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Abstract 

A data adaptive approach to spectral analysis of audio signals is implemented in this 

paper. The audio signals are non-stationary as well as non-linear in nature and the 

traditional Fourier based spectral representation is not effective. The Hilbert spectral 

analysis implemented by noise assisted bivariate empirical mode decomposition (NA-

BEMD) is introduced here as an efficient spectral representation scheme of audio signals. 

In BEMD, the fractional Gaussian noise (fGn) and analyzing speech signal are used as 

two separate variables. Both signals are decomposed together yielding a finite set of 

intrinsic mode functions (IMFs) for individual variables (signals). The use of fGn 

implements BEMD with dyadic filterbank characteristics. The instantaneous frequencies 

of individual IMFs are computed by applying Hilbert transform and then the time-

frequency representation is achieved by arranging the energy with respect to time and 

frequency simultaneously. Such representation is called Hilbert spectrum (HS) which is 

analogous to spectrogram. The marginal HS derived from HS corresponds the total 

energy at each frequency component. The experimental results show that the Hilbert 

spectral analysis provides better representation of audio signal contents compared to the 

Fourier based approach.             

 

Keywords: Empirical mode decomposition, fractional Gaussian noise, Hilbert 

transform, spectral analysis, time-frequency representation 

 

1. Introduction 

Spectral analysis of audio signals places them in the frequency domain to observe how 

the signals respond to all the various frequencies of a given bandwidth. Frequency 

analysis is important because it is crucial to know how audio analysis can be performed at 

certain frequencies [1]. The frequency domain representation of audio signals appears 

advantageous for two standpoints: (i) the natural frequency concept permits concise 

description of analyzing audio signals, (ii) the selection of frequency components suitable 

for specific application [2]. Presumably, features salient in frequency domain are 

important in production, perception, and consequently hold promise for other efficient 

analysis [3]. With the rapid growth of the applications of audio signals different types of 

spectral analysis/representation are required to apply on such system [4]. The application 

includes audio coding, synthesis, production, enhancement, localization etc. which are 

mostly performed in the spectral domain [3, 5]. The effectiveness of the mentioned 

applications performed in frequency domain depends on the efficiency of spectral 

representation of the analyzing audio signals. According to the accepted mathematical 
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approach, spectral analysis methods are all based on an a priori defined basis, which is a 

collection of linearly independent vectors so that the data can be rendered as a linear 

combination of the basis. To be of practical use, the expansion of the data in terms of this 

basis is established as convergent, complete, and unique. The traditional Fourier spectral 

analysis uses the sine and cosine functions as the basis, which satisfies all the 

aforementioned requirements. As a matter of fact, the word spectrum is almost used as a 

synonym for the Fourier spectrum [6]. The audio signals are almost invariably the result 

of non-stationary and nonlinear process. With such signal, the Fourier spectral analysis 

can only offer little in the way of a physically meaningful insight. There are various 

methods to circumvent this difficulty. For example, the short time Fourier transform 

(spectrogram), the wavelet analysis, and the Wigner-Ville spectrum are the most popular 

methods designed to accommodate the non-stationary nature of the data. These methods, 

however, are all Fourier-based or of Fourier type, that is, through convolutional 

computation with respect to a priori selected basis [7]. Hence, an effective data adaptive 

approach to frequency domain analysis is required for better fit with the non-stationary 

and non-linear audio signals.  

In this paper, the empirical mode decomposition (EMD) [8] based Hilbert spectrum is 

used in spectral representation of audio signals. The key part of this approach is the EMD 

method with which any data set can be decomposed into a finite number of intrinsic mode 

functions (IMFs). An IMF is defined as any function having the same number of zero 

crossings and extrema and also having symmetric envelopes defined by the local maxima 

and minima. The recent development of EMD is focused on the use of ensemble EMD 

(EEMD) [9], complex EMD (CEMD) [10] and bivariate EMD (BEMD) [11]. The key 

advantage of the newly developed EMD methods is to achieve the accurate 

decomposition of the analyzing signal. The EEMD approach consists of sifting an 

ensemble of white noise-added signal and treats the mean as the final true result. The 

effect of the added white noise is to provide a uniform reference frame in the time-

