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Abstract 

In recent years, several researches have been conducted on spectral clustering to 

classify non-linear data in various applications. Considering the effect of selecting the 

appropriate eigenvectors on spectral clustering performance; various methods have been 

proposed weighting and ranking features. However, these methods can independently 

evaluate the impact of each eigenvector. Nevertheless, it is possible that several 

eigenvectors have duplicate or inadequate information on some clusters. Thus, we have 

presented a new method for finding the optimal combination of eigenvectors by several 

different evaluation criteria. In order to detect simultaneously the optimum condition in 

various criteria, the multi-objective genetic algorithm is applied. Findings of performed 

experiments on datasets with various features demonstrate a resounding success in the 

proposed method. 

 

Keywords: Spectral clustering, Multi-objective genetic algorithm, Feature selection, 

Clusters evaluation, Pareto Front 

 

1. Introduction 

Grouping data into a set of categories or clusters of similar properties is of crucial 

importance in controlling and data management methods. In order to learn and understand 

a new phenomenon, human beings always search for characteristics and features so that 

they can describe it and compare it with other known phenomena afterwards. This 

comparison is based on overall similarity criteria and in accordance with specific 

standards and rules. In general, learning systems are accompanied by supervised or 

unsupervised method. Clustering is one of the most important methods of unsupervised 

learning. The aim of clustering is to put unlabeled data into groups, so that data 

similarities within each cluster are maximized and data similarities within different 

clusters are minimized. Clustering process leads to reduction of information size; because 

information about several homogeneous groups is kept instead of keeping information 

about a large number of objects. Many clustering methods have been proposed in the last 

few years [1-3]. In addition to the similarity measurement and delimited data methods, the 

quality of clustering method results is highly dependent on the number of data dimensions 

and data distribution in space.  

One of the major challenges for data clustering problem is the presence of outlier and 

noisy data in data sets. Moreover, once the data distribution is non-linear and non-convex, 

classic clustering methods are not able to partition them correctly. In other hand, with the 

rapid growth of databases and the increase in their dimensions, the accuracy of classic 

clustering methods is considerably decreased. Thus, subspace learning algorithms have 
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been proposed that try to map the original high-dimensional data to low dimensional 

space so that statistical and initial properties of the original data are preserved. 

One of the fields of subspace learning method is the spectrum analysis [4, 5], which in 

recent years has been considered by many researchers. Spectral clustering is an 

appropriate solution to data clustering in non-linear separable space. Spectral analysis 

attempts to partition the graph data. In order to model the data by a graph, each data is 

taken as a given node [6]. Three conditions have been stated to draw the edges [7]: 1) 

Graph is considered complete2) Edges are simply drawn between data that bear a striking 

resemblance to each other. 3) Each vertex is connected to several neighbors -The closest 

ones to the data corresponding to the vertex. Weight of edges will be considered 

according to the similarity of their corresponding data nodes. Various methods have been 

proposed for graph clustering [8, 9] which attempt to partition the given graph nodes, so 

that nodes in each cluster are interconnected strongly and nodes among the clusters have a 

weak relationship with each other. 

Eigenvectors of the adjacency matrix of the graph, which are obtained from its Eigen 

decomposition, include valuable information about partitioning the vertices of a graph – 

dataset – [10] and it can also be used for clustering and reducing the dimension of data. 

Furthermore, Guthrie [10] showed that spectral graph partitioning is equal to its graphical 

decomposition based on eigenvectors and eigenvalues of the Laplacian matrix of the 

graph. Calculating the distance matrix of data in spectral clustering and using 

eigenvectors of its different Laplacian matrixes, it is being attempted to select and apply 

eigenvectors possessing vast knowledge about data partition by providing various 

algorithms. For this purpose, eigenvectors of Laplacian matrix are sorted based on their 

eigenvalues in descending order and a limited number of the sorted list is selected to 

represent data. 

