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Abstract 

Recent advances in 3D have increased the importance of stereoscopic content creation 

and processing. Therefore, converting existing 2D contents into 3D contents is very 

important for growing 3D market. The most difficult task in 2D-to-3D conversion is 

estimating depth map from a single-view image. Thus, in this paper, we propose a novel 

algorithm to estimate the map by simulating haze as a global image feature. Besides, the 

visual artifacts of the synthesized left- and right-views can also be effectively eliminated 

by recovering the separation and loss of foreground objects in the proposed algorithm. 

Experimental results show that our algorithm can produce a good 3D stereoscopic effect 

and prevent the separation and loss artifacts with low computational complexity. 
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1. Introduction 

A rapid growth of commercialization of 3D display has increased the demands of 3D 

media contents for supporting full utilities of 3D displays and has aspired humans to 

experience more realistic and unique 3D effects. In addition to generating better visual 

experiences than conventional 2D displays, emerging 3D display have many applications, 

including movies, gaming, photograph, education and so on. However, due to lack of 3D 

media contents, converting existing 2D contents into 3D contents for growing 3D markets 

is very necessary and meaningful. 

How to generate or estimate the depth map using only a single-view image is the most 

important and difficult problem in 2D-to-3D conversion. Previous 2D-to-3D conversion 

methods are mainly divided into two classes: software-based method and depth cues-

based method. The software-based method generates 3D content by using stereoscopic 

conversion tools, such as DDD’s TriDef and ArcSoft’s Media Converter, to retrieve depth 

maps. However, the stereoscopic visual effect produced by these tools is not obvious due 

to the limited information they used for conversion. A more feasible and effective method 

is the depth cues-based method. This kind of method is based on the key observation, that 

is, when observing the world, the human brain integrates various heuristic depth cues to 

generate the depth perception. The major depth perceptions are binocular depth cues from 

two eyes and monocular depth cues from a single eye [1]. The disparity of binocular 

visual system helps human eyes to converge and accommodate the object at the right 

distance. Monocular cues include focus/defocus, motion parallax, relative height/size, and 

texture gradient, providing various depth perceptions based on human experience. 

Therefore, humans can also perceive depth from the single-view image/video. The depth 

cues-based method assigns depth values using image classification [2], machine learning 

[3], depth from focus/defocus [4], depth from geometric perspective [5], depth from 

texture gradient, depth from relative height [6] and depth from multiscale local- and 

global-image features. For example, the computed image depth (CID) method [7] divides 

a single image into several sub-blocks and uses contrast and blurriness information to 
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generate depth information for each block. Han, et al., [8] generated the depth map by 

employing both vanishing points and super-pixels as geometric and texture cues. Cheng, 

et al., [9] assigned the depth map based on a hypothesized depth gradient model. The 

method can produce impressive results. However, if the assumption of the global depth 

does not hold or large foreground objects exists, the method may fail in the cases. Yang, 

et al., [10] generated a feasible perceptual depth map by using the local depth hypothesis 

that based on the structural information of the input image and salient regions. However, 

user interaction is required for this method.  

2D-to-3D depth generation algorithms generally face two challenges. One is the depth 

uniformity inside the same object. The other challenge involves retrieving an appropriate 

depth relationship among all objects. Generating a depth map from single 2D images is an 

ill-posed problem. Not all the depth cues can be retrieved from an image. To overcome 

these two challenges, this work presents a novel algorithm that uses a haze veil to 

generate a pseudo depth map rather than retrieving the depth value directly from the depth 

cue. Firstly, the proposed algorithm produces a simulated haze image to represent salient 

region segmentation. Then the pseudo depth map is automatically generated in single-

view image using the transmission information. Experimental results indicate that the 

proposed algorithm may generate promising stereoscopic results with slight side effects. 

 

2. Our Objective 

An image veil is proposed in this paper to segment the saliency region from a single 

input image. This veil is generated based on the key observation that scene radiance is 

attenuated exponentially with depth, as indicated by the transmission map. If we can 

recover the transmission, then we can also recover depth information [11, 12]. Thus, 

depth information can be measured by the transmission map. To date, numerous studies 

have been done for estimating the transmission map from a haze image. Therefore, if we 

may transform a haze-free image into a haze image for the purpose of 2D to 3D 

conversion, then we may obtain depth information using various existing methods. A 

simple and effective method for removing haze is inspired by Retinex theory [13]. Based 

on this theory, the input image I with haze is the product of object reflectance R that can 

be regarded as haze-free image and scene illumination L that can be regarded as haze veil, 

that is: 