frequency space; therefore, the added noise collates the portion of the signal of 

comparable scale in one IMF. The traditional EMD is prone to mode-mixing and is 

designed for univariate data. A noise-assisted approach in conjunction with BEMD is 

implemented here for spectral representation of audio signals in order to produce 

localized frequency estimates at the accuracy level of instantaneous frequency. Such noise 

assisted BEMD (NA-BEMD) approach utilizes the dyadic filter bank property of the 

BEMD providing the solution of to the problem of standard EMD [12]. The obtained 

IMFs admit well-behaved Hilbert transformation. This decomposition method is adaptive, 

and, therefore, highly efficient. Since the decomposition is based on the local 

characteristic timescale of the data and computes instantaneous frequency through the 

Hilbert transform. It can reveal the intra-wave frequency modulations as functions of time 

and thus give sharp identifications of imbedded structures. The final presentation of the 

results is an energy-frequency-time as well as energy– frequency distribution, designated 

as the Hilbert spectrum and marginal Hilbert spectrum respectively. Both are mainly 

based on the EMD – a fully data adaptive decomposition technique. It is equally 

applicable to nonlinear and non-stationary processes and gives a physically meaningful 

interpretation of the data. The rest of the paper is organized as follows. The concept of 

different types of EMDs and the corresponding spectral representation are described in 

Section 2, the simulation results are illustrated in Section 3 and Section 4 includes some 

concluding remarks. 

 

2. Data Adaptive Spectral Representation 

It is required to interpret the underlying process through the analysis method of 

the data. To better understand the physical mechanisms hidden in data, the dual 

complication of non-stationarity and nonlinearity should be properly dealt with. A 
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more suitable approach to revealing nonlinearity and non-stationarity in data is not 

to let the analyzer impose irrelevant mathematical rules. The method of analysis 

should be adaptive to the nature of the data. For the methods that involve 

decomposition of data, the adaptive requirement calls for an adaptive basis which is 

to be based on and derived from the data [13]. Unfortunately, most currently 

available data decomposition methods have a priori basis (such as trigonometric 

functions in Fourier analysis), and they are not data adaptive. Once the basis is 

determined, the analysis is reduced to a convolution computation. This well-

established paradigm is mathematically sound and rigorous. However, the ultimate 

goal for data analysis is not to find the mathematical properties of data; rather , it is 

to unearth the physical insights and implications hidden in the data. There is no a 

priori reason to believe that a basis arbitrarily selected is able to represent the 

variety of underlying physical processes [13]. Therefore, the results produced, 

though mathematically correct, might not be informative. The combination of the 

well-known Hilbert transform and the recently developed empirical mode 

decomposition (EMD) [8], termed as the Hilbert-Huang transform (HHT), indeed, 

represents such a paradigm of data analysis methodology. The HHT is designed 

specifically for analyzing nonlinear and non-stationary data. The key part of HHT is 

EMD and different types of EMDs are described in the following subsections . 

 

2.1. Traditional EMD 

The essence of EMD is to identify the oscillatory modes by their characteristic 

timescales in the data empirically and then decompose the data accordingly. The method 

is described in great detail in [8, 14]. As in [8], the time lapse between successive extrema 

is adopted as the definition of the timescale for a specific oscillatory mode. The 

decomposition method can simply use the envelopes defined by the local maxima and 

minima, separately. Once the extrema are identified, all the local maxima are connected 

by a signal reconstruction method, such as cubic spline to generate the upper envelope. 

The same procedure is repeated for the local minima to produce the lower envelope. The 

upper and lower envelopes should cover all the data between them. Their mean is 

designated as m1, and the difference between the data x(t) and m1 is the first component, 

h1, i.e., x(t) – m1 =h1.  

