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Abstract 

A new method of energy distribution estimation in the joint time-frequency domain 

using the Channelized Instantaneous Frequency (CIF) and Local Group Delay (LGD) is 

proposed. The signal energy distribution is estimated by discarding and displacement of 

energy parts. The signal energy leads to high concentrated distribution in the time-

frequency domain due to the relocation of the CIF and LGD values.  

In addition to this, a channelized instantaneous bandwidth and local group duration 

are used to remove undesired energy part. The channelized instantaneous bandwidth and 

local group duration express a local stretching of the signal in frequency and time 

respectively. This method is being used for speech signal analysis. 
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1. Introduction 

Time-frequency methods are well suited to the analysis of non-stationary 

multicomponent FM signals, such as speech signals. The method is based on group delay 

and instantaneous frequency surfaces computed from the Short Time Fourier Transform 

(STFT). In general, there are two characteristic curves in the frequency-time plane: one 

which gives the instantaneous frequency as a function of time and the other which gives 

the group delay time as a function of frequency. Many different methods have been 

proposed for analyzing time-varying signals. Such as Amplitude Maximum of the 

Spectrum (MS), Amplitude Maximum of the Envelope (ME), Moving Window Method 

(MWM) and Modified Moving Window Method (MMWM) [1, 2]. In this Modified 

Moving Window Method is used for calculation of classical spectrogram. 

Both CIF and LGD are components of the gradient of the STFT complex phase. Other 

components are the signed channelized instantaneous bandwidth and signed local group 

duration. All mentioned components of the gradient of the STFT complex phase are used 

in the presented approach [1]. The concentrated spectrogram is calculated using CIF and 

LGD values. 

 

2. Non-stationary Signals 

A stationary signal is one whose frequency doesn’t change over time; e.g., 

deterministic and random signals. On the contrary, you have non-stationary signals where 

frequencies change over time [3]. Non-stationary signals are divided into continuous and 

transient types. Transient signals are defined as signals which start and end at zero level 

and last a finite amount of time. The synthetic FM two-mono component signal is 

1( ) exp( (2 0.25 sin(4 ) / )) exp( (2 0.25 sin(4 ) / ))s a d b dy t j tf f t j tf f t        

Where af =300Hz, bf =700Hz and df =150Hz. In general, the multicomponent complex 

signal waveform can be represented by the following model: 



International Journal of Signal Processing, Image Processing and Pattern Recognition 

Vol. 8, No. 5 (2015) 

 

 

128   Copyright ⓒ 2015 SERSC 

1

( ) ( )exp( ( ))
N

m m

m

y t b t j t


  

Where N is a number of monocomponents, ( )mb t and ( )m t represents envelope and 

instantaneous phase of 
thm  monocomponent.  

 

3. Time-frequency Representation 

The two classical representations of a signal are the time-domain representation ( )y t  

and the frequency-domain representation ( )S f . In both forms, the variables t  and f  are 

treated as mutually exclusive. Consequently, each classical representation of the signal is 

non-localized with respect to the excluded variable; that is, the frequency representation is 

essentially averaged over the values of the time representation at all times, and the time 

representation is essentially averaged over the values of the frequency representation at all 

frequencies. 

 

3.1 Short Time Fourier Transform 

The Short-Time Fourier Transform (STFT), or alternatively short-term Fourier 

transform, is a Fourier-related transform used to determine the sinusoidal frequency and 

phase content of local sections of a signal as it changes over time. The short-time Fourier 

transform is derived in the following manner: 

*( , ) ( , )exp( ( , )) ( ) ( )exp( ) .....(1)Y t A t j t y t h j d       




      

Where complex conjugate is denoted by an asterisk, 

( , ) ( , )A t Y t   and  ( , ) arg ( , ) ,t Y t    ( , ), ( , )A t t R     

The complex waveform, ( )y t should have non zero values and has to be differentiable in 

every instant, ( , )Y t  means resultant STFT and ( )h t represents an analyzing window 

function. ( , )A t  and ( , )t  denote accordingly amplitude and phase instantaneous 

spectra. 

 

3.2 Cross Spectral Method 

Cross spectral analysis allows us to determine the relationship between two time series 

as a function of frequency. The method is on the basis of derivatives with respect to both 

time and frequency in STFT phase and re-mapping of the STFT surface. The phase 

derivatives are computed as the arguments of cross-spectral surfaces, which are the 

product of the STFT of the signal and the complex conjugate of the STFT of the signal 

delayed in time and/or frequency [10]. While phase derivatives may be estimated by other 

methods, the primary advantage of the cross-spectral representation is that there is no 

need to phase unwrap the STFT surface to resolve the discontinuities of the principle-

value representation of the argument function. 

In the cross-spectral processes, the spectral magnitude is not used directly in the 

computation of frequency or group delay estimates, but it does play an important role in 

calculating average or mean frequencies [3, 5]. Spectral amplitude is also used as a 

criterion for isolation and estimation of the individual FM signal components of 

multicomponent signals. This criterion is stated as a separability condition under which 

these individual signal components do not interfere with each other on the STFT surface. 

