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Abstract 

Aiming at the drawback of the local search ability of weakness of adaptive chaos 

particle swarm optimization (ACPSO), which is based on the variance of population’s 

fitness, this paper presents that introduces the chaos mutation and chaos search to the 

ACPSO. By using the An chaos mapping to proceed the chaos mutation for some particles 

and take chaos search for the global optimal particle, it proposes a rule which takes into 

account the positions of particles and adaptive mutative scale of optimizing space. The 

results of numerical simulation show that the convergence, and the global and local 

search ability of the new method are improved, and can effectively avoid premature 

convergence. 
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1. Introduction 

Because the particle swarm optimization has many advantages as followed, it is simple 

and easy to implement. It can carry out the parallel processing, and has good robustness. 

It can converge to the global optimal solution with greater probability. PSO has been 

widely concerned and successfully applied to several fields
 
[1]

 
which are constrained 

optimization, dynamics process optimization and traffic control. 

Being similar to the genetic algorithm, there also exists the phenomenon of premature 

convergence for PSO. The premature convergence performs particularly obviously in the 

more complex high dimensional and multimodal search problems. People had given 

several improved forms [2-3]. One of these forms is combined with chaotic system, and 

disturb on the particle using the pseudo-randomness and ergodicity of the chaotic system 

to improve the probability and velocity of the global convergence [4]. These forms are all 

using the Logistic chaos mapping to produce the chaotic sequence [4-5], but the 

uniformity of chaotic sequence is poor and it influences the superiority of the algorithm. 

It discusses the CAPSO based on the group fitness variance in the reference [6] which 

is constructed based on An chaos mapping. It initializes the positions and velocity of 

particle swarm using An chaos mapping. It is similar to the reference [7]. It proceeds the 

chaos update using the changes in the fitness variance which adaptively controls parts of 

particles. Its optimal performance is better than the chaos particle swarm optimization 

with the similar structure which is based on the Logistic chaos mapping. The reason is 

that the chaos sequence which is produced by An chaos mapping is superior to the one 

which is produced by Logistic chaos mapping. 
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But the local search ability of the algorithm performs big dent in the final stage of the 

iteration just as this paper stated. In order to improve the performance of the algorithm, 

this paper introduces two types of modification. The first one is that relaxes the triggering 

condition of chaos mapping and performs the chaotic mutation to the non-global optimal 

particles at a certain probability. The second one is that performs chaos search to the 

global optimal particles. This paper uses the pseudo-randomness and ergodicity of the 

chaos system to prove the global and local optimizing abilities. 

 

2. An Chaos Mapping 

The behavior of chaotic motion is complex and similar to the random, but it has the 

intrinsic regularity. The chaotic motion has pseudo-randomness, ergodicity, regularity, 

and so on. It is between the definite phenomena and completely random phenomenon. 

The recursive formula [8] of random number generation of chaos mapping which is 

introduced by An is: 
3 1 1

2 4 2

1 1 1 1

2 4 2
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n n

n

n n

y y
y

y y

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This recursive formula can generate the sequence with endless cycle, its limit 

distribution of empirical distribution is: 

( ) ( ( 1 / 2 ) ln (2 )) / ln (3)F y L n y                                                              (2) 

From the following expression: 

 ( ( 1 / 2 ) ln ( 2 )) / ln (3 )
i i

c x L n y                               (3) 

We can consider the sequence obtained as the random number sequence which is the 

uniform distribution over the interval [0, 1]. 

 

3 ．The Modified PSO 

Consider the following global optimal model: 

1 2
( ) ( , , , )

D
m in f x f x x x                                                 (4) 

Where, D is the dimension of the variable x . This paper uses the 

real number encoding. 