Representing a simple oscillatory motion, the IMF is the counterpart to the simple 

harmonic function. But the IMF is more general, it can have both amplitude and 

frequency modulations. From the construction of h1 described previously, it should have 

been an IMF. In reality, however, overshoots and undershoots are common, which can 

also generate new extrema and shift or exaggerate the existing ones. Even if the fitting is 

perfect, a gentle hump on a slope can be amplified in further steps to become a local 

extremum, for, when we perform the operation x(t) – m1 =h1, we have effectively changed 

the local reference zero line in rectangular coordinate to m1, which becomes a curvilinear 

coordinate system. After the first round of processing (which we term sifting, due to the 

nature of removing components of varying size), a hump could become a local maximum 

in h1. Basically, the sifting process serves two purposes: to eliminate riding waves and to 

make the wave profiles more symmetric. Toward these ends, the sifting process has to be 

repeated more times. In the second sifting process, h1 is treated as the data, then h1 – 

m11=h11. 

We can repeat the sifting procedure k times, until h1k is an IMF. It is then designated as 

the first IMF component from the data: h1k = c1. It is much more symmetric than h1. As 

described previously, the process is indeed like sifting: to separate the finest local mode 

from the data first. The sifting process, however, should be applied with care, for carrying 

the process to an extreme could make the resulting IMF a pure frequency-modulated 

signal of constant amplitude. To guarantee that the IMF components retain enough 

physical sense of both amplitude and frequency modulations, we have to determine a 
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criterion for the sifting process to stop. This can be accomplished simply by limiting the 

repetition until three consecutive siftings all give the same numbers of zero crossings and 

extrema as discussed in [14]. In general, c1 should contain the finest scale or the shortest 

period component of the signal. We can separate c1 from the rest of the data by x(t) – c1 = 

r1. (4) Since the residue, r1, still contains information of longer period components, it is 

now treated as the new data and subjected to the same sifting process as described 

previously. This procedure can be repeated to obtain all the subsequent rk values, and the 

final result is r1 – c2 = r2, to rK-1 – cK = rK.  

The sifting process can be stopped by any of the following predetermined criteria: 

either when the component, cK, or the residue, rK, becomes so small that it is less than the 

predetermined value of substantial consequence, or when the residue, rK, becomes a 

monotonic function from which no IMF can be extracted. Even for data with zero mean, 

the final residue still can be different from zero; thus for data with a trend, the final 

residue should be that trend. The complete decomposition can be represented as:  
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Figure 1. The Sifting Process to Compute EMD 

The sifting process of EMD is illustrated in Figure 1. The decomposition of the data x(t) is 

achieved into K  empirical modes (IMFs), and a residue, rK, which can be either the mean trend or 

a constant. The speech signal and its IMFs obtained by EMD are shown in Figure 2. As discussed 

here, to apply the EMD method, a mean or zero reference is not required. The zero reference for 

each component will be generated by the sifting process. Without the need of the zero reference, 

EMD eliminates the troublesome large DC term in data with nonzero mean values, an unexpected 

benefit. Thus, we have successfully defined a set of basic functions for this data. Any change in the 

data will result in a corresponding change of the basis function set. Therefore, this method is 

totally adaptive. The only basis that can represent the physics of a nonlinear and non-stationary 

process has to be adaptive [15]. This adaptiveness has to be so detailed that it will have to include 

intra-wave frequency modulation. Only by using an adaptive basis, can one fully accommodate the 

physics of changes in the processes. 
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Figure 2. The Speech Signal and its Different IMFs Including Residual 
Signal Obtained by Traditional EMD 

2.2. Instantaneous Frequency 

The instantaneous frequency (IF) represents the signal’s frequency at every time 

instance. IF is defined as the rate of change of the phase angle at the analysis time instant 

of the analytic version of the signal. Each IMF is a real valued signal. The analytic signal 

method [16] is used to calculate the instantaneous frequency of the IMFs. The analytic 

(complex) signal corresponding to k
th
 IMF ck(t) is defined as: 
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where []  is the Hilbert transform operator, ak(t) and k(t) are instantaneous amplitude 

and phase respectively of the k
th
 IMF. The Hilbert transform provides a phase-shift of 

±/2 to all frequency components, whilst leaving the magnitudes unchanged [17].  The 

Hilbert transform of any arbitrary time-series s(t) can be defined as: 
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With the definition, s(t) and )]([ ts  together form a complex conjugate yielding the 

analytic signal )]([)( tsjts  . The analytic signal is advantageous to determine the 

instantaneous quantities such as energy, phase and frequency. So, the corresponding 

instantaneous frequency of the k
th
 IMF can easily be derived as: 
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where )(
~

t
k

  represents the unwrapped version of the phase vector k(t). Using Eq. 

