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Abstract 

Speech enhancement is a long standing problem with various applications like 

telephone conversation and speech recognition. The corruption of speech due to presence 

of additive background noise causes severe difficulties in various communication 

environments. If the background noise is evolving more slowly than the speech, then the 

estimation of the noise during speech pauses is easier as compared to non stationary 

noise. If in case the Noise is varying rapidly then estimation is more difficult. This paper 

focuses on the class of single-channel noise reduction methods that are performed with 

frequency domain using short-time Fourier Transform (STFT). There are number of 

publications and implementations on noise reduction systems. But, there are still some 

issues in non- stationary noisy systems. This single-channel approach is more dominant 

and effective approach for practical systems. From last few years, algorithms have been 

proposed for this problem but most of them are worked on noisy signal in current frame. 

So in this paper we are trying to propose the new model using Wiener filter by using the 

concept of multi-frame approach with different window sizes and overlaps. The proposed 

method shows the results with its superiority. 

 

Keywords: Log Likelihood ratio (LLR), weighted spectral slope (WSS), non stationary, 

Signal to noise ratio, speech enhancement 
 

1. Introduction 
Non stationary noise remains one of the biggest challenges for current state-of-the-art 

single-channel noise reduction schemes. The statistics of the background noise must, 

therefore, be only slowly time-variant. Moderately non-stationary noise can be tracked 

with these algorithms but the performance breaks down severely with increasing non-

stationary status of the background noise [13]. Every speech communication and 

processing‎ system‎ suffers‎ from‎ the‎ ubiquitous‎ presence‎ of‎ additive‎ noise,‎ but‎ today’s‎

widespread cellular phones and hands-free handsets are more likely to be used in 

acoustically adverse environments where background noise from different origins is loud 

and where the microphone may not be in close proximity to the speech source. The 

external disturbance degrades the perceptual quality of speech and will impair the speech 

intelligibility when the signal-to-noise ratio (SNR) comes down to a certain level. Noise 

reduction intends to suppress such additive noise for the purposes of speech enhancement. 

Noise reduction algorithms generally can enhance only the perceptual quality of speech 

when presented directly to a human listener with normal hearing, but may improve both 

speech quality and intelligibility when the enhanced speech goes through a voice 

communication channel before being played out [13] and/or for the hearing impaired [7]. 

So single-channel noise reduction (SCNR) has a large variety of applications including 

mobile phones, hearing aids, voice over Internet protocol (VoIP), just to name a few. The 

first SCNR system was developed over 45 years ago by Schroeder [20, 21]. Nowadays, 
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and the principle‎ of‎ Schroeder’s‎ system‎ is‎ the‎ well-known Spectral Magnitude 

Subtraction method. This work, however, has not received much public attention, 

probably because it is a purely analog implementation and more importantly it was never 

published in journals or conferences outside of the Bell System. The interest in a digital 

form of the spectral subtraction technique was sparked by a 1974 paper by Weiss, 

Ashkenazy, and Parsons [23]. A few years later, Boll, in his often-cited paper [6], 

reintroduced the Spectral Subtraction method yet for the first time in the framework of 

digital Short-Time Fourier analysis. These early algorithms were all based on an intuitive 

and simple idea: the clean speech spectrum can be restored by subtracting the estimate of 

the noise spectrum from the noisy speech spectrum and the noise spectrum is estimated 

and updated during silent periods. Though practically effective, the Spectral Magnitude 

Subtraction approach is by no means optimal. It was thanks to the papers of [17, 13] that 

the Spectral Subtraction technique began being examined in the framework of optimal 

estimation theory. This treatment initiated the development of many new noise reduction 

algorithms in the last three decades. The Wiener filter that intends to directly recover the 

complex (amplitude and phase) spectrum (i.e., the waveform in the time domain) of the 

clean speech [13, 17], and in contrast to those in which only the spectral amplitude of the 

clean speech is estimated while its phase is copied from the phase of the noisy signal. The 

spectral amplitude can be taken as the square root of a Maximum-Likelihood (ML) 

estimate‎ of‎ the‎ clean‎ speech’s‎ power‎ spectrum.‎ This‎ leads‎ to‎ the‎ spectral‎ power‎

subtraction method [17, 5] which is subtly different from the ML spectral amplitude 

estimator [17]. In addition to the classical approach of ML estimation, the Bayesian 

decision rule was found also very useful. Ephraim and Malah introduced a celebrated 

minimum mean square error (MMSE) estimator for spectral amplitude (MMSE-SA) in 

[10]. This original idea was later enriched by the MMSE estimator for log spectral 

amplitude (MMSE-LSA) [26] and other generalized Bayesian estimators [26-18], which 

minimize the posterior expectation of various distance measures between the actual and 

estimated speech spectral amplitude. Maximum a posteriori (MAP) is another important 