 

3.1. Standard PSO 

The iterative formula of the velocity and position of the standard PSO is: 

1 2
( 1) ( ) 1 ( ( )) 2 ( ( ))v t w v t c ra n d p b e s t x t c ra n d g b e s t x t              (5) 

( 1) ( ) ( 1)x t x t v t                      (6) 

In the above two formulas, ( )v t and ( )x t  are the particle velocity and position of the t-

th iteration respectively. The rand1 and rand2 are the uniform random numbers over the 

interval [0, 1]. 
1

c and 
2

c  are learning factors with the value 2. p b est is the individual 

extreme position, that is the optimal solution which the particle had ever experienced 

itself. g b est is the global extreme position, that is the optimal solution which the particle 

swarm had ever experienced. w  is the inertia weight whose value is between 0.1 and 0.9 

[8]. Reference [8] indicates that if w decreases linearly as the iterations increase, the 

convergence of the algorithm can be improved dramatically. That is  

m a x m a x m in
( ) /w w t w w M a x D T    ，                                (7) 

Where, 
m a x

w and 
m in

w  are the maximum and minimum of the weight respectively. 

M axD T  is the maximum iterations, and t  is the current iterations. 
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Restrict the range of the velocity value and position value. Generally, if
m ax

x x , take 

m a x m a x
v k x  , where 0 .1 1 .0k  [9]. 

 

3.2. Initial Population Produced by Chaos Mapping 

Being same to the reference [6], there produces a D -dimensional vector
1

c x . The value 

of each element is between 0 and 1. Uses An chaos mapping to produce 1N  s D -

dimensional points with 1N   iterations to each element of
1

c x , and denote these points 

as
2 3

, , ,
N

c x c x c x . Convert the formula (9) to the optimization space, and consider it as 

the initial population. 

As to the variable x  which is not in the interval (0 ,1) , we suppose ( , )x a b . We can 

convert it through the following expressions: 

( ) /( )cx x a b a                                                              (8) 

( )x a cx b a                                                               (9) 

 
3.3. Improvement of the Iterative Update 

(1) Chaotic Mutation 

In order to improve the global search capability, but have strong local search capability 

in the later stage, the interval length of the chaotic mutation decreases as the increase of 

the iterations. Denote the length of the corresponding interval of the mutation in the t -th 

iteration as ( )C D t , and denote 
( )

( 1)
t

C D t
k

C D t



 and (0 )C D u b lb  . Might as well 

take
1

t

M a x D T t
k

M a x D T

 
 , where t  is the current iterations, M axD T  is the maximum 

iterations, u b  is the upper limit of the initial search space, and lb  is the lower limit of the 

initial search space. Then 

1 2
( ) (0 )

t
C D t k k k C D     ，                                                            (10) 

The mutation interval of the particle ( )x t  is: 

1 2 1 2
( ) (1 ) ( )

t t
lb t k k k x t k k k lb     ，                                               (11) 

1 2 1 2
( ) (1 ) ( )

t t
u b t k k k x t k k k u b     ，                                             (12) 

Produce the uniform random number p  over the interval [0 ,1]  for the particle ( )x t . If 

0 .5p  , mutate the particle according to the formulas (8), (1), (3), and (9),and the 

mutation points locate in the interval [ ( 1), ( 1)]lb t u b t  . If the fitness value becomes 

small we except the mutation, or refuse it. If 0 .5p  , the particle doesn’t be mutated. 

(2) Chaos Search 

To the global extreme value g b est , repeatedly use the formulas (8), (1), (3), and (9) to 

perform the chaos iteration. If the fitness value doesn’t become small until the chaos 

iterations obtains the setting upper limit, stop the chaos search. If when the fitness value 

becomes small, stop the chaos search and update g b est . 

The interval of chaos search shrinks gradually as the preceding formulas from (10) to 

(12). 

(3) Chaos Disturbance 

Similar to the reference [6], this paper determines that whether the premature 

convergence occurs or not using the changes of 
2

  which are produced in the adjacent 

iterations. If the difference of the two 
2

  which are produced in the adjacent iterations is 

less than some given fixed value such as 6
1 0ep s


 , it considers that the current particle 
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swarm is needed to perform the perturbation. Firstly, determine the particle number s  

which is needed to be replaced in the current particle swarm. s  is about 61.8% of the total  

particle number. Start with the particle position which is produced randomly, and use An 

chaos mapping to produce 1s  s particle positions. Use the s s particle positions to 

replace the s s particle positions which have the worst fitness among the current particle 

swarm. And then perform the PSO iteration. 