( , ) ( , ) ( , )I x y R x y L x y                          .                         (1) 

where (x, y) is the position coordinate of a pixel. The main idea of the haze removal 

algorithm is to estimate the haze veil with the mean of the illumination component L that 

is obtained by convoluting the haze input image with a zero mean Gaussian smoothing 

function G. This process can be written as follows 

ˆ ( , ) ( , ) * ( , )L x y I x y G x y ,                                                 (2) 
H W

1 1

1
ˆ( , ) ( , )

H W x y

L x y L x y

 

   ,                                               (3) 

where L  is the estimated haze veil, and H and W denote the height and weight of the 

image, respectively. The haze veil is subtracted from the original input image in the 

logarithmic domain to remove the haze effect from the input image, and then the 

exponential transformation is used to obtain the final haze-removed result R , as showed 

below 

( , ) ln ( , ) ln ( , ) ( , ) ( , )r x y I x y L x y i x y l x y    ,                            (4) 

( , ) ex p ( ( , ))R x y r x y .                                                  (5) 

Figure 1 shows the flowchart of the haze removal algorithm, and Figure 2 illustrates a 

haze removing example. From these Figures, one can clearly see that the method uses the 
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illumination component image obtained by the Retinex algorithm to remove the veil layer 

from the input image. 
 

 

Figure 1. Flowchart of the Haze Removal Algorithm 

 
                      (a)                                                (b)                                                  (c) 

Figure 2. Illustration of the Haze Removal Procedure (a) Input Image (b) 
Estimated Haze Veil (c) Haze Removal Result 

Figure 3 illustrates the haze illusion by using two blocks to create the haze effect. Thus, 

we can deduce that the haze image [see Figure 3(c)] is obtained by adding the haze-free 

input image [see Figure 3(a)] to the haze veil [see Figure 3(b)]. Once the haze veil is 

derived from the input image, the haze effect is generated to compute the depth map of 

the input image. 

 

 

Figure 3. Generation of the Haze Illusion 

3. Proposed Algorithm 
 

3.1. Algorithm Procedure 

Specifically, the proposed veil algorithm has three steps to automatically convert 2D 

image into 3D one. The first step is to generate a simulated haze image by adding a haze 

veil on the haze-free input image, and the haze image is used to represent salient region 

segmentation. The second step is computing the depth map by using the transmission map 

estimation in haze removal algorithm, which including initial depth map extraction, 

refined map estimation and final depth map estimation. The goal of the algorithm is to 

generate a depth map without using any heuristic depth cues or any user interaction. 

Finally, the 3D stereoscopic image is generated based on the estimated depth map. The 

overall procedure of this approach is depicted in Figure 4. 
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Figure 4. The Overall Procedure for 2D-To-3D Conversion 

3.2. Pseudo Depth Map Estimation 

In general, the 2D-to-3D conversion from a single image has been assigned to a 

problem of how to generate depth-map information from 2D images. The depth map 

estimation is automatic and consists in the following three stages: haze image simulation, 

initial depth map extraction, refined map estimation and final depth map estimation. 

 

3.2.1. Haze Image Simulation 

In this section, we propose a method for simulating a haze image by adding a haze veil 

on the haze-free input image. The theory behind the haze simulation process is that if the 

haze veil can be subtracted from the degraded image to removal haze (see Figure 2), we 

can also simulate the haze image by adding the haze-free input image to the haze veil. In 

the haze removal experiments, we find that the veil estimated through a mean calculation 

of illumination component can only handle the uniform haze situation. If the haze is not 

uniform, the color distortion of haze removal result often occurs. However, it’s not always 

true that the haze is evenly distributed at each position since the natural haze is dependent 

on the unknown depth information. Thus, we present a new way to estimate a non-

uniform distributed haze veil in this paper.  