(2) and (4), the analytic signal associated with each of the IMFs and thus the 

instantaneous frequency (IF) of each of them is calculated. The IF values of the 

IMFs illustrated in Figure 2 are shown in Figure 3. It is noticed that IF values of 
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individual IMFs are completely disjoint at any temporal position. The overall effect 

of IF of all IMFs is used in time-frequency (TF) representation of the time domain 

signal.  

 

 

Figure 3. The Instantaneous Frequency (IF) Values of the First Five 
IMFs of Figure 2 

2.3. Hilbert Spectrum 

Hilbert Spectrum represents the distribution of the signal energy as a function of time 

and frequency. It is also designated as Hilbert amplitude spectrum H(f,t) or simply Hilbert 

spectrum(HS). After performing the Hilbert transform on each IMF, the signal can be 

expressed as: 
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where (.) represents the real part of the complex number and only K IMFs are taken 

into consideration leaving the residue [8]. This expression enables to represent the 

amplitude and IF as a function of time.  The instantaneous frequencies are first 

normalized to reflect the Nyquist properties of the frequency domain representation. The 

overall HS is expressed as the superposition of the individual IMFs’ HSs defined as:  
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where ),(
)(

tfH
k  is the HS of the k

th
 IMF. Hence, each element of the overall HS is 

defined as the weighted sum of the instantaneous amplitudes of all IMFs at f
th
 frequency 

bin.    
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where the weight factor )(
)(

tw
f

k
 takes 1 if the corresponding IF value falls within f

th
 

band, otherwise is 0. After computing the elements over the frequency bins, H represents 

the instantaneous signal spectrum in TF space as a 2D table. There are various forms to 

represent the Hilbert spectrum. If amplitude squared is more desirable commonly to 
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represent energy density, then the squared values of amplitude can be substituted to 

produce the Hilbert energy spectrum just as well. When the visualization is more 

preferable than the further analytic processing of the Hilbert spectrum, it can be presented 

as the smoothed version using some image filtering. It is noted that the time resolution of 

H is equal to the sampling rate and the frequency resolution can be chosen up to Nyquist 

limit. 

 

 

Figure 4. The Hilbert Spectrum (Left) and Marginal Hilbert Spectrum (Right) 
Corresponding to the Speech Signal Shown in Figure 1 

The marginal spectrum defines a measure of total energy contribution from each 

frequency value. It represents the cumulated amplitude over the entire data length in a 

probabilistic sense. As we have already derived the Hilbert spectrum H(f,t), the marginal 

spectrum h(f) can be easily defined as:  



t

dttfHfh ),()(                  (8) 

It is found that the marginal Hilbert spectra play a different interpretation rather than 

Fourier spectra [18]. The HS and the marginal HS corresponding to the speech signal 

shown in Figure 2 are illustrated in Figure 4. In the Fourier spectra, the existence of 

energy at a frequency, f, means a component of a sine or a cosine wave persisted through 

the time span of the data. The Fourier energy spectrum clearly represents a stack of 

harmonics. Whereas, the existence of energy in marginal Hilbert spectrum at the 

frequency, f, means only that, in the whole time span of the data, there is a higher 

likelihood for such a wave to have appeared locally. 

 

2.4. Bivariate EMD (BEMD) 

The univariate EMD is only suitable for univariate (real valued) signals. The complex 

empirical mode decomposition (CEMD) is an extension of the basic EMD suitable for 

dealing with complex signals [10]. The motivation to extend EMD is that a large number 

of signal processing applications have complex signals. In addition, this extension is 

applied on both the real and imaginary parts simultaneously because complex signals 

have a mutual dependence between the real and imaginary parts. Thus, if the 

decomposition is done separately, the mutual dependency will be lost. The bivariate 

empirical mode decomposition (BEMD) is more generalized extension of EMD. The 

main difference between BEMD and CEMD is that the latter uses the basic EMD to 

decompose complex signals, whereas BEMD adapts the rationale underlying the EMD to 

a bivariate framework [11, 19]. In BEMD two variables are decomposed simultaneously 

based on their rotating properties. The algorithm of BEMD, as proposed in [11], is as 

follows: 

1) For 1< q < Q, 
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a) Project )(ˆ tx  on direction q: ))(ˆRe()( txetp
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2) Compute the mean of all tangents:  
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3) Subtract the mean to obtain )()(ˆ)(ˆ tetxtc   

4) Test if )(ˆ tc  is an IMF: 

• If yes, repeat the procedure from the step 1 on the residual signal. 

