
International Journal of Signal Processing, Image Processing and Pattern Recognition 

Vol. 8, No. 5 (2015), pp. 279-288 

http://dx.doi.org/10.14257/ijsip.2015.8.5.29 
 
 

ISSN: 2005-4254 IJSIP 

Copyright ⓒ 2015 SERSC 

A Method of Lossy Compression for RGB565 Format True Color 

Image 
 

 

Yan Xijun and Jiang Lei 

College of Computer and Information Engineering, Hohai University, Nanjing 

211100, China 

yan_xijun@hhu.edu.cn, joel_jiang@126.com 

Abstract 

In order to solve the issue of embedded image processing, a method of mixed 

compression for RGB565 format true color image is proposed. According to the inherent 

correlation of image data, the method adopts the discrete cosine transform and 

rearrangement to centralize the data that have higher correlation. Finally, it achieves the 

image compression by improving the run-length coding combined with statistical coding. 

Experiments show that the method can compress the true color images with RGB565 

format effectively on the platform of ARM-Linux, and achieve a good compression ratio. 

  

Key words: RGB565 true color image, lossless compression, lossy compression, 

discrete cosine transform, run-length coding 

 

Currently, the embedded products have higher requirements for image processing. 

Hence, the design has focused on effective image storage and display. For image data 

with enormous information, it is necessary to take compression techniques to save the 

storage and make transmission more convenient. Now, the compression technology can 

be divided into two categories, lossless and lossy compression. Common methods of 

lossless compression include Shannon-Fano coding, Huffman coding, LZW (Lempel-

ZivWelch) coding and arithmetic coding. Lossy compression includes predictive coding, 

transform coding, vector quantization coding, and model coding and so on. All of these 

methods, discrete cosine transform is often used in the realization of transform coding for 

the image signal. 

The traditional lossless compression RLE (Run-Length encoding) encoding method has 

a better compression effect on the specific data with a large number of duplicate 

information. However, RGB565 format true color image data has been widely used in 

most embedded products currently. This kind of data has little continuous pixel for one 

color on the some line and much less for multi-line. Thus, the conventional RLE can’t 

guarantee to get good compression effect. So a new method combined the DCT transform 

with RLE compression coding is proposed in this paper to achieve compression coding 

for color image [1-2]. 
 

1. The basic Principle of DCT and Run-length Encoding 
 

1.1 The DCT Transform Principle 

Transform coding can map image signal in time domain to frequency domain, and then 

deal with related coefficients generated during the coding process. The image in time 

domain has the features of strong data correlation and high redundancy, while in 

frequency domain, correlation and redundancy among data is greatly reduced. So a larger 

compression ratio can be got after quantization and coding. Discrete Cosine Transform 

(DCT) [3-7] is the most commonly used transform coding, it is considered as sub-optimal 

performance which is close to K-L transform. 



International Journal of Signal Processing, Image Processing and Pattern Recognition 

Vol. 8, No. 5 (2015) 

 

 

280   Copyright ⓒ 2015 SERSC 

Define a two-dimensional DCT transform with N × N dimension matrix as follows: 

]
2

)12(
cos

2

)12(
cos),([)()(

2
),(

1

0

1

0 N

m

M

m
nmXCC

MN
Y

M

m

N

n





 









                                      (1)In 

which, 1,...1,0;1,...,1,0  NM   

Define a two-dimensional IDCT transform with N × N dimension matrix as follows: 

]
2

)12(
cos

2

)12(
cos),()()([

2
),(

1

0

1

0 N

m

M

m
YCC

MN
nmX

M N 


 


 









                                (2) 

In which, 1,...1,0;1,...,1,0  NnMm ，



 


thers

CC
o,1

0,,21
)(),(




 

After a discrete cosine transform, frequency domain decomposition map the process of 

the human visual system. Most of the signal energy can be concentrated in the low 

frequency range, while high-frequency component that the human eye is not sensitive 

only holds very little energy, and eventually compressed into few bits. 

 

1.2 RLE Coding Theory 

The basic idea of RLE compression [8-13] is that if the data x turns up consecutively 

for n times in the input data stream, x will be replaced by .The consecutive time is 

defined as the run-length n and thus the process is called the run-length coding.  