Various methods of spectral clustering have practically been employed in parallel 

computing [11]. These methods include the VLSI design [12], image, speech, video 

and texts processing [13-18], bioinformatics [19-22], etc., [23, 24]. One of the major 

challenges in spectral clustering is the selection method of the appropriate vectors 

containing adequate information about all the clusters. NJW1 algorithm [25] is one 

of the most widely used spectral clustering methods. In this approach, for the 

clustering problem, data in k clusters choose k eigenvectors corresponding to the 

largest eigenvalues (adjacent normalized matrix). However, in practice, when data 

noise is high or clusters are close to each other, these k eigenvectors are not able to 

recognize data structures well. Furthermore, the selection of inappropriate 

eigenvectors containing little information results in a reduction in the accuracy of 

clustering [26]. In 2008, Jiang [26] proposed a method for selecting better 

eigenvectors for the first time. In recent years, many attempts have been made to 

weight, rank and select appropriate eigenvectors that contain more information [26-

29]. In this paper, a method based on selecting a combination of eigenvectors that 

lead to the best clustering has been presented. A set of appropriate eigenvectors are 

first introduced as a sample in the proposed method. These vectors can be selected 

based on a variety of previous methods. Therefore, Multi -objective Genetic 

algorithm has been employed so as to investigate various combinations of 

eigenvectors and evaluate them by different criteria that determine the quality of 

clustering. Thus, the effect of different combinations of eigenvectors are compared 

and evaluated with each other in the quality of clustering in order to obtain the best 

possible eigenvectors in homogeneous clusters to separate data. In the following 

parts, first, we review the previous work done in the field of spectral clustering and 

in the second Section the related problems are reviewed. The proposed method is 

provided in Section 3. Results of the proposed method are shown in Section 4 and 
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they will be compared with other related methods. Finally, the conclusion has been 

presented in Section 5. 

 

2. Spectral Clustering 

In this Section, the general spectral clustering method is firstly presented and 

NJW method is depicted as one of the most successful (effective) methods of 

spectral clustering afterwards. Some explanations are provided concerning the 

importance of selecting the right eigenvectors in the following Section. 

Spectral clustering methods have been defined on the basis of spectral graph 

theory [30]. These methods attempt to partition data graph by extracting the features 

from eigenvectors of adjacency matrix of graph. Laplacian matrix which is gained 

from normalization of adjacency matrix of graph has been applied in most spectral 

clustering methods. Afterwards, the eigenvectors obtained from the Laplacian 

matrix can be used to discover the existing clusters within the data. Various 

methods for spectral clustering have been proposed based on the normalization 

method and graph cuts [6, 9, 14, 25, 31-35], in which NJW spectral clustering 

algorithm is the most widely used [36]. 

 

2.1. Ng-Jordan-Weiss (NJW) Method and its Improvement 

Considering the data set X= {x1, x2, …, xn} in 
d
 space with K clusters, the similarity 

matrix A
n×n

 can be obtained as follows: 

(1) 
 2exp ( , )

0

i j
ij

d x x i j
A

i j

  
 



 

Where d(xi,xj) is the distance between Xi and Xj data and the value of σ parameter 

determines the radius of adjacency pairs in the same clusters. 

Aij is the element of i-th row and j-th column of the similarity symmetric matrix that is 

equal to the weight of the edge between i-th and j-th data in the undirected graph data. 
Thus, NJW method selects the first k(the number of clusters set by the user) 

eigenvector of the above matrix in a normalized formas the main features of data for the 

optimal partitioning graph data. NJW method is detailed as below [25, 28]:  

1- Similarity matrix An×n
 calculated using equation (1) 

2- Calculating the diagonal matrix D(
1

n

ii ij
j

D A


 ) and laplacian matrix L=D
-1/2

A D
-

1/2
, which is the normalized form of the similarity matrix. 

3- Computing the large K eigenvalues (λ1≥λ2≥…≥λk) of matrix L, with v1,, v2, …, vk 

eigenvectors equivalent to them and forming the column matrix V=[v1,v2,…,vk]
n×k

. 

4- Forming matrix Y by re- normalization of V as: 

(

2)  
1

22

1

k

ij ij ij
j

Y V V


   

5- Each row of matrix Y in the space k
 is considered as new features of the data 

corresponding to it in the data set X. Then mapped data in the new space are placed in k 

clusters by K-Means algorithm. 

