A Grey Relational Analysis Model of Scientific Research Ability on Music Based on AHP and Its Realization

Guo Xiaoxi¹, Ni Yan² and Wangjia³

¹ Hebei Normal University of Science and Technology,
 ² Science College of the PLA University of Technology
 ³ Jincheng Colleges, Nanjing University of Aeronautics and Astronautics
 ¹E-mail:guoxx1980@126.com; ²E-mail: niyan8107@163.com; ³E-mail: jcwangjia@nuaa.edu.cn

Abstract

In the process of analyzing scientific research ability on music, many problems present, including that indicators are not comprehensive enough, the model has much subjectivity, the evaluation results are not reliable or the value of quantity of indicators has errors. Thus, this paper proposes a grey relational analysis model of scientific research ability on music based on AHP. It selects out dominant indicators and recessive indicators to evaluate software features and hardware features. A multi-layer evaluation index system for scientific research ability on music is established. AHP is introduced to compute the weight of indicators. After standardization of indicators, a multi-scheme grey relational coefficient model and a grey relational degree model are established according to grey theory to evaluate the level of scientific research ability on music. Proved effective by the case study, this model can realize the evaluation of scientific research ability on music on the computer.

Keywords: Music research, research ability of scientific, AHP, grey theory, grey relational analysis model

1. Introduction

With the advancement of social and spiritual life, people developed a keen interest in music. As an integral part of music development, scientific research ability on music has received wide attention by many experts, music academies and music institutions. System, teaching, research team, professional qualities are all subject to analysis. Relevant research with fruitful results plays an active role in promoting the development of music [1-4]. Despite achievements, new requirements present themselves. Evaluation indicators are supposed to be quantified and fuzzy information needs dealing with [5-8].

Current studies about scientific research ability on music more focus on strategies to improve music classes but fail to provide an effective evaluation model for scientific research ability on music. Fuzzy information that causes some errors is left idle. As a result, indicators are not comprehensive enough, the model has much subjectivity, the evaluation results are not reliable and the value of quantity of indicators has errors. Therefore, this paper draws merits from previous studies and proposes an optimized evaluation index system for scientific research ability on music. According to grey theory [9-12], it establishes a grey relational analysis model based on AHP [13-14] and proves its efficacy through a case study.

2. Multi-layered Evaluation Index System for Scientific Research Ability on Music

2.1 Principles for Constructing the Evaluation Index System

The evaluation of scientific research ability on music involves with multiple factors and multi-layered analysis. Fundamental principles for selecting indicators are listed below:

(1) Systematic principle: indicators should be logically related to each other. At the same time, each of them reflects the scientific research ability on music uniquely.

(2) Scientific principle: indicators should be selected according to real situation and reflect the scientific research ability on music reasonably.

(3) Comprehensive principle: indicators should be representative and reflect the scientific research ability on music comprehensively. It shouldn't prefer one aspect over another.

(4) Independent principle: it should avoid double counting to ensure the reliability of the analysis.

(5) Measurable principle: indicators should be quantified or measured effectively to ensure the reliability of the analysis.

2.2 Indicators of Scientific Research Ability on Music for Hardware Ability

Hardware features mainly consist of research platform and research result. The purpose of music research platform is to provide support to academic development and the development of music teams through music research. Research result is the production of the research. Specific indicators are shown in Table 1.

Table 1. Indicators of Scientific Research Ability on Music for Hardware Ability

Evaluat	First	Second	
ion index	class	class	Third class indicators
system	indicators	indicators	
			Funding support Rh_{1-1}^{dom}
		Dominant ability Rh_1^{dom}	Team building Rh_{1-2}^{dom}
		ability m_1	Lab development
Evaluat	Music		Rh_{1-3}^{dom}
ion index system for scientific	research	Recessive Rh_l^{rec} ability	Incentive mechanism
	platform <i>Rh</i> ₁		Rh_{1-1}^{rec}
research			Innovation mechanism
ability on			Rh_{1-2}^{rec}
music based on hardware features			Talent cultivation and
			echelon construction
			Rh_{1-3}^{rec}
			Number of research
Rh	Resear ch results <i>Rh</i> ₂	Dominant	projects Rh_{2-1}^{dom}
			Number of papers and
		ability Rh_2^{dom}	journals Rh_{2-2}^{dom}
			Number of monographs