The basic run-length coding is performed to finish the source data stream statistics, 

making the repeated string, the string length and the position of the string form a new data 

stream. For example: 

0 1 1 2 2 2 3 3 3 3 4 4 4 4 4 5 5 5 5 5 5 6 7 8 8 9 

The output sequence can be written as 0(1) 1(2) 2(3) 3(4) 4(5) 5(6) 6(1) 7(1) 8(2) 9(1) 

after basic RLE, the number in parentheses is the run-length. From the above example, we 

can conclude that if the value of continuous repetition is relative small for a colorful 

image, the effect of RLE will not be ideal. For example, when the number of continuous 

repetition is 1, the length of data stream will increase to twice its original length after the 

basic run-length coding. Obviously, the compression effect is not so good and the amount 

of data becomes larger. Basic RLE is part of lossless compression, and defines the 

character as its basic unit. RLE usually requires the numerical size in the range of 0 to 255, 

which limits the use of this algorithm. 
 

2. The Compression Method for RGB565 Format True Color Image 

In order to compress the image data with RGB565 format, RGB component should 

first be treated separately, then concentrate related information through DCT transform. 

After this, the transformed result is quantified and compression image can be obtained 

eventually by RLE coding. Decoding process is corresponding to the reverse process of 

encoding. The related flow is shown in Figure1: 

 

The data block of 

raw image

RGB data 

separation

Data 

quantifacation

The Zig-Zag 

scanning

RLE encoding

RLE decoding

The Zig-Zag 

Inverse scanning

IDCT transform

RGB data 

components 

mergence

The data block 

after decoding

DCT transform

E
nc

od
er

D
ec

od
er

 

Figure 1. The Flow of Color Image Compression 

javascript:void(0);


International Journal of Signal Processing, Image Processing and Pattern Recognition 

Vol. 8, No. 5 (2015) 

 

 

Copyright ⓒ 2015 SERSC  281 

2.1 DCT and IDCT Transform 

This paper mainly compresses image information collected by OV9650 with 640 * 480 

pixels. Each pixel occupies two bytes, and stories pixel tricolor information for RGB565 

format. RGB565 format is shown in Figure 2. 

 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

The high bytes The low bytes

Red
Gree

n
Blue

 

Figure 2. RGB565 Data Format 

Since RLE compression is better for operation in bytes, the pixel information in two 

bytes should be isolated. Two separation methods are as follows: 

(1)The two bytes are classified into high bytes and low bytes to perform DCT 

transform.  

(2)The two bytes are separated into R, G, B bytes (high fill zero) to perform DCT 

transform.  

Considered from handling approach, the two methods above are both feasible. But 

whether the pixels can be effectively separated is related to information relevance. The 

best separation method should be chose from experiments. 

The image should be divided into N*N pixel blocks. When dealing with image data 

through DCT transform. In order to ensure orthogonality and rate of data blocks, matrix 

of N = 8 is generally used and 64 pixels is defined as a data block. Because of large 

amount information of image data, the pixels of sample between 576 and 639 will be 

analyzed below. The raw data of the pixels in bytes is shown in Figure 3. 

 

0      0 0      0 0      0 0      0 0      0 0      0 0      0 0      0

0      0 0      0 0      0 32      0 0      0 0      0 32      0 33     8

65    8 97    8  97     8 129    8 129    8 98    8 130   8 98    8

98    8 98    8 98    8 98    16 163    24 37    49 200  81

107  114 171  114 171  114 171  114 170  114 170   106  105   98  41   90  

232  81 199  65 134  57 69  41 3   33 162  16 97   8 33   8

33   8 65   16 162   32 36   49 101   57 134   65 134   65 134   65

133   65 133   65 102   65 102   65 134   65 134   65 133   73 101   73

 74  106

 

Figure 3. The Raw Data of the Pixels 

Firstly, the first separation method is performed to get the low bytes and the high bytes 

respectively through DCT transform. Due to the large amount of data, only values of low 

bytes after DCT transform are shown in Figure 4. 

It can be seen from Figure 4 that the data transformed by the DCT is not concentrated 

in the upper left portion with low-frequency energy as expected. It is scattered, and not 

suitable for compression coding. 