Bayesian decision rule based on which Wolfe and God sill developed an MAP Spectral 

Amplitude Estimator (MAP-SA) [24]. These calculations are practically reasonable but 

may not be strictly true. Alternatively a super-Gaussian model was suggested to be 

applied in combination with the MAP-SA approach in [16]. More complicated statistical 

speech models (e.g., Hidden Markov Model) can also be used [9] but no close-form 

solution will be possibly deduced. While SCNR has been widely studied in the time 

domain and other transform domains too [3-4], the frequency-domain techniques are by 

far the most popular choice in practical systems for their simplicity and relative 

effectiveness. In this paper, we will focus only on this class of approaches. In spite of 

using the distinctive optimization rules (ML, MMSE, or MAP), spectral distance 

measures (linear versus log), and statistical models for speech [Gaussian, Super-Gaussian, 

or Hidden Markov Model (HMM)], the existing frequency-domain noise reduction 

algorithms have one feature in common: the solution is eventually expressed as a gain 

function applied to the Short-Time Fourier Transform (STFT) of the noisy signal in each 

frequency. This is due to a simplified formulation of the problem in which it has been 

implicitly assumed that the STFT of the current frame is uncorrelated with that in the 

neighboring frames. However, this is not accurate for speech enhancement since speech is 

a highly self-correlated signal. Consequently, by taking the inter frame correlation into 

account; we should be able to develop more sophisticated algorithms with hopefully 

better noise reduction results. In this case, when we estimate the STFT of the clean speech 

in the current frame, we use the STFTs of the noisy signal both in the current frame and 

the previous frames (with respect to the same frequency) [12]. This leads to a new model 

similar to a microphone array system: We have multiple noisy speech observations; their 

speech components are correlated while their noise components are presumably 

uncorrelated or correlated in a different way than speech components. As a result, the 



International Journal of Signal Processing, Image Processing and Pattern Recognition 

Vol. 8, No. 4 (2015) 

 

 

Copyright ⓒ 2015 SERSC  51 

multichannel (here multi-frame) Wiener filter and the Minimum Variance Distortion less 

Response (MVDR) filter that were usually associated with microphone arrays will be 

developed for SCNR in this paper. It is well known that the gain functions of the existing 

frequency-domain SCNR algorithms cannot improve the narrowband SNR and full band 

noise reduction is achieved at a price of speech distortion. With the new algorithms 

developed in this paper, we will show that both the narrowband and full band SNRs can 

be improved. An early attempt at exploiting the inter-frame correlation of speech in sub-

bands was reported in [25]. A simple first-order autoregressive (AR) model was used to 

describe the variation of speech and hence the Kalman filter was developed to estimate 

the clean speech signals in each sub band. The coefficients of the sub band AR models 

need to be estimated from the noisy microphone signal and their estimates are usually 

biased in practice. So this method is subject to errors from model misspecification. In a 

recent paper [19], it was also suggested that the inter-frame correlation of speech STFTs 

could be exploited and an iterative optimization scheme was proposed to improve the 

traditional frequency-domain Wiener filter. There are many algorithms for colour fidelity 

[1] which can generally be divided into three classes: first class includes approaches using 

low level image features 

 

2.  Problem Formulation 

The noise reduction problem considered in this paper is one of recovering the desired 

signal (or clean speech)x(t), t being the time index, of zero mean from the noisy 

observation (microphone signal) [22]. 
)()()( tstxty 

     (1) 