According to the Koschmieder model [14], the apparent luminance of the scene objects 

at different distance is different, so different haze veil should be assigned according to 

their position. Therefore, we multiply the uniform veil L  by the original image and apply 

the color inversion operation to obtain a depth-like map. Considering that the intensity of 

an image reflects the amounts of photons received by every position of an image, 

furthermore, the smaller the distance between the scene points and the camera, the 

stronger the intensity will be, thus the haze veil reflected by the depth-like map may be 

measured by its intensity. Therefore, we extract the intensity component of the depth-like 

map to produce the haze veil whose distribution is according to real fog density of the 

scene. Thus the haze veil for the input image, 'L  is estimated by 

1
'( , ) ( ( , ) ( , ))L x y 2 5 5 R x y L x y    ,                                       (6) 

where R is the input image without haze, L  is the mean of L̂  obtained by Eq. (3) and 
1


 

is an adjustment parameter set to 3 to generate a certain amount of haze in the input 

image. Then, we transform the image 'L  from RGB to YCbCr color space, and extract 

the intensity component of the image, which stands for our final haze veil. Once the 

depth-like haze veil 'L  is figured out, the haze veil can be added on the real input haze-

free image R to get the log-haze image i  after the conditions are set. The process is 

expressed as follows 

( , ) ln ( , ) ln '( , )i x y R x y L x y  .                                           (7) 

Finally, the simulated haze image Ihaze can be obtained using exponential 

transformation, that is ex p ( ( , ))
h a ze

I i x y . The saliency region is segmented from non-

saliency regions (e.g., the sky and objects or surfaces that are too dark or too light) in the 

image Ihaze, such that haze image simulation is actually the image segmentation based on 
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saliency. For example, Figure 5(a) and Figure 5(b) show the original 2D image and the 

estimated haze veil. The simulated haze image is shown in Figure 5(c). 

 

         
(a)                                                 (b)                                               (c) 

Figure 5. Process of Simulating Haze Image (a) Original 2D Image (b) Haze 
Veil (c) Simulated Haze Image 

3.2.2. Pseudo Depth-map Estimation 

Once the haze image Ihaze is obtained, we can adopt the transmission estimation method 

that widely used in haze removal to obtain depth information. For this purpose, the dark 

channel prior [11, 12] and a guided filter [15] are used to estimate the depth map. 

Specifically, we first estimate the atmospheric light A for the image Ihaze. Most 

algorithms estimate A from the pixels with highest intensities, which is fast but not 

accurate. He, et al., [11, 12] integrate the atmospheric light estimation with the dark 

channel prior and it makes the estimation result more accurate. This method is also 

adopted in this paper. 

The depth map is calculated based on the image degradation model [14] and the dark 

channel prior proposed by He [11, 12]. For the haze image, we first estimate the initial 

depth map ( , )m x y , this process can be written as 

2
{ , , } ( ', ') ( , )

( ', ')
( , ) 1 m in m in

c

h a ze

c
c R G B x y x y

I x y
m x y

A


 

  
     

  

                              (8) 

where c

h a ze
I is a color channel of Ihaze , ( , )x y is a local patch centered at (x, y), and ( ', ')x y  

is the pixel location that belong to ( , )x y . 
2

  is a constant parameter for adjusting the 

amount of haze for distant objects. The value of 
2

 is set to be 0.95 for all the results 

reported in this paper. 

It should be noticed that there are obvious block effects and redundant details in the 

initial depth map. In order to handle these deficiencies, we thus use the guided filter [15] 

and bilateral filter to refine the initial depth map. The detailed estimation process of the 

final depth-map is described in the following steps. 

Step 1. For the initial depth map, we first compute the linear coefficients ak and bk for 

the guided filter: 

 

   
  k

h a z e k kx , y

k 2

k

k k k k

1
I x , y m x , y u m

a

b m a u



 







 



                                       (9) 

where Ihaze is the guidance image and m  is the input image of the guided filter since the 

filter is a general linear translation-variant filtering process, which involves a guidance 

image and an input image [11]. In Eq. (9),   is a regularization parameter preserving 
k

a  

from being too large. 
k

u  and 2

k
  are the mean and variance of Ihaze in a window 

k
  that 
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centered at the pixel k.   is the number of pixels in 
k

 , and  
k

k ii
m 1 / m





   is 

the mean of m  in 
k

 . 

Step 2. Once the linear coefficients (ak, bk) are obtained, we can compute the filter 

output by 

   k k
m ' x , y a m x , y b                                                    (10) 

where  
k

k ii
a 1 / a





   and  

k
k ii

b 1 / b





  . m  is the initial depth map, and the 

filter output 'm  is the refined depth map. 