International Journal of Signal Processing, Image Processing and Pattern Recognition 

Vol. 8, No. 5 (2015) 

 

 

282   Copyright ⓒ 2015 SERSC 

-30.62500 52.418166 107.50643 -112.01707 76.37498 28.542884 38.407676 -52.243427

140.51229 -1.796596 80.042211 85.856968 -150.34781 -58.592876 103.567799 -14.419893

-85.00502 -14.54113 -177.55326 -86.08171 33.295644 -41.115667 -2.632536 21.497936

-48.12083 -98.32239 -18.91928 164.06689 81.860107 96.369266 -238.63017 91.430724

-1.624996 -24.39975 33.404731 -106.12402 11.874980 99.706565 68.560406 -9.810974

52.441597 179.71382 -67.646280 46.276072 7.939724 -113.16310 -23.298750 -64.431154

-20.66824 -83.29064 53.367443 -83.381203 -35.574666 0.387452 79.303239 -36.949909

-90.66767 46.986914 96.286625 99.201563 -23.403668 -64.787613 31.914988 61.892784

 

Figure 4. Values of Low Bytes after DCT Transform 

Then the second method is used to get R, G, B transform values respectively. Because 

of the large amount of data, only R component values after DCT transform are shown in 

Figure 5. 

 

37.50000

0
-2.918433 1.115200 -0.463095 0.499999 0.079308 0.079255 0.109524

-23.08939 -0.575934 1.176355 -0.262170 -0.014951 -0.269330 0.038718 0.235576

-12.64332 0.377895 -1.758883 0.072677 -0.230969 0.028819 -0.021446 -0.022378

3.760004 7.852684 -1.886756 0.865561 0.214061 -0.119827 0.300738 0.286339

14.74999

9
-3.755585 1.712459 -0.341330 -0.250001 0.160668 -0.438727 -0.056996

-10.20319 -9.559312 1.110354 -0.589497 -0.095371 0.268323 0.016087 -0.316733

-5.045696 9.051835 0.728554 0.479459 0.095671 0.042579 0.008884 0.427957

9.500628 1.294756 -4.383262 0.938747 -0.565561 0.010802 -0.135150 -0.057950

 

Figure 5. Red Component Values after DCT Transform 

As can be seen from the Figure above, the data transformed by the DCT is concentrated 

in the upper left portion with low-frequency energy as expected. And the high frequency 

part tends to zero. Values of G, B components after DCT transform also satisfy the trend 

in favor of the latter part of RLE compression.  

The result can be seen from comparison of Figures 4 and 5, since R, G, B tricolor with 

the same pixel are not uniform distribution, the data can be better to separated through the 

second method. 

 

2.2 Data Quantification and the Zig-Zag Scanning 

As can be seen from above, the DCT transform changes the energy distribution of the 

image signal, most of the energy about the image information concentrate in low 

frequency part, which is in the upper left corner of the matrix block. Most of the DCT 

coefficients in the high frequency portion are very close to zero. In fact, DCT transform 

itself can’t save memory space by compressing the data, but if we compress the data after 

giving up the value in high-frequency part, the memory space can be saved a lot. During 



International Journal of Signal Processing, Image Processing and Pattern Recognition 

Vol. 8, No. 5 (2015) 

 

 

Copyright ⓒ 2015 SERSC  283 

the process, the data is required to be quantified. Two quantitative methods are widely 

used currently: 

(1) Mild quantification is that the data should be rounded up and the fraction part 

should be removed. 

(2) Given a quantitative threshold value, if the high frequency component is greater 

than the threshold value, the coefficient is set to 0; otherwise the integer part is reserved. 

In order to obtain a higher compression ratio, method of the quantitative threshold is 

adopted in this paper. When the quantization threshold value is set to 5.0, the data of R 

component in Figure 5 is shown in Figure 6 after quantification. 

 

37

-23

-12

0

14

-10

-5

9

0

0

0

7

0

-9

9

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

 

Figure 6. The Data of R Component after Quantification 

After the data block quantification, it still needs compression coding. The RLE 

compression method used in this paper requires the ability to scan the data block and 

arrange the coefficients in order. Two scanning methods are mainly used now:  

(1) The progressive scanning as is shown in Figure 7 (a). It scans from the beginning of 

one line to the end of this line. 