Where s(t) is the unwanted additive noise with zero-mean random process white or 

colored but uncorrelated with x(t). To simplify the development and analysis of the main 

ideas of this work, we further assume that all signals are Gaussian and wide sense 

stationary. Using the Short-Time Fourier Transform (STFT), [13] can be rewritten in the 

frequency domain as 

                                           
),(),(),( mkSmkXmkY 

                                 
(2) 

where Y(k,m),X(k,m),and S(k,m)are the STFTs of y(t), x(t),and s(t), respectively, at 

frequency-bin‎ k€{0,1,2………………,k-1} and time-frame m. Since x(t) and s(t) are 

uncorrelated by assumption, the variance of  Y(k,m) is 
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where E[.] denotes mathematical expectation and ɸX(k,m)=E[|X(k,m)|
2
] and  

ɸs(k,m)=E[|S(k,m)|
2
] are the variances of X(k,m) and S(k,m) respectively. 

  

3. Wiener Filter in Frequency Domain 

The Wiener filter is a popular technique that has been used in many signal 

enhancement methods. The basic principle of the Wiener filter is to obtain an estimate of 

the clean signal from the corrupted additive noise. This estimate is obtained by 

minimizing the Mean Square  

Error (MSE) between the desired signal x(n) and the estimated signal 

^

)( nX . The 

frequency domain solution to this optimization problem gives the following filter transfer 

function [18]. 

   )()()(
/)(

wswxwx
PPPwH 

                                              (4) 

Where Px(ω) and Ps(ω) are the power spectral densities of the clean and the noisy 
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signal, respectively. This formula can be derived considering the signal x and the noise s 

as uncorrelated and stationary signals. The SNR is  

                                                          
)(

^

)(
/ ws

wx
PPSNR 

                                                (5)                            

This definition can be incorporated to the Wiener filter equation as follows: 

                                                       
1

]/11[)(


 SNRwH                                            (6) 

The wiener filter gives fixed frequency response at all frequencies that considered as 

the limitation of the wiener filter and the requirement to estimate the power spectral 

density of the clean and noisy signal prior to filtering. 

 

4.  A New Linear Model for Speech Spectral Estimation 

In the linear model, we try to estimate our desired signal, X(k,m), from the observation 

signal ,Y(k,m), by applying a complex gain to it [1]. 
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where the superscript * denotes complex conjugation, Xfd(k,m)= H
*
(k,m) X(k,m) is the 

filtered desired signal and Srn(k,m)= H
*
(k,m)S(k,m) is the residual noise. Using the Mean-

Square Error (MSE) between the estimated and desired signals, we can easily derive the 

optimal Wiener gain, which is real and is given by [1].   
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As a result, the estimate of X(k,m) in the Wiener sense is [1].  
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In (4), we implicitly assumed that the observation signal at the current time-frame is 

uncorrelated with itself at the previous time-frames. Therefore, the interface correlation 

should be taken into account in the derivation of any noise reduction algorithms [21].  

  

5. Performance Measures 

In this section, we give some very useful measures that fit well with the linear model 

developed in this section, where the inter frame correlation is taken into account. We 

define the narrowband and full band input SNRs as 
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5.1. Optimal filters 

In this part, we derive three fundamental filters with the linear inter frame model and 

show how they are related to each other. We also show the relationship with all of them. 

For that, we need to derive first the MSE criterion and its relation with the MSE of speech 

distortion and residual interference-plus-noise. We define the narrowband error signal 

between the estimated and desired signals as 
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5.1.1. Wiener: The Wiener filter is easily derived by taking the gradient of the 

narrowband MSE, with respect to h
H
 (k,m) and equating the result to zero: 
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1
),(),(),( imkmkmkh

yxyw





                                                 (15)                                                             

where  ɸy(k,m)= E[y(k,m)y
H
(k,m)] is the covariance matrix of  y(k,m) and  ɸyx(k,m)= 

E[y(k,m)x
H
(k,m)] is the cross-correlation matrix between y(k,m) and x(k,m), but 
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The Wiener filter can also be written in this form 
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Interestingly, the higher is the value of oSNR means to increase e number of inter 

frames, and less the distortions in the desired signal with the Wiener filter at frequency-

bin k, 
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6. Experimental Results 

In this section, we present the experimental results of the frequency-domain algorithm 

that is a SCNR and that may use the concept of multiple STFT frames. Comparisons with 

the traditional single-frame Wiener filter will be used to study and validate the merits of 

exploiting inter frame correlations. Due to the limitation, the main focus is placed on 

showing the results of the new multi-frame Wiener filters. 