By mapping data onto the new space, the spectral clustering method of NJW, unlike 

classical clustering methods such as K-Means, will be able to find non-convex clusters. 

Due to the importance of the similarity matrix A in converting space, it is essential that a 

proper value is considered for the parameterσby the user in the equation (1); since 

parameter σ directly controls the degree of similarity data. In various data sets regarding 

the distribution of data in each cluster, determining a constant value for this parameter can 

have undesirable effects on spectral clustering results [37, 38]. For this reason, the value 

of σi for each data point Xi is computed locally in [37, 38].The value of σi has been 
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considered equal to the distance between Xi and its t-th adjacent neighbor. Thus, the 

similarity of two different data in a similarity matrix is calculated as follows: 

(3) 
 exp ( , ) ,ij i j i jA d x x i j   

 

The optimal value for t depends on the number of data and clusters. However, in 

this paper and most similar researches, it is considered as a constant 7 . 

 

2.2. Previous Works on Selecting Eigenvectors 

For the first time the importance of selecting appropriate eigenvectors in the quality of 

clustering results was stated by Xiang [26]. Jiang represented that, contrary to 

expectations, the accuracy of clustering results decreased by selecting more eigenvectors 

and the irregular increase in data size. In other words, in spectral clustering, selection of 

appropriate features not only does not lead to reduction of clustering accuracy, but also 

the elimination of eigenvectors which contain little information about clusters causes the 

intra-cluster distances and the convergence within clusters to increase and clusters will be 

separated easily. 

For example, in Figure 1 (a), a simulated non-convex data set with four clusters has 

been shown in two dimensions. Due to the non-linear structure of the data set, we need to 

map data into feature space so as to decompose the existing clusters. In Figure 1 (b), the 

first four eigenvectors of Laplacian matrix of the data set- proportional to the largest 

eigenvalue- have been shown in feature space. According to the Figure 1 (b), to 

decompose data in feature space, the third and fourth eigenvectors perform much better 

than the first and second ones. In the proposed method of Xiang [26], regardless of the 

data distribution in the input space, the relevance of each eigenvector is determined based 

on its ability to separate data within clusters. Afterwards, suitable eigenvectors participate 

in the clustering according to a preference-weighted measure. 

 

 

(a) 

 

 

(b) 
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Figure 1. The Importance of Eigenvectors Selection in Separation of Four 
Clusters in Non-convex Data 

Shi [27] in 2009 selected the appropriate vectors, based on data distribution and 

variation of values for each eigenvector. Shi's fundamental principle [27] was that there 

are eigenvectors for the data on each cluster that describe them as a large amount and data 

on other clusters are represented as values approaching zero. In another methodology in 

2010, Zhao [28] computed the power of data separation in eigenvectors by the entropy to 

prove the importance of each feature. Another approach was proposed by Ashkezari in 

2011 [38], in which the data are mapped into a nonlinear space by KPCA to extract the 

nonlinear features. Afterwards, clustering is separately performed based on each obtained 

eigenvector and the quality of obtained clusters is evaluated. If the quality of clustering is 

higher than a certain threshold, weight proportional to its fitness clustering result is given 

to the desired eigenvector. Finally, clustering is performed on specific weighted 

eigenvectors. In most of the work done for weighting and selection of appropriate 

eigenvectors, the attempt to determine the significance of each eigenvector is made 

separately [26, 27, 29, 38]. 

Zhao [28] in 2010 indicated that the combination of eigenvectors, which efficacy of 

which for separating data within clusters has been examined distinctly, does not 

necessarily represent an accurate presentation of the entire data structure. When the 

clusters are unbalanced or possess different forms and distributions, these eigenvectors 

contain inadequate or duplicate information about the data or some clusters [28, 38]. It 

causes these vectors to describe some clusters well; while they have little information 

about separating other clusters [27]. 