International Journal of Signal Processing, Image Processing and Pattern Recognition Vol. 8, No. 5 (2015)

		and compiled works
		Rh_{2-3}^{dom}
		Number of academic
		awards Rh ₂₋₄ ^{dom}
		Music techniques
		Rh_{2-1}^{rec}
	Recessive Rh_2^{rec} ability	Music styles Rh_{2-2}^{rec}
		Reputation and
		popularity Rh_{2-3}^{rec}
		Music material
		collection Rh_{2-4}^{rec}
		Academic
		communication Rh_{2-5}^{rec}

2.3 Indicators of Scientific Research Ability on Music for Software Ability

Software features are defined as the interaction between components of hardware features and their role and function mainly presented in the process of transformation and service. Software features are important to the sustainable development of music research. Specific indicators are shown in Table 2.

Table 2. Indicators of Scientific Research Ability on Music for Software ability

		-	
Evaluat ion index system	First class indicators	Second class indicators	Third class indicators
Evaluat ion index system for scientific research ability on music based on software features	Transformat ion and service ability of music research Rs_1	Dominant ability Rs ₁ ^{dom}	Economic benefits Rs_{1-1}^{dom} Social service Rs_{1-2}^{dom} Integration of production and research Rs_{1-3}^{dom} Result transmission Rs_{1-4}^{dom} Excellent ratio of talents Rs_{1-5}^{dom} Reject ratio of talents Rs_{1-6}^{dom}
Rs		Recessive ability Rs ₁ ^{rec}	$\frac{Rs_{l-1}^{rec}}{Mining} \frac{Rs_{l-2}^{rec}}{Communication}$ Rs_{l-3}^{rec}

Protection Rs_{1-4}^{rec}
Integration Rs_{1-5}^{rec}

3. Grey Relational Analysis Model for Scientific Research Ability on Music based on AHP

In the analysis, some indicators have accurate value of quantity while others have fuzzy value of quantity. As they have different scales, it is necessary to standardize them.

(1)For accurate value

Suppose the j-th indicator of the i-th object has an accurate value of quantity r_{ii} . If it is

a positive indicator, its value of quantity v_{ij} after standardization is:

$$v_{ij} = r_{ij} / \left(r_{kj} \mid \max_{1 \le i \le m} \left(r_{ij} \right) \right)$$
(1)

If it is a negative indicator, its value of quantity v_{ij} after standardization is:

$$v_{ij} = \left(r_{kj} \mid \min_{1 \le i \le m} \left(r_{ij}\right)\right) / r_{ij}$$
⁽²⁾

(2). for interval value

The interval value of an indicator has two types, one of which is transfer the quantitative description of value of quantity to the interval value. The transfer principle is shown in Table 3

Table 3. Transfer Quantitative Description to Interval Value

Interval	Ideality of	Ideality of negative
value	positive indicators	indicators
0.9-1.0	Excellent	Unbearable
0.8-0.9	Good	Undesirable
0.6-0.8	Mediocre	Poor
0.4-0.6	Poor	Mediocre
0.2-0.4	Undesirable	Good
0-0.2	Unbearable	Excellent