 

6.1. Set up and Metrics 

In our experiments, the microphone signal is artificially synthesized by adding 

prerecorded real-world noise to a clean speech signal. The clean speech signals were 

recorded from female and male speakers. Each speaker provided 2 to 4 minutes of 

conversational‎ speech”‎ that‎ is‎ a‎ “story”‎ about‎ anything‎ that‎ came to his/her mind. All 

recordings were originally digitized at a sampling rate of 8 kHz with 16 bits per sample 

and down sampled to 4 KHz with alpha is 0.9 and min SNR is -10 and max. SNR is 35. In 

the experiments presented here, we consider only one male speaker. Each story was cut to 

have the same length of 6s and babble noise. The noise is fairly stationary but colored 

with an energy roll-off (approximately 12 dB per octave) towards high frequencies. The 

babble noise was recorded in the Mumbai railway station. It is not only colored but also 

non stationary with mixtures of nearly inaudible voices and sporadic cell phone rings. The 

noise level is adjusted according to that of the clean speech and a specified input SNR. In 

the following, if not explicitly stated otherwise, the noise is white Gaussian random noise 

and the speech source is the first male speaker. The full band output SNR and speech 

distortion measures are used in our experiments. Moreover, we will use the weighted 
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spectral slope WSS for the measurement of objective speech quality and Log Likelihood 

Ratio LLR are calculated for each frame of the input speech. 

 

6.2. Algorithm Implementation 

The algorithms discussed and developed in this paper are all frequency-domain 

approaches. The STFT is implemented with the hamming window and the Fast Fourier 

Transforms (FFT).The max size of FFT is 512. The window size in the samples is set to 

be a power of 2. For the traditional single-frame Wiener filter, an overlap of 50% between 

neighboring windows is commonly used while for the proposed multi-frame Wiener filter 

we adopt an overlap of 64% to 75% to retain a higher inter-frame correlation. This 

analysis and synthesis procedure is nearly perfect in Mat lab, resulting in little distortion 

in the reconstructed signal if no manipulation is carried out to its frequency-domain 

representations.  

 

6.2.1. Wiener Filters: We first show the performance of the traditional single-frame 

Wiener filter, which provides a benchmark for studying other noise reduction filters. Such 

a Wiener filter takes (k=256) (corresponding to 32 ms) and 64% overlapping windows. 

Figure 1 plots the results. Using a large (forgetting factor=1), we cannot capture the short-

term variations of non stationary signals, but with a small value, the sample estimate of 

the signal variance has a large variation due to a limited number of data to do averaging. 

So the best performance is achieved. An interesting observation is that the oSNR reaches 

its peak when the forgetting factor of output is equal to forgetting factor of noise. The 

second experiment considers the where k=256 and overlap=75% and L go from 1 to 16, 

third experiment considers k=256 and overlap=50% and forth experiment considers k=64 

and overlap=50%. As window size k affects the performance of the multi frame wiener 

filter. When k is small, FFT resolution is poor. In case k is increasing it will be helpful to 

improve the performance but with the increase of a value of k it corresponds to long gap 

in consecutive time frames as a result inter frame correlation is weaker. So from the 

analysis we conclude that as window size is increasing, speech distortion is increasing, 

same with increasing the no of frames speech distortion is increasing. Log Likelihood 

Ratio (LLR) is decreasing with the decrease of value of k, but weighted spectral slope is 

increasing. An interesting discovery is that the gain is greater for a low iSNR than for a 

high iSNR. Before we conclude this subsection, there is one thing that needs to be 

clarified and discussed that which set of performance measures we used for the above 

presented experiments. As a matter of fact, we used the conventional definitions. 