 

2.3. SCWES Method 

In data-driven method SCWES
2
 [26], regardless of data distribution in the input space, 

relevance of each eigenvector is determined based on its ability to separate data from 

clusters. In this method, it is assumed that the values of the k-th large eigenvector (ek), ekn 

can be in a unimodal or multimodal distribution based on the relevance of that 

eigenvector (0 ≤ 
keR ≤1). Thus, to calculate the probability density function (PDF) of 

eigenvector values ekn , combining two components, is as follows: 

(4) 
1 2( | ) (1 ) ( | ) ( | )

kn k kn k knkn e e kn e e kn ep e R p e R p e      

Where 
kne is the distribution parameter and 1( | )

knkn ep e  is the probability density 

function (pdf), ekn when ek is an irrelevant or redundant vector and 2( | )
knkn ep e  is 

probability density function (pdf), ekn when ek is a relevant vector. Moreover, 
keR  works 

as weight or probability of the mixture of the second component of the above equation.   
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In SCWES method, the distribution of the k-th eigenvector values (ekn) was considered 

to be as single Guassian (unimodal) where the vector is irrelevant (data not used for 

clustering) and if the vector is relevant (i.e., values of the vector can separate data in a 

cluster from other clusters), it was perceived as two Guassians (multimodal). SCWES 

method employs the EM iterative method (with the initial value for 0.5
keR  ) for local 

optimization of the parameters. Then, eigenvectors which their relevance is more than a 

certain threshold, will participate in clustering according to their weighted relevance. 

In Jiang's proposed method for separating the components of an image, good results 

were obtained. Although each vector selected in this method is solely informative for 

separating clusters, the combination of these vectors may lead to inadequate or duplicate 

information about the overall data structure. 

 

2.4. ESBER Method 

Zhao firstly defined the appropriate feature vectors using entropy in ESBER
3
 approach 

[28]. Afterwards, all presence permutations of eigenvectors as data features in clustering 

are searched and the optimum eigenvectors are finally selected as new data features. Due 

to the lack of access to the probability of points in the real world to calculate the entropy, 

the similarity between the eigenvectors is applied as follows: 

(5) 
{ } log (1 ) log(1 )

i j

V ij ij ij ij

V V V V

E S S S S

 

       

 

Where Sij is the similarity of two eigenvectors Vi and Vj. The similarity of two 

eigenvectors is calculated as: 

(6) 

1 2
2

1
exp

max min

n ik jk
ij

k
k k

V V
S



              

  

Where mink and maxk are the minimum and maximum values in the eigenvector K 

(column k of the matrix V). To determine the ranking and importance of the eigenvector 

Vi, the rate of entropy is calculated after removing that eigenvector (
{ / }iV VE ). The higher 

the entropy value is, the greater the importance of the feature Vi is to distinguish the data 

clusters. Since the high amount of entropy indicates the increase in similarity between 

data, clusters are close together or it leads to irregularity of data. Thus, an eigenvector 

contains additional information about clustering in which removing the feature causes 

more disruption in data. Finally, the number of Km eigenvectors with the highest rank of 

entropy of the V matrix is selected as candidate features of data. Afterwards, using a small 

training dataset which has actual labels, the suitability for each combination of 

eigenvectors, which are eliminated from Km superior features, is calculated by the 

following equation: 

(

7) 
2 _

( ) 10 _i
m

len remain
f ec Acc train

K

 
   

 
 

Where eci (1≤i≤ 2
Km

-1) is a possible combination of the selected eigenvectors for 

clustering. Acc_train is the clustering accuracy of the training data sets (the ratio of the 

data whose labels are predicted accurately to the total number of data) and len_remain is 

the number of eigenvectors which were not selected in the eci set (len_remain=Km-

len(eci)). Steps of ESBER method to clustering of n data in k cluster is as follows: 

1. Construction of similarity matrix using equation (3) and formation of the 

Laplacian matrix L (similar to NJW method) 
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2. Calculating the eigenvectors of the matrix L, defining the entropy of features and 

formation of the diagonal matrix V=[v1,v2,…,vn]
n×n

 , where 

1 2{ / } { / } { / }...
nV V V V V VE E E   . 