(2) The Zig-Zag scanning which arranges the 64 elements as Figure 7 (b) shows. 

 

37

-23

-12

0

14

-10

-5

9

0

0

0

7

0

-9

9

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

37

-23

-12

0

14

-10

-5

9

0

0

0

7

0

-9

9

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

(a) (b)
 

Figure 7. Two Scanning Methods of R Component 

If the progressive scanning is used, R component sequence after RLE compression is 
37(1) 0(7)-23(1) 0(7)-12(1) 0(8) 7(1) 0(6) 14(1) 0(7) 10(1)-9(1) 0(6) 5(1) 9(1) 0(6) 9(1) 0(7), 

which requires 36 bytes to encode. If the Zig-Zag scanning is adopted, R component 

sequence after RLE compression is 37(1) 0(1) -23(1)-12(1) 0(6) 14(1) 7(1) 0(8)-10(1)-5(1)-9(1) 

0(11) 9(2) 0(28), which requires 28 bytes to encode. It can be seen that the Zig-Zag 

scanning make the low-frequency component occurs before the high-frequency 

component. It increases the number of continuous "0" in the sequence. 

The Zig-Zag scanning can be achieved by the index array n in the C programming 

language, as is shown in Table 1. Values in Z_MAP[i] can be seen as the quantification 

data block after index access, and the Zig-Zag data sequence can be got after arranging 



International Journal of Signal Processing, Image Processing and Pattern Recognition 

Vol. 8, No. 5 (2015) 

 

 

284   Copyright ⓒ 2015 SERSC 

the data in order. The inverse process of the Zig-Zag scanning follows the same way 

through Z_UNMAP [i]. 

 
Table 1. The Zig-Zag Scanning Mapping and Inverse Mapping 

The array of the Zig-Zag scanning 
mapping 

The array of the Zig-Zag inverse scanning 
mapping 

char Z_MAP [64]=  
{ 0, 1, 8, 16, 9, 2, 3, 10, 
17, 24, 32, 25, 18, 11, 4, 5, 
12, 19, 26, 33, 40, 41, 34,  
27, 20, 13, 6, 7, 14, 21, 28, 
35, 42, 49, 56, 57, 50, 43, 36, 
29, 22, 15, 23, 30, 37, 44, 51, 
58, 59, 52, 45, 38, 31, 39, 46, 
53, 60, 61, 54, 47, 55, 62, 63}; 

char Z_UNMAP [64]=  
{ 0, 1, 5, 6, 14, 15, 27, 28, 
2, 4, 7, 13, 16, 26, 29, 42, 
3, 8, 12, 17, 25, 30, 41, 43,  
9, 11, 18, 24, 31, 40, 44, 53, 
10, 19, 23, 32, 39, 45, 52, 54 
20, 22, 33, 38, 46, 51, 55, 60, 
21, 34, 37, 47, 50, 56, 59, 61, 
35, 36, 48, 49, 57, 58, 62, 63}; 

 

2.3 The Improved RLE Compression Method 

After obtaining the ideal data sequence, the data sequence still needs to be compression 

coding to get the compression image information. RLE compression algorithm is widely 

used because it is simple and efficient. The original data currently used by RLE 

compression is generally smaller than one byte to facilitate statistical counting of coding. 

Thus, before RLE coding, R, G, B components should be handled. The data transformed 

by DCT is converted into two parts, as Figure6 shows. F(0,0) = 37 is the DC component 

of the data block, and other coefficient are AC components. 

(1)  component is represented in 5 bits. Thus, its value range is 0 to 31. The value of th

e DC component ranges from 0 to 255, which can be expressed by unsigned char data typ

e in C programming language. The AC component ranges from 128 to 127 which can be e

xpressed by signed char data type in C language. 

(2) G component is represented in 6 bits. Thus, its value range is 0 to 63. The value of 

the DC component ranges from 0 to 511. The data requires to be divided by 2 firstly if 

expressed by unsigned char data type in C programming language. The AC component 

ranges from -128 to 127 and its data should do the same operation if expressed by 

signed char data type in C language.  

