk  sub carrier can be given by 
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 For M-ary signaling, kd is equally likely to assuming one out of   M levels. The 

receiver receives it and checks the errors. The simulation is based on multiple signal-to-

noise ratios (SNR).  

COMPUTING THE PROBABILITY OF ERROR  

The theoretical probability of symbol error for rectangular QAM constellation is given 

in [8], [18] as follows: 
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symbol. Equations (11) and (12) are for the case of k even. For k odd, there is no exact 

result. However, the symbol-error probability is upper bounded [19] as 
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   The theoretical curve was generated using “(13)”, without the scaling factor (i.e. only 

using the Q-function without the 4 in front), although for k even (i.e. k = 2 for 4-QAM) [9]. 

 The BER simulation of OFDM systems with pulse shapes have been carried out and are 

plotted in Figure-7 to Figure-12 for different window function using Rectangular, 

Blackman, Gaussian, Hamming, Hanning and Kaiser windows. 
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Figure 7.  Symblol error rate for Rectangular pulse. 
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Figure 8.  Symblol error rate for Blackman pulse.  
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Figure 9.  Symblol error rate for Gaussian pulse. 
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Figure 10.  Symblol error rate for Hamming pulse. 
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Figure 11.  Symblol error rate for Hanning pulse. 
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Figure 12.  Symblol Error Rate for Kaiser Pulse 

5. Simulation Results and Discussion  

The data for simulated BER and theoretical BER have been evaluated for various SNR 

values and reported in Table-II. It is clear that as the SNR is increased the received 

constellation gets less affected by the noise; hence there will be fewer (less) errors. 

Table 2. SNR VERSUS BER of OFDM Transmitted Signal 

Sr. 

No. 

SNR BER 

(simulated

) 

BER 

(Theoritical) 

(Sim.-

The.)

% 

1 0 0.1044 0.0786 2.58% 

2 1 0.0782 0.0563 2.19% 

3 2 0.0551 0.0375 1.76% 

4 3 0.0360 0.0229 1.31% 

5 4 0.0225 0.0125 1% 

6 5 0.0120 0.006 0.6% 

7 6 0.0058 0.0024 0.34% 

8 7 0.0022 0.0008 0.14% 

9 8 0.0007487

0 

0.0002 0.0548

% 

10 9 0.0001692

7 

0.00 0.0169

% 

11 10 0.0000322

52 

0.00 0.0032

% 

 

   However, for low values of SNR, ISI is introduced by the noise at the receiver side. 

This is presented in Figure-4 to Figure-6 which is also verified by simulated BER in Table-

II. It is observed from Table-II that the BER decreases as the SNR increases and its 

percentage error between simulated and theoretical BER value also decreases. 

The bit error rate after pulse shaping the OFDM signal with different pulse shapes as 

mentioned earlier has been investigated and reported in tabular form Table-III. It reveals 

from Table-III that the BER has low value for the case of Hamming pulse at 8 dB SNR as 

compare to other pulses, indicating an improvement in the performance of an OFDM 

system on pulse shaping the signal with Hamming window as compared to the other pulse 

shapes taken into consideration. 
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6. Conclusion 

The Additive White Gaussian Noise (AWGN) corrupted the transmitted signal was 

transmitted and the resultant received 4-QAM constellation was compared with the original 

constellation. It was observed that for small SNR values the calculated error rate was quite 

large and ISI was produced due the relative high power of noise present but as SNR was 

increased the error rate was decreasing, as expected. In fact, for a SNR value greater than 8 

dB, the error was zero. This is due to the fact that the program is simulating only 68 OFDM 

symbols (i.e. one frame), sent one by one. As the SNR is increased the received 

constellation gets less affected by the noise and hence ISI becomes decreased. Thus it 

reveals that this work will act as the stepping stone especially in the designs of 4G 

(Generation) or future Mobile communication system which have to handle a huge quantity 

of data. 
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Table 3. BER of  Pulse Shapes OFDM Signal for Different Values of SNR per 
Bits 

Sr. 

No. 

SNR 

(dB) 

BER OF Rect. BER OF 

Blackman 

BER OF Hanning BER OF 

Gaussian 

BER OF 

Hamming 

BER OF 

Kaiser 

1 0 0.1179 0.1184 0.1187 0.1186 0.1171 0.1187 

2 1 0.0812 0.07928 0.07984 0.07992 0.0808 0.08197 

3 2 0.05071 0.05026 0.05068 0.05072 0.04992 0.05132 

4 3 0.02879 0.0281 0.02825 0.02825 0.02923 0.02775 

5 4 0.01382 0.01399 0.01371 0.01375 0.01346 0.01395 

6 5 0.005922 0.006344 0.05775 0.0057930 0.005862 0.005991 

7 6 0.002 0.002 0.00219 0.002172 0.002052 0.001983 

8 7 0.0005172 0.0004827 0.0004741 0.0004569 0.0004913 0.0005431 

9 8 
11.21

510  16.38
510  12.07

510  10.34
510  10.34

510  13.79
510  
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