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Abstract 

In this paper, the performance of fixed-gain amplify-and-forward (FAF) relaying is 

investigated. An approximation for the average symbol error probability (SEP) is derived 

for multiple-mobile-relay-based mobile-to-mobile (M2M) cooperative networks over N-

Nakagami fading channels. The moment generating function (MGF) method is used to 

obtain average SEP expressions for various modulation techniques. The performance 

under different conditions is evaluated through numerical simulation to verify the 

analysis. These results show that the number of mobile relay nodes, the fading coefficient, 

the number of cascaded components, the relative geometrical gain, and the power 

allocation parameter have a significant impact on the SEP performance.   

 

Keywords: M2M communication, N-Nakagami fading channels, moment generating 

function, average symbol error probability 

 

1. Introduction 

Mobile-to-mobile (M2M) communications has attracted significant research interest in 

recent years [1]. It is employed in many wireless communication systems such as mobile 

ad-hoc networks and vehicle-to-vehicle communications [2]. M2M communication 

networks allow multiple users to exchange information, share data, interact with ideas, 

and cooperate on common goals across geographical and time boundaries. The higher 

simplicity and affordability of M2M networks are achieved through the connectivity of 

devices, such as smartphones, personal digital assistant system and tablets [3]. When the 

devices are in motion, the double-Rayleigh fading model has been shown to be applicable 

[4]. This model is extended to double-Nakagami fading in [5]. The moment generating 

function (MGF), probability density function (PDF), cumulative distribution, and 

moments of the N-Nakagami distribution have been derived in closed form using Meijer’s 

G-function [6]. 

Cooperative diversity has recently been proposed as an efficient solution to many 

challenging physical layer problems in M2M communications. The pairwise error 

probability (PEP) for a cooperative inter-vehicular communication (IVC) system with 

amplify-and-forward(AF) relaying over double-Nakagami fading channels was 

investigated in [7]. In [8], the MGF method was used to derive approximate symbol error 

probability (SEP) expressions for fixed-gain AF (FAF) relaying over double-Nakagami 

fading channels. Closed-form lower and upper bounds on the outage probability of a two-

way relaying AF M2M system over N-Nakagami fading channels were derived in [9]. 

To the best of our knowledge, the average SEP performance of multiple-mobile-relay-

based M2M cooperative networks over N-Nakagami fading channels has not been 



International Journal of Signal Processing, Image Processing and Pattern Recognition 

Vol. 8, No. 5 (2015) 

 

 

250   Copyright ⓒ 2015 SERSC 

reported in the literature. The single-relay case was investigated in [7]. A multiple-

mobile-relay dual-hop cooperative M2M system was investigated in [8], but only the 

approximate SEP over double-Nakagami fading channels was derived. Motivated by 

these results, in the present work we analyze a multiple-mobile-relay cooperative M2M 

system over N-Nakagami fading channels. In particular, the MGF method is used to 

obtain the approximate SEP of a multiple-mobile-relay-based M2M cooperative network 

for FAF relaying over N-Nakagami fading channels.  

The rest of the paper is organized as follows. The multiple-mobile-relay-based M2M 

cooperative network model is presented in Section 2. In Section 3, the approximate SEP is 

obtained using the MGF method for several modulation techniques. Section 4 provides 

Monte Carlo simulation results to verify the analysis in Section 3. Finally, some 

concluding remarks are given in Section 5. 

 

2. System Model 

We consider a multiple-mobile-node cooperation model, namely a single mobile source 

(MS) node, L mobile relay (MR) nodes, and a single mobile destination (MD) node, as 

depicted in Figure 1. Each node is equipped with a single pair of transmit and receive 

antennas and operates in half-duplex mode. 

 

 

Figure 1. The System Model 

Following the approach in [7], let dSD, dSRl, and dRDl represent the MS to MD, MS to 

MRl, and MRl to MD distances, respectively. Assuming the path loss between the MS and 

MD is unity, the relative gains of the MS to MRl and MRl to MD channels are defined as 

GSRl=(dSD/dSRl)
v 

and GRDl = (dSD/dRDl)
v
, respectively ,where v is the path loss coefficient 

[10]. We further define the relative geometrical gain μl = GSRl/GRDl, which indicates the 

location of the lth relay with respect to the source and destination [7]. When the lth relay 

is close to the destination node, the value of μl is negative, and when it is close to the 

source node, the value is positive. Further, if the lth relay is equidistant from the source 

and destination nodes, μl is 1 (0 dB). 