• If not, replace )(ˆ tx  with )(ˆ tc  and repeat the procedure from step 1. 

In bivariate EMD, )(ˆ tx  is modeled as a complex variable )()()(ˆ tjtstx  ; 

where s(t) and (t) represents two observed real valued analyzing signals. The 

BEMD produces complex IMFs as well as residue. The real and imaginary part of 

any IMF represent the IMFs corresponding to the signals s(t) and(t) respectively. 

 

2.5. Noise assisted BEMD (NA-BEMD) 
 

The ensemble EMD makes use of the dyadic filter bank property of EMD when 

applied to white Gaussian noise (wGn); subsequent averaging over the noise ensemble 

benefits from the so induced large number of extrema, and yields more localized inherent 

modes present in the data, in addition to the decomposition which is almost free from 

mode-mixing [11]. However, a consequence of adding noise directly to the data is that a 

trace of residual noise is likely to remain in the IMFs. The amplitude of this residuum 

depends on the number of realizations averaged (size of ensemble), thus, compromising 

the “completeness” of the retained signal.  

To address the above issues, the noise-assisted BEMD (NA-BEMD) is employed here 

that has been originally designed for signals containing two data channels and has shown 

significant potential in not-stationary data analysis [20]. The NA-BEMD operates by first 

creating a signal consisting of one input data channel and adjacent independent 

realizations of fractional Gaussian noise (fGn) [21] in separate channel. The resulting 

bivariate signal, comprising data and noise channels, is processed using the BEMD 

method. The IMFs corresponding to the original data are reconstructed to yield the 

desired decomposition [11]. In this way, unlike EEMD, the physically disjointed input 

and noise subspaces within NA-BEMD prevents direct noise artifacts. It makes use of the 

dyadic filter bank structure of EMD for fGn for improved performance of the standard 

univariate EMD [20]. The fGn is a generalization of ordinary white noise. It is a versatile 

model of homogeneously spreading broadband noise without any dominant frequency 

band [22]. The statistical properties of fGn are entirely determined by its second-order 

structure, which depends solely on one single scalar parameter, the Hurst exponent (H) 

[21]. In discrete time, the fGn corresponds to a time series ,...]1,0,1...,),([ tt
H

  indexed by a 

real-valued parameter 10  H .  
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Figure 5. The IMFs of Speech Signal (Left Panel) and fGn (Right Panel) 
Obtained by NA-BEMD 

The BEMD algorithm acts as a dyadic filter bank on the analyzing signal when applied 

together with fGn, exhibiting greatly enhanced alignment of the corresponding IMFs of 

signal across the same frequency range compared to EMD. The noise assisted BEMD 

further alleviates the mode mixing problem. Notice that in this way the noise is never 

mixed with the useful data channel, as it resides in a different subspace, and is used to 

enforce a filterbank structure, and thus alleviate the problem of mode mixing and provide 

much better definition of frequency bands inherent to the data. A set of IMFs 

corresponding to only the original input signal is kept by discarding the IMF subspace 

associated with the noise. To make decomposition with BEMD, the speech signal s(t) is 

combined with fGn, (t), producing the complex signal )()()(ˆ tjtstx  . Both the variables 

(speech and fGn) are decomposed simultaneously without losing mutual dependency by 

using BEMD.  After completion of BEMD, )(ˆ tx can be expressed as 
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where K is the total number of IMFs; complex valued )(ˆ tc
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IMF and final residue, respectively. The real part )(ˆRe)( tct  represents the IMFs of the 

speech signal s(t) and the imaginary part )(ˆIm)( tct   corresponds to the IMFs of (t). 