(3)B component is represented in 5 bits. Thus, its value range is 0 to 31. The value of t

he DC component ranges from 0 to 255, which can be expressed by unsigned char data ty

pe in C programming language. The AC component ranges from 128 to 127 which can be

 expressed by signed char data type in C language. 

Through the analysis of large amounts of data after DCT transform, we can conclude 

that most energy of data block stored in DC part, which can be saved directly without 

compression coding. The total bytes of R, G, B DC component are 14400. And non-zero 

data duplication of AC component is less, thus in order to prevent the data swelling 

phenomenon in RLE algorithm, the data is saved directly without encoding, mainly 

compress the AC coefficient "0". The encoding format is shown in Figure 8. 

 

R G B R
Run-

lengh
…

DC component AC component

0 … G
Run-

lengh
… 0 … B

Run-

lengh
… 0 …

R R 

………

G B G B 

 

 

Figure 8. The Improved RLE Compression Encoding 

In the improved RLE encoding, the size of run-length is likely to be more than one byte 

due to large number of data "0". The upper limit of run-length can be determined as 



International Journal of Signal Processing, Image Processing and Pattern Recognition 

Vol. 8, No. 5 (2015) 

 

 

Copyright ⓒ 2015 SERSC  285 

maximum value represented by three bytes because the image size is 640 * 480 pixels. 

Two high level bits of the first bytes indicates the length of the run-length itself, and 0, 1, 

2 are corresponding to the run-length byte serial number respectively. The encoding 

algorithm is shown in Table 2. 

 

Table 2. The Improved RLE Encoding Algorithm 

Run-length value Bytes number 

0 1 2 

Val < 64 0x40 | Val   

64 <= Val < 16384 0x80 | (Val >> 8) Val & 0xFF  

Val >= 16384 0xC0 | (Val >> 16) (Val >> 8) & 0xFF Val & 0xFF 

 

3. The Improved Image Compression Algorithm Experiment 

In this paper, the basic image information collected by OV9650 is 640 * 480 pixels, 

and each pixel has 2 bytes, so the file size of original image is 614400 bytes. The main 

idea of the algorithm is to transform the high frequency component to "0", and then 

discard it. Therefore, with the increase of quantization value, the more the high frequency 

information is lost, the lower the compression ratio we can get. Table 3 is given the DC 

component of the R, G, B tricolor, the corresponding AC component and the compression 

ratio, when the quantification value is 5.0, 7.0, 10.0, 12.0, and 15.0 respectively. 

 

Table 3. Experiment Results  

Quantification  
value 

DC 
componen

t 

AC 
component

（R） 

AC 
component

（G） 

AC 
component

（B） 

compressio
n ratio 

5.0 14400 29544 69485 23786 0.223332 
7.0 14400 18867 50726 14722 0.160669 
10.0 14400 10903 33578 8630 0.109925 

12.0 14400 8144 26188 6516 0.089922 

15.0 14400 5584 19247 4389 0.070996 

 

The corresponding images after compression coding are (b) ~ (f) in Figure9, and (a) is 

the original image. As can be seen from the Figure, the edge information of the image 

which indicates the high-frequency component becomes very blurred when the 

compression ratio is lower, but the overall message of the image has not been greatly 

affected. 

 



International Journal of Signal Processing, Image Processing and Pattern Recognition 

Vol. 8, No. 5 (2015) 

 

 

286   Copyright ⓒ 2015 SERSC 

(a)   The original image (b)   5.0 (c)   7.0

(e)   12.0 (f)   15.0(d)   10.0  

Figure 9. The Image after Decoding with Different Compression Ratios 

When the quantification value is 5.0, the compression ratio is 0.27771, Figure 9 (b) 

have a better image fidelity. When the quantization value is 15, the compression ratio of 

0.099512, Figure 9 (f) appears obvious distortion and the edge information becomes 

extremely blurred. The quantization value can be adjusted to achieve the purpose of good 

image compression according to the system requirements. Thus the method is suitable for 

RGB565 format color image compression. It has the characters of simple, fast, high 

compression efficiency, precision and so on. 