Let h=hk, kSD, SRl, RDl, represent the complex channel coefficients of the MS to 

MD, MS to MRl, and MRl to MD channels, respectively, which follow an N-Nakagami 

distribution. h is assumed to be the product of statistically independent, but not 

necessarily identically distributed, independent random variables 



International Journal of Signal Processing, Image Processing and Pattern Recognition 

Vol. 8, No. 5 (2015) 

 

 

Copyright ⓒ 2015 SERSC  251 

1

N

i

i

h a


                                                          (1) 

where N is the number of cascaded components, and ai is a Nakagami distributed random 

variable with probability density function (PDF) 
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where Γ(·) is the Gamma function, m is the fading coefficient and   is a scaling factor.  

The PDF of h is given by [6] 
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where G[·] is Meijer’s G-function. 

Let y=hk
2
, kSD, SRl, RDl, i.e., ySD=hSD

2
, ySRl=hSRl

2
, and yRDl=hRDl

2
. The 

corresponding cumulative density functions (CDF) of y can then be derived as [6]  
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By taking the first derivative of (4) with respect to y, the corresponding PDF is obtained 

as[6] 
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 (5)  

Based on the AF cooperation protocol, the received signals rSD and rSRl at the MD and 

MRl nodes during the first time slot can be written as [8]
 
 

SD SD SDr KEh x n                                               (6) 

SRl SRl SRl SRlr G KEh x n                                            (7)
                                           

              

where x denotes the transmitted signal, nSRl and nSD are zero mean complex Gaussian 

random variables with variance N0/2 per dimension. Here, E is the total energy used by 

both the source and relay nodes during the two time slots. K is the power allocation 

parameter that controls the fraction of power reserved for the broadcast phase. If K=0.5, 

equal power allocation (EPA) is used. 

During the second time slot, the lth relay normalizes the received signal and 

retransmits the resulting signal. After normalization, the received signal at the destination 

is given by [8]
 
 

RDl l SRl RDl RDlr c Eh h x n                                        (8) 

where nRDl is a conditionally zero-mean complex Gaussian random variable with variance 

N0/2 per dimension.  

For FAF relaying, cl is [8]
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If maximal ratio combining (MRC) is used at the MD node, the output SNR can be 

calculated as 

1 1

L
SRl RDl

MRC SD SRD SD

l SRl RDl

γ γ
γ γ γ γ

γ γ

   
 

                               (10) 

where 
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3. Approximate Average SEP 

The MGF of MRC is [11] 
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where Ex() denotes expectation.  

Substituting (5) into (15), we obtain                              
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As far as we know, a suitable mathematical method to obtain I2 exactly is still 

unknown. Thus, we adopt the method in [8] to obtain an approximate solution. With this 

approach, RD is replaced by its expected value, so the approximate SRD is 
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where 

(1 )RDl RDlγ K G γ                                                  (18) 

From Appendix A, the resulting approximation for I2 is  
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Substituting (16) and (19) into (15), the approximate MGF of MRC is obtained as 

1 22( ) [exp( )] [exp( )]A
x Sγγ D x SRDM s E sγ E sγ I I                                (20) 

The approximate average SEP obtained using the MGF method is then [12]    
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3. 1  q-ary PAM  

For q-ary PAM modulation, D=1, Ed=2(q1) /(πq), θd=π/2, φd=3/(q
21), Vd=0, and 

Λd=1/2, so the average SEP is given by 
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3. 2  q-ary PSK 

For q-ary PSK modulation, D=1, Ed=1/π, θd=(q  1)π/q, φd=sin
2
(π/q), Vd=0, and 

Λd=1/2, so the average SEP is given by 
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3. 3  q-ary QAM 

For q-ary QAM modulation, D=2, we will consider two cases: 

A. when θd=π/2，Ed=4( q 1)/(π q ), φd= 3/(2q2), Vd=0,Λd=1/2;  

B. when θd=π/4, Ed=4( q 1)
2
/(πq), φd=3/(2q2), Vd=0,Λd=1/2; 

Then the average SEP is given by 
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4. Numerical Results 

In this section, some numerical results are presented to illustrate and verify the average 

SEP results obtained in the previous section. 
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Figure 2. The Average SEP Performance over N-Nakagami Fading Channels 

Figure 2 presents the average SEP performance of a multiple-mobile-relay-based M2M 

cooperative network over N-Nakagami fading channels with QPSK modulation. The 

relative geometrical gain is μ=0 dB, and the power allocation parameter is K=0.5. The 

number of cascaded components is N=2, and the number of mobile relay nodes 

considered is L=1,2,3. In all cases, the fading coefficients are mSD = mSRl = mRDl = 2. This 

Figure shows that the numerical simulation results coincide with the theoretical results, 

which confirms the accuracy of the approximate average SEP. Further, the average SEP 

performance improves as L is increased. For example, when SNR=12 dB, the average 

SEP is 2×10
-2

 with L=1, 4×10
-3

 with L=2, and 1×10
-3

 for L=3.  