 

3.4. Terminal Condition of Iteration 

Similar to the reference [6], be able to use the given maximum iterations as the 

terminal condition. When test the efficiency of algorithm using the standard functions, we 

can use the fitness values to obtain the standard convergence to be the convergence 

criterion. These papers use the maximum iterations as the terminal condition. 
 

3.5. The Entire Process of the Improved PSO 

Step 1 Initialize the inertia weight 
m a x

w  and 
m in

w , the learning factor 
1

c  and 
2

c , the 

group size N , the maximum iterations M axD T , the problem dimension D , and the 

accuracy control 6
1 0ep s


 . Give the optimal space [ , ]lb u b  and the speed limit

m a x
v . 

Give the maximum iterations of chaos search H D T . 

Step 2 Randomly produce a D -dimensional particle over the interval [0 ,1 ) . According 

to the statement of the section 2.2, get N s D -dimensional particles which are denoted by 

, 1, 2 , ,
i

x i N . A random D -dimensional space vector is selected from [0 ,1 ) . Use the 

expressions (1) and (3) of An chaos mapping to obtain 1N  s particles, and obtain the 

N s D -dimensional vector which are the initial particle speed. Let the iterations be 0, and 

turn to step 3. 

Step 3 Substitute 
i

x  into the objective function to calculate the fitness 
i

f , and 

determine the global optimal positions of the particle swarm g b est , the experienced 

optimal positions of articles 
i

p b e s t ， 1, 2 , ,i N . Turn to step 4. 

Step 4 w  decreases according to the expression (7). The positions and speed of the 

particles are updated according to the expression (5) and (6). The iterations increase by 1. 

Take
1

1M a x D T t
k

M a x D T

 
 , and determine the chaotic mutation and the chaos search 

interval [ ( ), ( )]lb t u b t  according to the expressions (10) to (12). Perform chaotic mutation 

to update g b est  and 
i

p b e s t . Perform chaotic search to g b est , and update g b est  and 

i
p b e s t . Compute the fitness variance of the current particle swarm. If the absolute value 

of the difference between the fitness variance of the current particle swarm and the one of 

the pre-iteration is less than ep s , turn to step 5, or turn to step 6. 

Step 5 Compute the numbers of the particles s  which is needed to replace. Produce s s 

new particles using the manipulation which is similar to produce the initial particle 

positions. Use the new particles to replace the current s s particles which have the worst 

fitness. And then turn to step 4. 

Step 6 If the iterations are less than M axD T , turn to step 4. Otherwise, turn to step 7. 

Step 7 Output the final results: g b est  and fb es t . 

 

4. Numerical Simulation 

In order to test the properties of the improved algorithm and compare with the results 

of the numerical simulation of the reference [6] and [9], choose five nonlinear standard 
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functions which show in the table 1. Where, 
1

f  and 
2

f  are unimodal high-dimensional 

functions. 
3

f  and 
4

f  are multimodal high-dimensional functions. 

Table 1. Standard Test Functions 

function dimension domain 
Convergence 

criteria 
optimization 

2

1 1

n

ii
f x


   30 [ 1 0 0 ,1 0 0 ]

n
  E-6 0 

2

1

2 2

1

1

2

[1 0 0 ( )

( 1) ]

n

i i

i

i

f

x x

x











 

  30 [ 3 0 , 3 0 ]
n

  100 0 

3

2

1
[

1 0 c o s ( 2 )

1 0 ]

n

ii

i

f

x

x









  30 [ 5 .1 2 , 5 .1 2 ]
n

  100 0 

2

4 1

1

1

4 0 0 0

c o s ( ) 1

n

ii

n
i

i

f x

x

i







 





 30 [ 6 0 0 , 6 0 0 ]
n

  E-6 0 

5

2 2 2

1 2

2 2 2

1 2

s in 0 .5

[1 0 .0 0 1( )]

0 .5

f

x x

x x



 

 



 2 [ 1 0 0 ,1 0 0 ]
n

  0 0 

Indicated as the reference [9], the theoretical optimal solutions of part test functions are 

difficult to obtain. So give the convergence criterion. In practice, determine the 

convergence by the convergence criterion. The convergence criterion in the table 1 and 

the one in the reference [9] are consistent. 