The other is fuzzy interval value. Suppose the interval value of quantity of the j-th indicator of the i-th object is $r_{ij} = [r_{ij}^L, r_{ij}^R]$. If it is a positive indicator, the standardized value of quantity v_{ij} is:

$$\begin{cases} v_{ij} = \left[v_{ij}^{L}, v_{ij}^{R} \right] \\ v_{ij}^{L} = r_{ij}^{L} / \left(r_{kj} \mid \max_{1 \le i \le m} \left(\left[v_{ij}^{L}, v_{ij}^{R} \right] \right) \right) \\ v_{ij}^{R} = r_{ij}^{R} / \left(r_{kj} \mid \max_{1 \le i \le m} \left(\left[v_{ij}^{L}, v_{ij}^{R} \right] \right) \right) \end{cases}$$

$$(3)$$

If it is a negative indicator, the standardized value of quantity v_{ij} is:

$$\begin{cases} v_{ij} = \left[v_{ij}^{L}, v_{ij}^{R} \right] \\ v_{ij}^{L} = \left(r_{kj} \mid \min_{1 \le i \le m} \left(\left[v_{ij}^{L}, v_{ij}^{R} \right] \right) \right) / r_{ij}^{R} \\ v_{ij}^{R} = \left(r_{kj} \mid \min_{1 \le i \le m} \left(\left[v_{ij}^{L}, v_{ij}^{R} \right] \right) \right) / r_{ij}^{L} \end{cases}$$

$$\tag{4}$$

3.2 Grey relational coefficient

After standardization, all indicators are unified as positive indicators. The standard interval of indicator j is defined as:

$$v_j^O = \left[v_j^{oL}, v_j^{oR} \right] = \left[\max_{1 \le i \le m} \left(v_{ij}^L \right), \max_{1 \le i \le m} \left(v_{ij}^R \right) \right]$$
(5)

Fuzzy distance d_{ij} between the j-th indicator of the i-th object and its corresponding standard interval is:

$$d_{ij} = \left[\left| v_{ij}^{L} - v_{j}^{oL} \right|^{p} + \left| v_{ij}^{R} - v_{j}^{oR} \right|^{p} \right]^{1/p} / 2^{1/p}$$
(6)

In particular, if the value of quantity of the indicator is an accurate one, then fuzzy distance d_{ij} is the distance between two dots:

$$d_{ij} = \left| v_{ij} - v_j^o \right| \tag{7}$$

Thus, we can get the dominant fuzzy distance of the i-the object about indicators of hardware features $d_{ij}^{Rs^{dom}}$ and indicators of software features $d_{ij}^{Rh^{dom}}$, and the recessive fuzzy distance of the i-the object about indicators of hardware features $d_{ij}^{Rs^{rec}}$ and indicators of software features $d_{ij}^{Rh^{rec}}$.

According to grey theory, the dominant grey relational coefficient of the i-the object about indicators of hardware features $\zeta_{ij}^{Rs^{dom}}$ and indicators of software features $\zeta_{ij}^{Rh^{dom}}$, and the recessive grey relational coefficient of the i-the object about indicators of hardware features $\zeta_{ij}^{Rs^{rec}}$ and indicators of software features $\zeta_{ij}^{Rh^{rec}}$ are expressed as:

$$\zeta_{ij}^{Rs^{dom}} = \frac{\min\min_{1 \le i \le m} \min_{1 \le j \le n_{rsd}} \left(d_{ij}^{Rs^{dom}} \right) + \rho \max_{1 \le i \le m} \max_{1 \le j \le n_{rsd}} \left(d_{ij}^{Rs^{dom}} \right)}{d_{ij}^{Rs^{dom}} + \rho \max_{1 \le i \le m} \max_{1 \le j \le n_{rsd}} \left(d_{ij}^{Rs^{dom}} \right)}$$
(8)

Where n_{rsd} refers to the number of dominant indicators of hardware features. ρ Is the grey relational discrimination coefficient.

$$\zeta_{ij}^{Rh^{dom}} = \frac{\min_{1 \le i \le m} \min_{1 \le j \le n_{rhd}} \left(d_{ij}^{Rh^{dom}} \right) + \rho \max_{1 \le i \le m} \max_{1 \le j \le n_{rhd}} \left(d_{ij}^{Rh^{dom}} \right)}{d_{ij}^{Rh^{dom}} + \rho \max_{1 \le i \le m} \max_{1 \le j \le n_{rhd}} \left(d_{ij}^{Rh^{dom}} \right)}$$
(9)