Figure 3 presents the effect of the power allocation parameter K on the average SEP of 

a multiple-mobile-relay-based M2M cooperative network over N-Nakagami fading 

channels with various SNR values. The number of cascaded components is N=2, and the 

fading coefficient is m=2. The relative geometrical gain is μ=-10 dB, and the number of 

mobile relay nodes is L=2. This Figure show that the average SEP performance improves 

as the SNR is increased. For example, when K=0.8, the ASEP is 7×10
-2

 with SNR=5 dB, 

10
-2

 with SNR=10 dB, 7×10
-4

 with SNR=15 dB, and 3×10
-4

 with SNR=20 dB. Further, 

the optimum value of K differs depending on the SNR. For SNR=5, 10 and 15 dB, the 

optimum value of K is approximately 0.8, but for SNR=20 dB, it is close to 0.9. This 

indicates that the equal power allocation (EPA) scheme is not the best scheme. 
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Figure 3. The Effect of the Power Allocation Parameter K on the Average 
SEP Performance 



International Journal of Signal Processing, Image Processing and Pattern Recognition 

Vol. 8, No. 5 (2015) 

 

 

Copyright ⓒ 2015 SERSC  255 

 

2 4 6 8 10 12 14 16 18 20
10

-4

10
-3

10
-2

10
-1

10
0

SNR(dB)

A
S

E
P

QPSK 

 

 

m=1

m=2

m=3

 

Figure 4. The Effect of the Fading Coefficient m on the Average SEP 
Performance 

Figure 4 presents the effect of the fading coefficient m on the average SEP of a 

multiple-mobile-relay-based M2M cooperative network over N-Nakagami fading 

channels. The number of cascaded components is N=2, and the fading coefficients 

considered are m=1,2,3. The relative geometrical gain is μ=0 dB, and the number of 

mobile relay nodes is L=3. The power allocation parameter is K=0.5. This Figure shows 

that the average SEP improves as the fading coefficient m is increased. For example, 

when SNR=12 dB, the average SEP is 3×10
-2

 with m=1, 7×10
-3

 with m=2, and 1×10
-3

 

with m=3. This is because the fading severity of the cascaded channels weakens as m is 

increased. For fixed m, an increase in the SNR reduces the average SEP, as expected. 
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Figure 5. The Effect of the Relative Geometrical Gain μ on the Average SEP 
Performance 

Figure 5 presents the effect of the relative geometrical gain μ on the average SEP of a 

multiple-mobile-relay-based M2M cooperative network over N-Nakagami fading 

channels. The number of cascaded components is N=2, and the fading coefficient is m=2. 

The relative geometrical gains considered are μ=10, 0, and -10 dB. The power allocation 

parameter is K=0.8, and the number of mobile relay nodes is L=2. This Figure shows that 

the average SEP improves as μ is reduced. For example, when SNR=12 dB, the average 

SEP is 4×10
-2

 with μ=10 dB, 1.5×10
-2

 with μ=0 dB, and 4×10
-3

 with μ=-10 dB. This 
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indicates that the location of the relay should near the destination. For fixed μ, an increase 

in the SNR reduces the average SEP, as expected. 
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Figure 6. The Effect of the Number of Cascaded Components N on the 
Average SEP Performance 

Figure 6 presents the effect of the number of cascaded components N on the average 

SEP performance of a multiple-mobile-relay-based M2M cooperative network over N-

Nakagami fading channels. The number of cascaded components considered is N=2, 4, 

which denote double-Nakagami, and 4-Nakagami fading channels, respectively. The 

fading coefficient is m=2, and the relative geometrical gain is μ=0 dB. The power 

allocation parameter is K=0.9, and the number of mobile relay nodes is L=2. This Figure 

shows that the average SEP is degraded as N is increased. For example, when SNR=14 

dB, the average SEP is 8×10
-3

 with N=2, and 4×10
-2

 with N=4. This is because the fading 

severity of the cascaded channels increases as N is increased. For fixed N, an increase in 

the SNR reduces the average SEP, as expected. 

 

5. Conclusion 

In this paper, the symbol error probability (SEP) of a multiple-mobile-relay-based 

M2M cooperative network over N-Nakagami fading channels was investigated. The 

moment generating function (MGF) method was used to obtain approximate average SEP 

expressions for various modulation techniques. Analytic and simulation results were 

presented which show that the number of mobile relay nodes L, the fading coefficient m, 

the number of cascaded components N, the relative geometrical gain μ, and the power 

allocation parameter K can significantly influence the SEP performance. The expressions 

derived here are simple to compute and thus complete and accurate performance results 

can easily be obtained with negligible computational effort. In the future, we will consider 

the impact of correlated channels on the average SEP performance. 
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Appendix A 

First, define two new random variables 

,
1

SRl RDl
SRl RDl

SRl RDl

γ γ
Z γ γ W

γ γ
 

 
                           (25) 

The PDF of Z can be expressed as [13, Eq. 21]
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and the PDF of W as 
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