According to the reference [9], the learning factors 
1 2

2c c  , dimension of the 

variables, domains, convergence criterions are showed in the table 1. The inertia weight 

w  decreases linearly from 0.9 to 0.2. According to the reference [6], replace the 61.8% of 

the particles using the chaos, 6
1 0ep s


 , and the maximum iterations is 10000M axD T  . 

But the iterations of this paper are 1000M axD T  , and the iterations of chaotic search are 

100. It is observed that the total iterations of this paper is less than the ones of the 

reference [6]. Take the particle swarm size 100. Randomly run 20 times. In order to 

compare the search efficiency of the algorithm, adopt the criterion of the reference [9] as 

below:  

1) Denote the optimal average value m B  on the premise that search successfully. 

2) Denote the rate of successful search Ir . Show the results in the Table 2. The data of 

the reference [9] are quoted from the reference itself. The data of the reference [6] and 

this paper are obtained from the programming. 
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Table 2. The Results of Search of Functions 

function source m B  Ir  

1
f  

reference [6] 2.58E-16 1.0 

reference [9] 0 1.0 

this paper 3.92e-29 1.0 

2
f  

reference [6] 35.0677 1.0 

reference [9] 29.3308 0.83 

this paper 26.7778 1.0 

3
f  

reference [6] 38.1145 0.9 

reference [9] 19.4780 0.99 

this paper 0 1.0 

4
f  

reference [6] 3.96E-14 1.0 

reference [9] 0 1.0 

this paper 0 1.0 

5
f  

reference [6] 0 0.85 

reference [9] 0 1.0 

this paper 0 0.95 

 

To the high-dimensional unimodal functions 
1

f  and
2

f , the rate of convergence of this 

paper is 1.0, and the average optimization is also the optimization. Because 

the  uniformity of the sequence which is produced by An chaos mapping in this paper is 

good and benefits to jump out of the local minimum. And chaotic search strengthens the 

utilization of the chaotic characteristic. To the multimodal high-dimensional functions
3

f , 

the convergence rate of this algorithm is 1, and the average optimization is theoretical 

optimization. The results of this paper are superior to the existed results. To
4

f , the 

algorithm in this paper directly obtained the theoretical optimization with the convergence 

rate 1, and achieved the effect in the reference [9]. 

 To
5

f , the rate which the algorithm converges to 0 in this paper is 0.95 which is larger 

than the rate in the reference [6] and slightly less than the one in the reference [9]. The 

main reason is that the ratio of the area of the valley shape which contains the global 

optimal points to the one of the search range is less than 0.000256. When use the 

algorithm to perform 20 times optimization to the function
5

f , only obtains two optimal 

results with 0 and 0.0097159. The two optimizations are very close. It shows that 

improving the local search ability is needed. 

Run 20 times to each test function, and iterate 1000 times in each running. 1000 

iterations correspond to 1000 global optimizations. Consider the logarithm of the average 

value of the 20s results with the base 10 as the y-coordinate, and the iterations as the x-

coordinate. The speeds of convergence of the standard PSO, ACPSO in the reference [6] 

and MACPSO in this paper are showed in the Figure 1. 
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Figure 1. Comparison between the Average Global Optimization and 
the Iterations 

4. Conclusion 

In this paper, to the above standard functions, initialize the particles by introducing An 

chaos mapping, and use the Changes of the fitness variance to control 

the chaotic update of parts of particles. Perform chaotic mutation to the non-global 

optimal particles, and do chaotic search to the global optimal particles. Dynamically 

justify the range of mutation and search. This paper gives the good constringency effect. 
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