Step 3. A bilateral filter is used here to remove the redundant details for the refined 

depth map 'm  since the bilateral filter can smooth images while preserving edges. Thus, 

the redundant details of the refined depth map 'm  estimated by the algorithm presented 

above can be effectively removed. This process can be written as: 

   

   

( )

( )

'( ) '( ) '( )

ˆ ( )
'( ) '( )

p u

p u

p u u p p

u
p u u p

c s

N

c s

N

W W m m m

m
W W m m





 


 





                                     (11) 

where '( )um  is the refined depth map corresponding to the pixel u=(x, y), N(u) is the 

neighbors of u. The spatial domain similarity function Wc(x) is a Gaussian filter with the 

standard deviation is 
c

 : 
2 2

/ 2
( ) e c

x

c
W x


 , and the intensity similarity function Ws(x) is a 

Gaussian filter with the standard deviation is 
s

 , it can be defined as: 
2 2

/ 2
( ) e s

x

s
W x


 . In 

our experiments, the value of 
c

  and 
s

  is set as 3 and 0.4, respectively. Thus, we can 

obtain the final depth map ˆ ( , )m x y . 

Figure 6 shows the corresponding initial depth map, refined depth map and the final 

depth map for the original image in Figure 5(a). From these figures, one can see that the 

final depth map [see Figure 6(c)] generated using the proposed method reflects the 

relative positions between scene objects and their neighboring regions. Thus, the map is a 

pseudo depth map instead of a recovery of real depth information. Generally, the pseudo 

map is based on the visual attention of mapping the saliency regions from the position 

close to the viewer while mapping the non-saliency regions from farther positions. Thus, 

images from the saliency region attract more visual attention and can be regarded as the 

final depth map for 2D to 3D stereoscopic conversion. 
 

         
                           (a)                                               (b)                                               (c) 

Figure 6. Process of Estimating the Depth Map (a) Initial Depth Map (b) 
Refined Depth Map (c) Final Depth Map 

3.3 3D Image Visualization using Depth Map-based Rendering 

Once the depth map is obtained, the left-view and the right-view images can be 

synthesized by the following steps. Firstly, we compute the parallax value Parallax(x, y) 

from each pixel (x, y) in the estimated depth map. The computation of the parallax value 

can be written as 
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ˆ ( , )
( , ) 1

Z P P
3

m x y
P a ra lla x x y 

 
   

 

,                                            (12) 

where ˆ ( , )m x y  is the final depth map for the single image, 
3

  is the maximum parallax 

value. As can be seen in Figure 7(a), we can get the value of 
3

  by the similar triangle 

principle.          Specifically, V is the distance between screen and viewer, and the inter-

ocular distance E is about 6.35cm. D is the Max depth into the screen, and it is set to 

10cm. Thus, the computed 
3

  value is 0.578cm. Next, we should express the value 
3

  in 

the form of pixel. In our experiment, 17’’ monitor (1280  1024 Resolutions) is used here, 

so 1cm on the monitor is corresponding to 38 pixels. Thus, the maximum parallax value 

3
  is approximately 30 pixels for the image having a width size approximate to 1000. 

The zero parallax plane (ZPP) is set as the region with the depth value of Th, which is 

computed by ˆm a x ( ( , ) ) 1 0T h m x y   to prevent separation and loss of artifacts. 

 

        
                                         (a)                                                                    (b) 

Figure 7. Stereoscopic Generation (a) Max Parallax Computation (b) Right 
View and Left View Generation 

Then, we consider the input image as the center view of the stereoscopic pair, as shown 

in Figure 7(b). In order to produce the left or right-view image, each pixel of the input 

image is shifted by the amount of ( , ) / 2P a ra lla x x y  to left or right direction. The missing 

pixels at the image boundary will be filled to synthesize a right-view or left-view image 

with the same size of input original image. At last, the anaglyph images can be generated 

by using these left or right-view images. Viewers can feel the sense of depth with the help 

of anaglyph glasses (Left: red, Right: cyan) to see these images. For example, Figures 

8(a) and 8(b) is the Left-/right-view image produced by using the proposed approach for 

the input 2D image [Figure 5(a)], and Figure 8(c) shows our final 3D conversion result. 

 

         
(a)                                                 (b)                                                 (c) 

Figure 8. Process of 3D Image Visualization (a) Left-view Image (b) Right-
view Images (c) Stereoscopic Image 

Another example for illustrating the process of generating stereoscopic images is 

shown in Figure 9. Here, virtual left- and right-eye views [Figure 9(d) and Figure 9(e)] are 
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rendered using the depth map [Figure 9(c)] obtained from the proposed technique to 

evaluate performance. In most cases, the pseudo depth map is generated based on the 

visual attention, as shown in Figure 6(c). However, it should be noticed that the estimated 

depth area corresponding to some people in Figure 9(c) seems to be incorrect by saliency 

detection, but the approach may still provide good 3D perception, as shown in Figure 9(f).  
 