Where n_{rhd} refers to the number of recessive indicators of hardware features.

$$\zeta_{ij}^{Rs^{rec}} = \frac{\min\min_{1 \le j \le n_{rsr}} \left(d_{ij}^{Rs^{rec}} \right) + \rho \max_{1 \le i \le m} \max_{1 \le j \le nn_{rsr}} \left(d_{ij}^{Rs^{rec}} \right)}{d_{ij}^{Rs^{rec}} + \rho \max_{1 \le i \le m} \max_{1 \le j \le nn_{rsr}} \left(d_{ij}^{Rs^{rec}} \right)}$$
(10)

Where n_{rsr} refers to the number of dominant indicators of software features.

International Journal of Signal Processing, Image Processing and Pattern Recognition Vol. 8, No. 5 (2015)

$$\zeta_{ij}^{Rh^{rec}} = \frac{\min_{1 \le i \le m} \min_{1 \le j \le n_{rhr}} \left(d_{ij}^{Rh^{rec}} \right) + \rho \max_{1 \le i \le m} \max_{1 \le j \le n_{rhr}} \left(d_{ij}^{Rh^{rec}} \right)}{d_{ij}^{Rh^{rec}} + \rho \max_{1 \le i \le m} \max_{1 \le j \le n_{rhr}} \left(d_{ij}^{Rh^{rec}} \right)}$$
(11)

Where n_{rhr} refers to the number of recessive indicators of software features.

3.3 Weight of Indicators based on AHP

Hardware features and software features pose influence on scientific research ability on music to a different degree. Dominant indicators and recessive indicators have different importance. This paper employs AHP to get the weight of indicators.

First of all, construct the judgment matrix A :

$$A = \begin{bmatrix} r_{1} & r_{2} & \cdots & r_{n} \\ r_{1} & a_{11} & a_{12} & \cdots & a_{1n} \\ r_{2} & a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ r_{n} & a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}$$
(12)

 a_{ij} Refers to relevant importance of indicator r_i to indicator r_j . The judgment scale adopts 1-9 ratio scale, as is shown in Table 4.

Ratio scale a_{ij}	Meanings
1	r_i is as important as r_j
3	r_i is slightly more important than r_j
5	r_i is more important than r_j
7	r_i is much more important than r_j
9	r_i is extremely more important than r_j
2, 4, 6, 8	In between
Reciprocal value	$a_{ij} = 1/a_{ji}$

Table 4. Judgment Ratio Scale

The weight of indicator r_i is:

$$w_{i} = \left(\prod_{j=1}^{n} a_{ij}\right)^{\frac{1}{n}} / \sum_{i=1}^{n} \left(\prod_{j=1}^{n} a_{ij}\right)^{\frac{1}{n}}$$

(13)

If it is in line with the consistency, then we can get the weight sequence of indicators $W = (w_1, w_2, \dots, w_n)$. There is:

$$\begin{cases} CI = (\lambda_{max} - n)/n - 1\\ CR = CI / RI \end{cases}$$
(14)

Where, λ_{max} the maximum eigenvalue of judgment A.

3.4 The Realization of Grey Relational Model for Scientific Research Ability on Music

After the weight and grey relational coefficient are acquired, the grey relational degree σ_i^{Rh} of hardware features is:

$$\begin{cases} \sigma_{i}^{Rh} = w_{Rh_{1}} * \sigma_{i}^{Rh_{1}} + w_{Rh_{2}} * \sigma_{i}^{Rh_{2}} \\ \sigma_{i}^{Rh_{1}} = w_{Rh_{1}^{dom}} * \sum_{j=1}^{3} \left(w_{Rh_{l-j}^{dom}} * \zeta_{ij}^{Rh_{1}^{dom}} \right) + w_{Rh_{1}^{rec}} * \sum_{j=1}^{3} \left(w_{Rh_{1-j}^{rec}} * \zeta_{ij}^{Rh_{1}^{rec}} \right) \\ \sigma_{i}^{Rh_{2}} = w_{Rh_{1}^{dom}} * \sum_{j=1}^{4} \left(w_{Rh_{2-j}^{dom}} * \zeta_{ij}^{Rh_{2}^{dom}} \right) + w_{Rh_{1}^{rec}} * \sum_{j=1}^{5} \left(w_{Rh_{2-j}^{rec}} * \zeta_{ij}^{Rh_{2}^{rec}} \right) \end{cases}$$
(15)