3. If the strategy of direct ranking is concerned, with the selection of the first K 

features of the matrix V as the matrix U, go to step 7, otherwise go to step 4. 

4. For the data of a training set, the first Km features (where Km=max(k,10)) of the 

matrix Vtrain
tn×Km

 are selected ( tn is the number of the training data). 

5. For each possible combination of eigenvectors, eci (some Vtrain columns), data 

matrix of Utrain
tn×L

, where L=len(eci) is the number of selected features, is formed. 

5.1 With the re-normalization of each row of Utrain, Ytrain matrix is formed using 

equation (2). 

5.2 Each row of Utrain is given as an entry and the clustering of K-Harmonic Means is 

performed on these entries. 

5.3 By calculating the accuracy of clustering for data of the training set in the new 

space, the efficiency of each (f(eci)) case is determined using equation (7). 

6. According to the suitability function in equation (7), the best combination of ec
*
 

eigenvectors is selected (Where *

,1
max ( )
i

i
ec i m

ec Arg f ec
 

 ) and therefore, the matrix 

Un×L*
(L

*
=len(eci

*
))is formed. 

7. Forming matrix Y with re-normalization of each row of U using equation (2). 

8. Each row of matrix Y is considered as new data. Therefore, data mapped into the 

new space are classified in K clusters by the K-Harmonic Means algorithm. 

Given Km>10, in step 5, the genetic algorithm is applied to find the optimal 

combination of features (eci
*
) instead of examining all possible combinations. 

 

3. The Proposed Method 

In the proposed method, a number of proper eigenvectors are selected to map data into 

a new space by various methods as a set of candidate features. Afterwards, using several 

different evaluation methods, attempts are made to select the best combination of 

eigenvectors by a multi-objective genetic algorithm. So that, in the new space, clustering 

algorithm can separate data into different clusters in the best state. Thee valuation 

measures and the search procedure to find the optimal combination of eigenvectors are the 

fundamental differences between the method proposed in this paper and the ESBER 

method. Two measures of data convergence and connectivity in each cluster are 

considered to estimate the quality of clusters. Convergence of clustering results by the 

total inner-cluster distance (IND) is calculated as follows [39]: 

(

8) 1

( ) ( )
i j

k

i j

j x C

IND C d x m
 

    

Where Cj is the clustering datasets j and mj is the cluster center j. In order to examine 

the data connectivity in each cluster, the neighborhood concept of each data is defined as 

follows: 

Definition 1- Existence of xi in the neighborhood of (close to) data t is given by: 

(

9) 
 

{ }
( , ) : ( , ) ( , ) 1

k i

i j i k i j
x X x

nn x t x Count d x x d x x t
 

     

To calculate the benchmark data connectivity of each cluster, instead of each pair of 

data neighboring each other which are not in a cluster, some penalties in accordance with 

the following equation is given by [40]: 
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(

10) 

 

 

1 1

Conn(C) , ( , )

1 ^ ^
,

0

n L

i i

i t

i r j s

i j

P x nn x t where

t if s r x C x C
P x x

otherwise

 



  
 



 

Where L is the maximum number of given neighbors and the function P is a penalty 

function for the two adjacent data which are not in a cluster
4
.  

In the proposed method for ranking and selection of sample eigenvectors, two 

approaches to eigenvector selection considering the amount of entropy (EBMOGA) and 

the highest eigenvalues (HEMOGA) have been employed. Thus, we are searching for the 

best combination of eigenvectors for the optimal clustering state. In order to search the 

optimal clustering state, convergence method of clusters (in equation 8) and data 

connectivity in clusters (in equation 10) must be minimized. Therefore, the multi-

objective genetic algorithm has been applied. In order to search through various clustering 

states, undefeated states are firstly located until the Pareto Front is formed [41]. 