 

 

 

3.3 Channelized Instantaneous Frequency & Local Group Delay 

http://en.wikipedia.org/wiki/List_of_Fourier-related_transforms
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This section relates the widely used concepts of instantaneous frequency and group-

delay [9]. Instantaneous frequency is defined as the time derivative of the instantaneous 

phase (1).  Instantaneous Frequency (IF) is one of the basic signal parameter to provide 

important information of time-varying spectral changes in non-stationary signals [11]. 

The advantages of using the spectrogram for the TFR in this multicomponent signal IF 

estimation approach are its simplicity and absence of cross-terms.Group delay is a useful 

measure of time distortion, and is calculated by differentiating with respect to frequency. 

The group delay is a measure of the slope of the phase response at any given frequency. 

Presented in this method, subsequently for each locus of STFT for each locus ( , )t  of 

STFT corrected localization is estimated in the time-frequency plane by Channelized 

Instantaneous Frequency (CIF) and Local Group Delay (LGD)[1, 2]. They are expressed 

respectively: 

( , ) ( , )

( , ) ( , ) .....(2)

t t
t

t t

  

   



 




 


 

And are the obtained new localizations as follows: 

( , ) ( ( , ) / (2 ), ( , )) .....(3)t t t t        
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(A)         (B) 

Figure 1. Energy Distribution of Test Signal in the Time-frequency Domain: 
A) Classical Spectrogram, B) Concentrated Spectrogram 

Where t and  mean accordingly time and angular frequency. CIF is denoted by 

( , )t   and LGD is expressed as ( , )t  . The new distribution of energy is called 

concentrated spectrogram [7, 8]. In Figure 1 classical and concentrated spectrograms of a 

synthetic FM two-monocomponent signal are presented. 

    

4. Number of Degrees of Freedom Density 

The short-time Fourier transform can be used assign local bandwidth in every instant 

and in every output channel (1), similarly as the channelized instantaneous frequency [8, 

9]. For both continuous time and frequency it is called the channelized instantaneous 

bandwidth and can be calculated as follows: 

1
( , ) ( , ) .....(4)

2
B t t

t
 




 


 

http://en.wikipedia.org/wiki/Derivative
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Where ( , ) ln( ( , ))t A t    and ln() is the complex natural logarithmic function. 

The local group duration can be defined in the time-frequency domain: 

1
( , ) ( , ) .....(5)

2
T t t 

 


 


 

The channelized instantaneous bandwidth and the local group duration express a local 

stretching of the signal respectively in frequency and in time. Then a number of degrees 

of freedom density (distribution; NDFD) can be estimated by the following formula [12]:  

( , ) ( , ) ( , )t B t T t     

Where ( , )t    is a number of degrees of freedom density distributed in the joint 

time-frequency domain. In order to distinguish from the global number of degrees of 

freedom NDFD is given by ( , )t  . NDFD for the test FM chirp signal is presented in 

Figure 2. 
NDFD
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Figure 2. Number of Degrees of Freedom Density of Test Signal 

5. Speech Signal Analysis 

In speech signal analysis to estimate the classical and concentrated spectrogram of 

speech signals, such as bird, voice and wind signals [13]. In Fig.3 Classical and 

concentrated spectrogram of various speech signals presented.   

 

Classical Spectrogram of bird signal
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Classical Spectrogram of Train man voice signal
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Concentrated Spectrogram of Train Man voice signal with th=0.05

time (s)

fr
e
q
u
e
n
c
y
 (

H
z
)

 

 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

-8000

-6000

-4000

-2000

0

2000

4000

6000

8000

 
  (C)        (D) 

Classical Spectrogram of we were away a year ago voice signal
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Concentrated Spectrogram of we were away a year ago voice signal with th=0.05
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(E)      (F) 

 

 

 

 

     
    

Classical Spectrogram of wind signal
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Concentrated Spectrogram of wind signal with th=0.05
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Figure 3. Classical Spectrograms of A (Bird Signal), C (Train Man Signal), E 
(Voice Signal), G (Wind Signal) and Concentrated Spectrograms of B (Bird 

Signal), D (Train Signal), F (Voice Signal), H (Wind Signal) 
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6. Conclusion 

A new aspect of this method is the usage of Number of Degree of Freedom Density 

(NDFD) to allow the distribution of energy in the time frequency domain and for 

separation of energy into two parts. NDFD distribution is obtained as a product of the 

channelized instantaneous bandwidth and local group duration. Some part of energy, 

where NDFD values are small, is referred to as the attractogram. The second part of 

energy is treated as an irrelevant effect of STFT and it is strongly dependent on 

Heisenberg Gabor principle. The energy distribution of proposed concentrated 

spectrogram method is highly concentrated and accurate compared to classical 

spectrogram for various signals.  
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