     
(a)                                               (b)                                               (c) 

     
                          (d)                                                  (e)                                               (f)  

Figure 9. Process of Generating Stereoscopic Images (a) Input Image (b) 
Simulated Haze Image (c) Estimated Depth Map (d) and (e) Left-view and 

Right-view Images, Respectively (f) Stereoscopic Conversion Result 

From our experiment, we find that perceptual and cognitive consistency is the most 

important factor in 2D to 3D stereoscopic conversion. Although the depth map estimated 

by the proposed method just provides a new way to simulate the virtual left- or right-view 

image and it does not recover the real depth information, human visual system may 

overwrite the depth perception and make the depth cues consist with our daily life 

experience. In other words, our eyes are ‘cheated’ by our brain. To our knowledge, there 

has been no formal investigation that has attempted to explain why the side effects of 

these methods are hard to be discovered even the depth is inverted. Therefore, 2D to 3D 

stereoscopic conversion does not require accurate metric depth map since human visual 

perception can generate correct results even when the depth map of object is inverted. 

Besides, when the light gradient and the relative position between the salient objects and 

other parts of the scene are preserved, human visual system may overwrite the depth 

perception with daily life experience. Hence, the light gradient and the relative position 

between the saliency region and non-saliency region play an important role on the depth 

perception. This could also explain the side effects of proposed algorithm are hard to 

discover when the saliency region or the depth is inverted. Our observations on Figure 

9(c) and Figure 9(f) confirm this conclusion. 

 

4. Separation and Loss Problem 

Despite the advantages mentioned above, in our experiment we find that the left- and 

right-views of our proposed method are sometimes not perfectly synthesized. That’s 

because the estimated depth image may sometimes cause visual artifacts such as the 

separation and loss of foreground objects, as shown in Figures 10(b) and 10(c). Here, the 

separation occurs when a foreground object which has a larger parallax value moves 

further than background and the loss occurs in the direction in which foreground objects 

move during the virtual left- and right-views synthesis procedure. Although many works 

have been done to synthesize virtual view images, conventional algorithms always 
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assume a perfect boundary match between a color image and the corresponding depth 

image, so the separation and loss effect are not considered [16]. 
 

       
(a)                                                 (b)                                               (c) 

Figure 10. Synthesized Virtual View Images with the Separation and the 
Loss Effects (a) Original Image (b) Left-view Image (c) Right-view Image 

(Red Ellipse: Separation Area, Green Ellipse: Loss Area) 

To solve the separation and loss problems, we perform a one-tap IIR filter to raise the 

parallax values of the foreground region of the separation area or the parallax values of 

the background region of the loss area to parallax that are similar to those of the 

background or the foreground. Since the pixel only move horizontally depending on the 

value of the corresponding parallax during the view synthesis step, the process can thus 

be written as: 

( , ) (1 ) ( , ) ( , 1)L i j p a ra lla x i j L i j                                        (13) 

( , ) (1 ) ( , ) ( , 1)R i j p a ra lla x i j R i j                                        (14) 

where L(i, j) and R(i, j) are the intensity values of the left- and right-view images, 

respectively.   ( 0 1  ) is a parameter that controls the parallax propagation strength. 

In our experiment, we set 0 .95  . By using this method, we can reduce the separation 

and loss in the synthesized view with low computational complexity, as shown in Figure 

11. 
 

       
(a)                            (b)                              (c)                                        (d) 

Figure 11. Synthesized Left- and Right-view Images Obtained by using 
One-tap IIR Filter (a) Left-view Image (b) Zooming Region for the 

Separation Area (c) Right-view Image (b) Zooming Region for the Loss 
Area (Red Ellipse: Interested Area) 

5. Experimental Results 
 

5.1 Qualitative Comparison 

Figure 12 shows some experimental results for single image, including data on seven 

sets of the original images, depth maps and red-cyan images. The method generates fair 

stereoscopic images which offer a good depth effect to viewers, as shown in Figures 12(a-

g). 
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(a)                                                                          (b) 

 

    
(c)                                                                         (d) 

 

  

 
(e)                                                 (f)                                                 (g) 

Figure 12. Examples of 2D to 3D Stereoscopic Conversion Results for a Set 
of Images 

We also evaluate the visual quality of the proposed algorithm by comparing with other 

2D-to-3D conversion approaches: the commercial software of ArcSoft’s Media Converter 