 

 

 

 

Figure 1. Signal Waveform with k=256 and Overlap=64%: (a) Clean Signal 
(b) Noisy Signal (C) Spectogram 
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Figure 2. Signal Waveform with k=256 and Overlap=75%: (a) Clean Signal 
(b) Noisy Signal (C) Spectogram 

 

 

Figure 3. Signal Waveform with k=256 and Overlap=50%: (a) Clean Signal 
(b) Noisy Signal (C) Spectogram 

 

 

Figure 4. Signal Waveform with k=64 and Overlap=50%: (a) Clean Signal (b) 
Noisy Signal (C) Spectogram 

Table 1. Comparison of LLR, oSNR, SNR seg, WSS for Different Values of k 
and Overlap 

 

Table 2. Analysis with Noisy and Enhanced Speech Pattern for Input k=256 
and Overlap=64% 

Noise Type SNR oSNR LLR SNR Seg WSS 

Babble 0 -17.385899 2.246574 -9.123063 127.987540 

5 -14.929 2.23597 -8.46154 131.094126 

10 -13.395822 2.208571 -8.000444 129.676754 

15 -12.960638 2.188211 -7.937447 127.291182 

exhibition 0 -18.33098 2.232366 -9.258967 131.220742 

Input LLR oSNR SNR Seg WSS 

k=256,O=50% 13.8596 -85.85 -10 161.057 

k=256,O=64% 13.8596 -81.817 -10 121.34 

k=256,O=75% 13.8596 -83.82 -10 120.744 

k=64,O=50% 11.686 -45.74 -10 243.922 
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5 -16.13787 2.239518 -8.951642 127.735754 

10 -13.14529 2.261398 -8.059477 130.771905 

15 -14.5642 2.246833 -8.253590 124.698888 

Restaurant 0 -15.642186 2.137032 -8.640776 126.291438 

5 -15.1970 2.204341 -8.580691 125.626808 

10 -12.13749 2.239478 -8.000559 129.394346 

15 -14.49530 2.229242 -7.962446 131.093963 

Street 0 -17.6881 2.311712 -9.325353 132.4266 

5 -14.67466 2.235174 -8.748175 132.346674 

10 -13.18220 2.206806 -8.23634 128.0524 

15 -15.7807 2.326610 -8.599206 130.364324 

Car 0 -18.74221 2.236087 -8.98998 127.0998 

5 -16.147181 2.226145 -8.794045 131.165087 

10 -14.39887 2.567100 -8.67789 128.3245 

15 -13.846244 2.201041 -8.021956 129.667464 
 

6.3. Objective Speech Quality Measure 

The conducted research indicates that the output SNR and the speech distortion index 

provide a complete and insightful picture of the noise reduction performance. They are 

closely aligned with our perception of the quality of the enhanced signals in informal 

listening tests, using proper set of definitions, It has become clear that exploiting inter 

frame correlations is helpful to the Wiener filters, but it can give rise to arguments if we 

compare the performance of the Wiener filters using different sets of performance 

measure definitions. So for this task, we chose to use the WSS measure, which has been 

found to have higher correlations, than other widely known objective measures, with the 

subjective ratings of overall quality of enhanced speech signals (Lim and Oppenheim 

2012). WSS ranges between 161.057 and 243.922 table shows the results for the different 

values of K and overlap. For the traditional single-frame Wiener filter (with a 64% 

overlap), we set according to the results presented in Figure 1. The multi-frame Wiener 

filter performs always better than the single-frame counterpart for all noise types. It is 

noted that the MVDR filter produces low speech distortion but high residual noise. When 

the input SNR is low (lower than 10 dB), the high level of the residual noise outweighs 

speech distortion in the PESQ measure such that the MVDR filter yields lower PESQ 

scores than the two Wiener filters. On the contrary, when the input SNR gets practically 

high, speech distortion becomes much easier to be perceived with lower residual noise in 

the background. Consequently, the MVDR filter has higher PESQ scores than the Wiener 

filters in those conditions. 

 

7. Conclusion  

In this paper, we presented an insightful analysis of the frequency-domain SCNR 

algorithms whose solutions are all finally expressed as gain functions applied to the 

spectrum of the noisy speech only in the current frame. We explained that this common 

feature is due to the disregard of the inter frame correlation, which may be strong for 

speech. By taking the inter frame correlation into account, we proposed a new linear 

model for speech spectral estimation and developed namely, the Wiener filters. It was 

proved that both the narrowband and full band output SNRs can be improved. Extensive 

simulation results were reported and clearly justified the advantage of exploiting the inter 

frame correlation for SCNR. 
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