Definition 2- Answer C* is called non-dominate among the individuals of population, 

providing there are the following conditions: 
(

11) 
* *: ( ) ( ) ( ) ( )C Population IND C IND C or Conn C Conn C     

Thus, in the last generation, from answers found in Pareto Front, the most optimal 

clustering state is selected by the following equation: 

(

12) 

 
1

( ) ,

( )
( ) 1

i j

k

mean i j j

j x C

means

IND C d x m C k

Conn C
f C IND

k

  



 
 
 
 

 
  

 

 
 

Where jC is the number of data in the cluster Cj. The algorithm of the proposed 

approach is as follows: 

 

Algorithm 1- Spectral Clustering of HEMOGA and EBMOGA 

Input: data set Xn×d
 and the number of clusters K 

Output: Vector of the cluster label Cn
 

1. Constructing the similarity matrix using equation 3 and forming the Laplacian 

matrix. (Similar to the NJW method) 

2. Calculating the eigenvectors of Laplacian matrix, ranking eigenvalues and 

forming the diagonal matrix V=[v1,v2,…,vKm]n×Km
, where v1 to vKm vectors in 

HEMOGA approach are selected based on eigenvalues and in EBMOGA approach based 

on the value of entropy. 

3. Initial population of individuals is created randomly.(Each chromosome is in the 

form of a binary string of length l; where each bit indicates the existence state of a 

corresponding eigenvector to be present in clustering) 

4. In order to optimize chromosomes towards local optimal in the space, each 

chromosome is considered as an initial clustering condition for the first step in k-means 

clustering algorithm. Then after running the k-means algorithm, a new state of data 

placement within various clusters is coded as new chromosome. 

5. The fitness of each chromosome is evaluated by using equations 8 and 10. 

6. If over half of the population is non-dominated, it goes to step 9. 

7. Each chromosome which has a probability proportional to the inverse number of 

individuals, who have overcome (dominate) it, can enter a new generation using the rank 

selection algorithm. 

                                                           
4 In this paper, the value of L, for various datasets, has been considered 3 according to experimental results. 
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8. Genetic operators (mutation and crossover) are applied and a new generation of 

chromosomes is created. Then it goes to step 4. 

9. According to the fitness function in equation 12, the best combination of 

eigenvectors ec
*
 is selected through the chromosomes of the last generation and then the 

matrix of U
n×L*

(L
*
=len(eci

*
)) is constructed. 

10. Constructing the matrix Y by re-normalization of each row of U using equation 2. 

Each row of matrix Y is considered as new data features of the data set X. Then 

by K-means algorithm, mapped data in the new space are placed in K clusters. 

Finally, a vector of the cluster label for each data C is defined as the output. 

 

4. Evaluation of the Proposed Method 

Since ESBER method uses 10% of ground-truth data as training data for evaluating the 

quality of selected properties (in equation 7), it is considered a semi-supervised method. 

While, it should be noted that the proposed method performs entirely unsupervised in 

comparison with the ESBER method. 

The results of the proposed method in comparison with NJW, SCWES and ESBER 

methods for spectral clustering has been collected from the UCI data sets for the nine data 

sets with different sizes and features in the following Table. 

 

Table 1. Performance Comparison on UCI Benchmark Datasets 

 
 

According to the results in Table 1, in most cases the results of the proposed method 

for ranking based on the highest eigenvalues (HEMOGA) and the entropy value 

(EBMOGA) performs much better than the NJW, SCWES and ESBER methods. 

 

5. Conclusion 

In this paper, a method for selecting the best combination of eigenvectors in spectral 

clustering was presented. Most methods for feature selection in spectral clustering are 

based on weighting each eigenvector considering the role of that feature in presenting 

clusters. But in [19], it was shown that some appropriate features may sometimes contain 

the same information about some clusters. Thus, it is essential that the effect of a set of 

features is considered together. Then in the proposed method employing the conventional 

methodologies, a set of sample features is firstly selected and therefore an optimal 

combination is searched by studying various evaluation methods. In this paper, a 

combination of the best features which simultaneously optimizes both convergence and 

connectivity criteria of clusters is discovered by the multi-objective genetic algorithm. 
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In future research, we seek a heuristic method for determining a relationship to  

the optimal adjustment of parameters L (number of neighboring to consider) and Km 

(number of sample eigenvectors). 
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