Where, $\sigma_i^{Rh_1}$, $\sigma_i^{Rh_2}$ refer to first class grey relational degree; W_{Rh_1} , W_{Rh_2} , $W_{Rh_1^{dom}}$,

 $W_{Rh_{l-j}^{rec}}$, $W_{Rh_{l-j}^{dom}}$ and $W_{Rh_{l-j}^{rec}}$ are weight of indicators in the corresponding layer.

The grey relational degree σ_i^{Rs} of software features is:

$$\begin{cases} \sigma_{i}^{Rs} = \sigma_{i}^{Rs_{1}} = w_{Rs_{1}^{dom}} * \sigma_{i}^{Rs_{1}^{dom}} + w_{Rs_{1}^{rec}} * \sigma_{i}^{Rs_{1}^{rec}} \\ \sigma_{i}^{Rs_{1}^{dom}} = \sum_{j=1}^{6} \left(w_{Rs_{1-j}^{dom}} * \zeta_{ij}^{Rs_{1}^{dom}} \right) \\ \sigma_{i}^{Rs_{1}^{rec}} = \sum_{j=1}^{5} \left(w_{Rs_{1-j}^{rec}} * \zeta_{ij}^{Rs_{1}^{rec}} \right) \end{cases}$$
(16)

Where, $\sigma_i^{Rs_1}$ refer to first class grey relational degree; $\sigma_i^{Rs_1^{dom}}$ and $\sigma_i^{Rs_1^{rec}}$ refer to second class grey relational degree. $w_{Rs_1^{dom}}$, $w_{Rs_{1-j}^{rec}}$, $w_{Rs_{1-j}^{dom}}$ and $w_{Rs_{1-j}^{rec}}$ are weight of indicators in the corresponding layer.

The comprehensive weighed grey relational degree σ_i is:

$$\sigma_i = w_{Rh} * \sigma_i^{Rh} + w_{Rs} * \sigma_i^{Rs}$$
⁽¹⁷⁾

Rank according to comprehensive weighed grey relational degree from the biggest to the smallest. Thus, scientific research ability on music is measured.

4. Case Study

Periodical performance reviews for talents from an academy of music is studied as the case to check the model and the algorithm. Under the evaluation index system, obtain the value of quantity of indicators. And obtain weighed of indicators based on AHP, as is shown in Table 5 and 6.

First		Second		Third	Initial	value of q	uantity
class indicators	Weight	class indicators	Weight	class indicators	Object I	Object II	Object III
				Rh_{1-1}^{dom}	0.9	0.9	1.0
		${\it Rh}_1^{dom}$	0.751	Rh_{1-2}^{dom}	0.9-1.0	0.7-0.8	0.8-0.9
Ph	0.333			Rh_{1-3}^{dom}	0.8-0.9	0.6-0.7	0.9-1.0
Rh_1	0.555			Rh_{1-1}^{rec}	0.9-1.0	0.8-0.9	0.8-0.9
		Rh_1^{rec}	0.249	Rh_{1-2}^{rec}	0.8-0.9	0.8-0.9	0.9-1.0
				Rh_{1-3}^{rec}	0.8-0.9	0.9-1.0	0.7-0.8
		Rh_2^{dom}	0.751	Rh_{2-1}^{dom}	6	8	8
				Rh_{2-2}^{dom}	36	24	26
				Rh_{2-3}^{dom}	3	2	1
				Rh_{2-4}^{dom}	4	3	4
Rh ₂	0.667	567 <i>Rh</i> ₂ ^{rec}		Rh_{2-1}^{rec}	0.9-1.0	0.8-0.9	0.7-0.8
				Rh_{2-2}^{rec}	0.9-1.0	0.7-0.8	0.8-0.9
			0.249	Rh_{2-3}^{rec}	0.7-0.8	0.9-1.0	0.8-0.9
				Rh_{2-4}^{rec}	0.9-1.0	0.8-0.9	0.8-0.9
				Rh_{2-5}^{rec}	0.9-1.0	0.7-0.8	0.8-0.9