7 and the Cheng’s method [9]. Figure 13 shows the comparison of generated Red-Cyan 

images for the three testing images. From the figure, one can see that the 3D effects 

produced by Media Converter 7 is not obvious compared with the results generated by 

other two algorithms, since the simple and easy-to-use media converter mainly utilizes the 

color cue to extract depth information. Cheng’s algorithm [9] can produce vivid and 

realistic visual effects. However, a hypothesized depth gradient model is required for the 

method. When the assumption of the global depth does not hold or large foreground 

objects exist, the depth gradient hypothesis is invalid. Notice that the results obtained with 
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our algorithm seems visually close to the results obtained by Cheng’s algorithm without 

using any hypothesis or user interaction, thanks to the haze image simulation.  

 

   

 
 

   

 
 

   

 

Figure 13. Comparison of Red-Cyan Images for Three Testing Images. First 
column: Original 2D image. Second Column: Results Obtained by Arcsoft’s 
Media Converter 7. Third column: Results Obtained by Cheng’s method [9]. 

Forth Column: Results Obtained by the Proposed Method 

5.2. Quantitative Evaluation 

To quantitative assess and rate the different 2D-To-3D conversion methods, the seven 

images in Figure 12 and the three testing images in Figure 13 were used to perform the 

quantitative evaluation. Both depth quality and visual comfort were evaluated using a 

single - stimulus presentation method that is a slightly modified version of that described 

in previous works [9, 17]. Depth quality measures the sense of depth felt by the viewer, 

and visual comfort refers to the subjective sensation of comfort that accompanies the 

physiological change [18]. Thus, depth quality and visual comfort can be both measured 

by asking the viewer to report his/her level of perceived depth quality and visual comfort. 
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The synthesized Red-Cyan images were viewed with anaglyph glasses. The subjective 

evaluation was performed by 10 individuals with normal or correct-to-normal visual 

acuity and stereo acuity. The participants watched the stereoscopic images in a random 

order and were asked to rate each image based on two factors, depth quality and visual 

comfort. The overall quality of depth quality was assessed using a five-segment scale, as 

shown in Figure 14(a), and that for visual comfort was assessed by Figure 14(b). 

 

 
                                                     (a)                                                           (b) 

Figure 14. Rating Scales used for Evaluation (a) Depth Quality and (b) 
Visual Comfort 

Figures 15(a) and 15(b) show the values of the two factors acquired by Media 

Converter 7 and our proposed algorithm for the test images shown in Figure 12. From 

Figure 15, one can deduce that in the depth quality, viewers can feel a better sense of 

depth using the proposed algorithm compared to the results obtained by ArcSoft’s 

software. 
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(a) Depth Quality                                                  (b) Visual Comfort 

Figure 15. Quantitative Evaluation Results for Test Images Shown in Figure 
12 

For the three testing images shown in Figure 13, we compare our results with other two 

conversion methods: ArcSoft’s software and Cheng’s method [9]. Evaluation results 

demonstrate that the proposed algorithm produces a similar or better 3D visual effects 

compared with Cheng’s method for the input image, as shown in Figure 16. One can 

clearly see that the proposed algorithm has the best scores in depth quality and visual 

comfort. This confirms our observations on Figure 13. Furthermore, when the images 

vary in the lighting source, the proposed algorithm still works well in this case. This is 

because the illumination on the surface is well-preserved in the proposed method, so 

human can have depth perception with daily life experience. Thus, we can rank the three 
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methods for the test images in decreasing order with respect to visual comfort: the 

proposed method, Cheng’s method and ArcSoft’s software. 
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(a) Depth Quality                                       (b) Visual Comfort 

Figure 16. Quantitative Evaluation Results for the Test Videos Shown in 
Figure 13 

6. Conclusion 

A novel and automatic method was proposed to generate a pseudo depth map in single-

view image using the estimated haze veil. A haze image was simulated by adding a haze 

veil on the input image to represent salient region segmentation, and then it estimated 

pseudo depth map by using the transmission estimation method in haze removal 

algorithm. Using the depth map, left- and right-view images were synthesized, and finally 

the stereoscopic images were generated to provide a sense of depth to the viewers with the 

help of anaglyph glasses. Besides, the separation and loss artifacts of the synthesized 

results can also be effectively prevented with low computational complexity. The whole 

process of the proposed algorithm could be performed automatically without any heuristic 

cues or user interaction. The future work includes improving the computational efficiency 

of the proposed algorithm using GPU implementation or parallel computation. 
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