Hence, the individual signals can be represented as 
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Figure 6. The IMFs of Toy Signal (Sine Wave with Time Varying Frequency) 
Obtained by Traditional EMD (Left Panel) and NA-BEMD (Right Panel).  
Higher Number of IMFs is Obtained by NA-BEMD. The 5th and 6th IMFs 

(Right) Represent the Individual Sinusoids 

The lowest order IMF captures the highest frequency oscillation contained by the 

signals. The local frequency of any IMF is lower than that of just extracted before.  

The IMFs of speech and fGn obtained by noise assisted BEMD are shown in Figure 

5. It is noticed that the number of its IMFs are higher than that of the traditional 

EMD yielding higher degree of frequency disjoint.  

 

3. Simulation Results 

We have obtained good results and new insights in spectral domain by applying the 

combination of the EMD and Hilbert spectral analysis methods to audio signals. The 

audio signals are non-stationary and non-linear in nature. Hence, the Hilbert spectrum 

based analysis is better fitted with the audio signals. To explore the efficiency of the noise 

assisted BEMD a toy signal – sine wave with time varying frequency is taken into 

consideration. The results of traditional EMD and NA-BEMD are presented in Figure 6. It 

is noticed that only one IMF is extracted with EMD to represent two frequency 

components of the toy signal. On the other hand, two separate IMFs are generated to 

represent the target frequency components. Higher number of IMFs is generated using 

NA-BEMD. Hence, the NA-BEMD based model is better to represent the frequency 

component of the signal. The Hilbert spectrum of the toy signal obtained by NA-BEMD 

and its spectrogram using short-time Fourier transform (STFT) are illustrated in Figure 7. 

It is noticed that the frequency components are finely localized in the HS with NA-BEMD, 

whereas, STFT includes a noticeable amount of cross-spectral energy. The marginal 

Hilbert spectrum (mHS) represents the contribution of energy at individual frequency 

component. The Fourier spectrum defines uniform harmonic components globally. It 

requires additional harmonic components to simulate non-stationary data that are non-

uniform globally yielding the spread of energy for a wide range of frequency. The Figure 

8 illustrates the Fourier spectrum together with mHS of the toy signal obtained by NA-
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BEMD methods. It is observed that the Fourier spectrum includes the energy other than 

the actual frequency components of the signal.  

 

 

Figure 7. The Spectrogram (Left) and Hilbert Spectrum (Right) of the Toy 
Signal (Sine Wave with Time Varying Frequency) Obtained by NA-BEMD. 

The Spectrogram Includes Noticeable Amount of Cross-spectral Energy and 
Spurious Harmonics 

The EMD on fGn acts as dyadic filter-bank [12, 15]. The dyadic property of any filter-

bank structure refers that the bandwidth of any subband is the half of its just previous 

(high frequency) subband. When the speech signal is decomposed together with fGn 

using NA-BEMD, the overall decomposition acts like a dyadic filterbank. The Fourier log 

spectra of the IMFs of fGn and speech signal (as illustrated in Figure 5) are shown in 

Figure 9(a) and 9(b) respectively. It is observed that the spectra of fGn’s IMF represent 

the dyadic characteristics. The IMFs’ spectra of speech signal also represent the dyadic 

nature. 

The time-frequency representation is an efficient way to observe the energy of the signal 

with respect to time and frequency simultaneously. The higher resolution of both time and 

frequency illustrates better represenation of the energy distribution. In STFT, it is not 

possible to extend the resolution of both time and frequency to the desired scale but an 

uncertainity. 
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Figure 8. The Fourier Spectrum as Well as Marginal Hilbert Spectrum (mHS) 
of the Toy Signal (Sine Wave with Time Varying Frequency) Obtained by 
NA-BEMD. The Fourier Spectrum Represents the Energy as a Stack of 

Harmonics as Well as Higher Cross-spectral Energy 

 

Figure 9. Fourier Log  Spectrum of First 7 IMFs of fGn (Left) and Speech 
Signal (Right). The Energy Peak of Any fGn’s IMF is at the Half of the 

Frequency of Just Prevous One which Illustrates the Characteristics of 
Dyadic Filterbank. The Spectra of Speech’s IMFs Illustrae the Similar 