Table 5. Value of Quantity of Indicators of Hardware Features

Table 6. Value of Quantity of Indicators o	f Software Features
--	---------------------

Second		Third class	Initial value of quantity			
class indicators	Weight	indicators	Object I	Object II	Object III	
		Rs_{1-1}^{dom}	0.7-0.8	0.9-1.0	0.8-0.9	
		Rs_{1-2}^{dom}	0.9-1.0	0.6-0.7	0.8-0.9	
Dominant ability	0.751	Rs_{1-3}^{dom}	0.8-0.9	0.9-1.0	0.6-0.7	
Rs_1^{dom}		Rs_{1-4}^{dom}	0.9-1.0	0.6-0.7	0.8-0.9	
		Rs^{dom}_{1-5}	0.35	0.28	0.24	
		Rs_{1-6}^{dom}	0.05	0.10	0.12	
	0.249	Rs_{1-1}^{rec}	0.9-1.0	0.8-0.9	0.7-0.8	
Recessive		Rs_{1-2}^{rec}	0.8-0.9	0.8-0.9	0.9-1.0	
ability		Rs_{1-3}^{rec}	0.7-0.8	0.9-1.0	0.8-0.9	
Rs_1^{rec}		Rs_{1-4}^{rec}	0.9-1.0	0.8-0.9	0.7-0.8	
		Rs_{1-5}^{rec}	0.9-1.0	0.8-0.9	0.6-0.7	

According to grey relational analysis model for scientific research ability proposed in this paper, we can get grey correlation coefficient of different layers, as shown in Table 7 and 8.

	Rela	ational	degree	Seco	Relati	ional de	egree	Thir	Rela	ational d	egree		
First class indic ators	Ob jec t I	Obje ct II	Obje ct III	nd class indi cato rs	Obje ct I	Obj ect II	Obj ect III	d class indi cato rs	Obj ect I	Obje ct II	Obje ct III		
								$Rh_{\!1\!-\!1}^{dom}$	0.50 0	0.500	1.000		
				Rh_1^{dom}	$\begin{array}{c} 0.50\\1 \end{array}$	0.25 9	0.62 6	Rh_{1-2}^{dom}	1.00 0	0.333	0.500		
Rh_1	0.2	0.15	0.259					Rh_{1-3}^{dom}	0.50 0	0.250	1.000		
<i>π</i> η	22	6	0.239					Rh_{1-1}^{rec}	1.00 0	0.500	0.500		
				Rh_1^{rec}	0.16 6	0.20 8	0.15 2	Rh_{1-2}^{rec}	$0.50 \\ 0$	0.500	1.000		
								Rh_{1-3}^{rec}	0.50 0	1.000	0.333		
					0.61 7		0.45	Rh_{2-1}^{dom}	0.28 6	1.000	1.000		
				Rh_2^{dom}		0.32		Rh_{2-2}^{dom}	1.00 0	0.231	0.265		
						7	7	8	0	Rh_{2-3}^{dom}	1.00 0	0.231	0.130
								Rh_{2-4}^{dom}	1.00 0	0.286	1.000		
Rh ₂	0.5 54	0.30 7	0.378					Rh_{2-1}^{rec}	1.00 0	0.500	0.333		
								Rh_{2-2}^{rec}	1.00 0	0.333	0.500		
			Rh_2^{rec}	$h_2^{rec} = \begin{bmatrix} 0.21 \\ 6 \end{bmatrix}$	0.13 3	0.11 6	Rh_{2-3}^{rec}	0.33 3	1.000	0.500			
							Rh_{2-4}^{rec}	1.00 0	0.500	0.500			
								Rh_{2-5}^{rec}	1.00 0	0.333	0.500		