 

4. Conclusion 

According to the characteristics of RGB565 image data format in embedded systems, 

the compression method in this paper first perform DCT transform of the original image, 

separate related information, and then quantify, rearrange, and remove high-frequency 

information which human eye is not sensitive. Finally, the improved RLE is used to 

achieve the image information with less data amount. The image decoding is 

corresponding to the reverse of the process above. Experimental results show that the 

method can achieve better compression ratio within the acceptable range of lossy 

compression. 
 

References 

[1] J. Tang and Z. M. Hu, “Application of the DCT transform in lossy color image RLE compression”, 

Computer Knowledge and Technology, (2007), pp. 346-347. 

[2] P. Y. Yu, “The gray image compression method based on DCT and RLE”, The journal of Hunan 

university of science and technology, no. 2, (2010), pp. 89-92. 

[3] F. Yun and S. W. Run, “An image retrieval method using DCT features”, Journal of Computer Science 

and Technology, no. 6, (2001), pp. 865-873. 

[4] T. Darwish and M. Bayoumi, “Coefficient Elimination Algorithm for Low Energy Distributed 

Arithmetic DCT Architectures”, The Journal of VLSI Signal Processing - Systems for Signal, Image, 

and Video Technology, no. 3, (2003), pp. 355-369. 

[5] T. Edue, R. Grisel, H. Cherifm, et al., “The distribution of the DCT coefficients”, Proc IEEE ICA SSP.A 

delaide, Australia, (1994), pp. 365-368. 

[6] C.-S. Park and Kim, “Blind Measurement of Blocking Artifacts in both Pixel and DCT Domains”, 

Journal of Mathematical Imaging and Vision, no. 3, (2007), pp. 279-284. 

[7] S. Zhao and J. Liu, “Image retrieval in DCT compressed domains”, Journal of Beijing University of 

Posts and Telecommunications, no. 5, pp. 5- 9. 

[8] A. Banerjee and A. Halder, “An Efficient Dynamic Image Compression Algorithm based on Block 

Optimization, Byte Compression and Run-Length Encoding along Y-axis”, 2010 3rd IEEE International 



International Journal of Signal Processing, Image Processing and Pattern Recognition 

Vol. 8, No. 5 (2015) 

 

 

Copyright ⓒ 2015 SERSC  287 

Conference on Computer Science and Information Technology (ICCSIT 2010), no. 7, (2010), pp. 356-

360. 

[9] A. Sreedevi, D. S. Jangamshetti, H. Aithal and A. kumar, “Lossless Compression of Microarray Images 

by Run Length Coding”, International Conference on Bio-inspired Systems and Signal Processing 

(ICBSSP 2010), no. 10, (2010), pp. 69-72.  

[10] AI-Wahaib and M. Safa, “A lossless image compression algorithm using duplication free run-length 

coding”, Proceedings - 2nd International Conference on Network Applications, Protocols and Services, 

(NETAPPS 2010), no. 9, (2010), pp. 245-250. 

[11] Y. Y. Lu and W. L. Ding, “A universal compression algorithm improved by run-length encoding”, 

Journal of Zhejiang University of Technology, no. 1, (2007), pp. 60-64. 

[12] X. Z. Lin and J. B. Wan, “The lossy RLE compression of true color image”, Microelectronics and 

Computer, no. 11, (2004), pp. 81-84. 

[13] K. Y. He, “An improved RLE compression method”, Journal of WuHan University of traffic science 

and technology, no. 4, (1999), pp. 412-414. 

[14] L. F. Zhu, “The hybrid lossy compression of DCT and RLE based on MATLAB gray image”, Computer 

Knowledge and Technology, no. 21, (2009), pp. 5763-5765. 

 

 

Authors 
 

 

Yan Xijun, Received his Ph.D degrees from HoHai University, he 

is an associate professor of electrical and computer engineering at 

HoHai University, his research interests include multi-sensor system 

and information fusion, information processing system and its 

applications and information processing for wireless sensor networks. 

 

 

 

Jiang Lei, Received his bachelor's degrees from HoHai University, 

he is a master of electrical and computer engineering at HoHai 

University, his research interest is information processing for 

wireless sensor networks. 

 

 

 

 

 

 

 

 

 

 

 



International Journal of Signal Processing, Image Processing and Pattern Recognition 

Vol. 8, No. 5 (2015) 

 

 

288   Copyright ⓒ 2015 SERSC 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