Property 

 

Figure 10. The Hilbert Spectrum (Left) and Spectrogram (Right) of Analyzing 
Speech Signal 

On the other hand, there is no such limitation with HS based time-frequency 

representation. The speech signals used here are collected from TIMIT database, sampled 

with 16kHz frequency and 16-bits amplitude resolution. The 25ms Hamming window 
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with 15ms ovelapping is used with 512 point fast Fourier trnasform (FFT) to implement 

the STFT (spectrogram). The Hilbert spectrum (HS) obtained by NA-BEMD and 

spectrogram of the speech signal are illustrated in Figure 10. It is noticed that the energies 

are shaprly localized in both time and frequency scale in HS, whereas, the energies are not 

perfectly localized in time-frequency domain in spectrogram. The marginal HS obtained 

by NA-BEMD and Fourier spectrum of the speech signal are shown in Figure 11. The 

Fourier spectrum illustrates wide spread spectrum than that of the marginal HS. 
 

 

Figure 11. The Marginal Hilbert Spectrum and Fourier Spectrum of 
Spectrogram of the Speech Signal 

Being a harmonic analysis technique, STFT spreads energy to the high frequency range 

as the harmonics. Conventionally, these harmonics are viewed as a matter of fact, but the 

HS reveals that Fourier expansion is a mathematical approximation to a nonlinear 

process, in which the true physical meaning is beyond the reach of Fourier-based analysis. 

The Fourier spectrum offers a nice mathematical presentation, yet lacks physical meaning. 

The energy of the signal is distributed over the predefined harmonics. Even with 

windowed Fourier transform, any change of signal characteristics shorter than the selected 

window will be obscured. Due to the overlapping of the window function the STFT also 

includes the cross-spectral energy between the adjacent time frames. 

In HS, it is possible to present the spectral characteristics of the signal at each sampling 

point but more data points are required to compensate the end effects of IF calculation 

[23]. It does not include any noticeable amount of spectral cross-term between the time 

frames. In all fairness, it should be noted that the Fourier spectrum of a non-stationary 

signal does not make sense. That is why, to explore the event of cross-spectral term, the 

marginal Hilbert and STFT spectra of two sine waves are illustrated in Figure 8. The HS 

represents a sharper frequency definition than that shown by the STFT based spectrogram. 

The spectrogram illustrates the stacks of energy consisting of spurious harmonics and also 

includes a remarkable amount of cross-spectral terms. The marginal spectrum calculated 

from the HS represents the proper frequency localization of the tones with sharp energy 

bands at the specific frequency.  

 

4. Conclusions 

This study demonstrates the spectral analysis method of audio signals with fully data 

adaptive approach. The spectral representation is implemented by Hilbert spectral analysis 

based on EMD, a signal decomposition method suitable for non-linear and non-stationary 

process. The traditional Fourier based method is not effective for not stationary signal like 
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speech. The comparison between Hilbert spectral analysis and Fourier based spectral 

representation is presented in this paper. The EMD is implemented based on the direct 

extraction of the energy associated with various intrinsic time scales, the most important 

parameters of the system. Expressed in IMFs, they have well-behaved Hilbert transforms, 

from which the instantaneous frequencies are calculated. Thus, any event is localized on 

the time as well as the frequency axis. The decomposition is also viewed as an expansion 

of the data in terms of the IMFs. Then, these IMFs, based on and derived from the data, 

serve as the basis of that expansion which can be linear or nonlinear as dictated by the 

data, and it is complete and almost orthogonal. Most important of all, it is adaptive to the 

analyzing signal. The local energy and the instantaneous frequency derived from the IMFs 

through the Hilbert transform gives us a full energy-frequency-time distribution of the 

data. Such a representation is designated as the Hilbert spectrum (HS); it would be ideal 

for nonlinear and non-stationary data analysis. The marginal HS is analogous to Fourier 

spectrum in representing frequency characteristics of the signal. The Fourier spectrum 

spreads energy over a wide range of frequencies, whereas, the energy in mHS is sharply 

confined to the respective frequency component. The spectral analysis for multichannel 

audio signals with multivariate NA-EMD based approach is considered for future 

extension of this study.   
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