Table 7. Grey Relational Coefficient of Indicators of Hardware Features

Second	Rel	ational degr	ee	Third	Grey rela	tional coe	fficient
class indicators	Object I	Object II	Object III	class indicators	Object I	Object II	Object III
				Rs_{1-1}^{dom}	0.333	1.000	0.500
				Rs_{1-2}^{dom}	1.000	0.250	0.500
Rs_1^{dom}	0.605	0.396	0.249	Rs_{1-3}^{dom}	0.500	1.000	0.250
Λ3 ₁	0.005			Rs_{1-4}^{dom}	1.000	0.250	0.500
				Rs_{1-5}^{dom}	1.000	0.333	0.242
				Rs_{1-6}^{dom}	1.000	0.333	0.146
		0.149	0.120	Rs_{1-1}^{rec}	1.000	0.500	0.333
				Rs_{1-2}^{rec}	0.500	0.500	1.000
Rs_1^{rec}	0.191			Rs_{1-3}^{rec}	0.333	1.000	0.500
				Rs_{1-4}^{rec}	1.000	0.500	0.333
				Rs_{1-5}^{rec}	1.000	0.500	0.250

Table 8. Grey Relational Coefficient of Indicators of Hardware Features

With the weight of hardware features and software features taken into account, we can get the comprehensive weighed grey relational degree of each indicator, namely, $\sigma_1 = 0.786$, $\sigma_2 = 504$, $\sigma_3 = 503$. By comparing the three, we can judge that object I is the optimal one and conductive to later research.

5. Conclusion

This paper proposes an optimized evaluation index system for scientific research ability on music and conducts the analysis from the scientific, comprehensive and systematic view. According to grey theory, a grey relational analysis model is established based on AHP. Its efficacy has been proved through a case study. Compared to previous research, this paper innovates in two ways. One is the construction of the evaluation index system. The other is the model is simple, practical and reliable. It is easy to achieve on the computer. With the algorithm and the model, the research focus shall be shifted to realize the evaluation through the intelligent design system on the computer. With computer-aided analysis, the evaluation of scientific research ability on music can be better fulfilled.

References

- J. Cheng, "Cultivating scientific ability of music teachers", Musical Instrument, no. 3, (2010), pp. 26-29.
- [2] X. Jianhua, "On cultivating professional capacity of music teachers in higher vocational colleges", Songs Bimonthly, no. 1, (2014), pp. 115-116.
- [3] K. Jia, "On the types and contents of music teaching evaluation of colleges", Jiaoyu Jiaoxue luntan, no. 5, (2014), pp. 149-150.
- [4] X. Ping, "Discussion on staff training of music and art teachers in colleges", Education and Vocation, no. 12, (2009), pp. 65-66.
- [5] Y. Guangrong, L. Meng and C. Dabo, "A Study on Evaluation System of Scientific Research on Music in Colleges", Explorations in Music, no. 3, (2011), pp. 125-127.
- [6] L. Meng and C. Dabo, "On the Research Status of Appraise System for the Musical Scientific Study Capacity", Journal of Wuhan Conservatory of Music China, no. 3, (**2010**), pp. 24–26.

- [7] A. Changqun, "On the Ability of Studying Music and Its Countermeasures", Explorations in Music, no. 4, (2010), pp. 95-97.
- [8] L. Meng and C. Dabo, "Types and features of implicit and explicit factors in scientific research ability on music", JIAOXIANG-Journal of Xi'an Conservatory of Music, vol. 30, no. 3, (**2011**), pp. 135–136.

International Journal of Signal Processing, Image Processing and Pattern Recognition Vol. 8, No. 5 (2015)