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Abstract 

In recent years, 
1

l norm is usually considered as the regularization term in the field of 

sparse representation. However, the non-zero entries obtained by the 
1

l  regularization 

term always neglect the correlations with each other. In fact, different relationships or 

structures among non-zero entries are necessary in many applications. K-support norm is 

firstly proposed in the field of sparse prediction. The most important property of the k-

support norm is grouping feature of the largest entries in the obtained solution. In this 

paper, we present a new image processing model by introducing the k-support norm to 

image gradient domain. The proposed model can be applied to image denoising and edge 

detection simultaneously. Some examples demonstrate the effectiveness of the novel model 

and its improvements. 
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1. Introduction 

Image denoising is a fundamental task in image science. The goal of denoising is to 

remove noise from a given noisy measurement: 

wAub                                                          (1.1) 

where 
m

Rb   is the observed image, 
nm

RA
*

 is a linear operator and often an 

identity operator in classic denoising problems, 
n

Ru  and 
m

Rw   denote the true 

image and the noise respectively. In the past decades, a vast variety of denoising methods 

have been proposed, such as the ROF model [1], the wavelet-based approach [2], the non-

local means filter [3] and the sparse and redundant representation model [4, 5]. The 

famous ROF model proposed by Rudin, Osher and Fatemi in [1] is demonstrated to be 

very successful in image denoising and is formulated as: 

}||||||||
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1

2

ubAu
u

                                         (1.2) 

where  
22

1
||||

yx
uuu  and IA  ,   is the regularization parameter that 

should be positive. The model (1.2) is also called the isotropic ROF model. There are 

some efficient methods proposed in [6-9] to solve the model (1.2). We can see in (1.2) 

that the ROF model takes 
1

|||| u  as its regularization term. It is very popular to obtain a 

sparse solution by a 
1

l  regularization term in various optimization problems including 

image processing [10], pattern recognition [11] and compressed sensing [12]. The 
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methods with the 
1

l  regularization term have achieved great success in relevant 

applications. 

However, the sparse representation method with 
1

l  regularization term is just 

minimizing the number of non-zero entries while neglecting the correlations among them. 

In fact, different relationships and structures among non-zero entries are often necessary 

in many applications [14, 15]. Therefore, a new group-variable selection method named 

elastic net [16] is proposed. The elastic net penalizes with both 
1

l  and 
2

l  norms and 

encourages a grouping effect. That means the elastic net pays more attention to the 

correlations among non-zero entries and often outperforms LASSO [13] that regularized 

with 
1

l  norm. 

Similar to the elastic net, a novel norm named k-support norm sp

k
||||   is proposed in [17] 

for sparse prediction. According to its definition, it is a norm between 
1

l  and 
2

l  norms. 

But we should point out that this new norm is not equal to the )21(  pl
p

 norm. 

Actually, the k-support norm chooses the largest k  entries of a vector. The unit ball of the 

k-support norm is more “rounder” than that of LASSO penalty and the elastic net penalty. 

Namely, the tops of the unit balls of LASSO penalty and the elastic net penalty are not as 

smooth as the unit ball of the k-support norm. This property results the k-support norm 

less biased towards sparse vectors and can enhance the correlations among the non-zero 

entries of a solution. Besides, according to the designed method of the k-support norm, 

there are no more than k  non-zero entries of every atom in the dictionary. That means the 

obtained solution is composed by the atoms which have no more than k  non-zero entries. 

As mentioned before, the solution obtained by (1.2) makes those non-zero entries 

individually. Moreover, a large proportion of ||
x

u  and ||
y

u  are close to zero. Our 

goal is to seek a sparse solution and take the correlations between non-zero entries into 

account. If we pay more attentions to the largest non-zero entries of ||
x

u  and ||
y

u , a 

natural choice for us is to choose the k-support norm sp

k
u ||||   as the regularization term. 

In this paper, we propose a new image processing model that regularized with 
sp

kx
u ||||   and sp

ky
u ||||  . The new model can be applied to image denoising and edge 

detection simultaneously. We demonstrate the performance of the proposed model and 

show our model often outperforms the isotropic ROF model [1] and the anisotropic ROF 

model [18]. More details of our method are described in Section 3. 

In Section 2, the k-support norm, its dual norm and the proximal method are stated. An 

image processing model with the k-support norm is proposed in Section 3. In Section 4, 

some examples are given to illustrate the effectiveness of the new model. In the last 

section, we draw some conclusions for correlated sparse representation. 

 

2. K-support Norm and Related Notions 

In this section, we introduce the k-support norm briefly and more details are in [17] 

and references therein. The k-support norm is given by the following formulation: 

},)(:||||min{||||
2 

 


k k

GI GI

III

sp

k
zvIvsupportvz                     (2.1) 

where 
d

Rz  , },...,1{ dk   and 
k

G  denotes the set of all subsets of },...,1{ d  of 

cardinality at most k . It is already mentioned in [17] that 
11

|||||||| 
sp

 and 
2

|||||||| 
sp

d
. 

Actually, the k-support norm is a norm between 
1

l  and 
2

l  norms with regard to 

dk 1 . It is known to all that the unit ball of the 
1

l  norm is a square with four 

corners located at coordinate axes. This property leads to obtain a strictly sparse solution 
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for the relevant optimization problem. The unit ball of the k-support norm is much 

rounder than that of the 
1

l  norm. Therefore, the k-support norm tends to obtain edge-

tangency with constraint hyper-plane when the unit ball is inflated gradually. It makes the 

solution of relevant optimization problem combined by some k-support atoms. Naturally, 

the obtained solution also has the features like all k-support atoms have. Besides, the dual 

norm of the k-support norm is: 

2

1

1

22

1

2*

))|(|(}:)max{(}1||:||,max{}||{|| 







k

i

ik

Ii

i

sp

k

sp

k
zGIzwzwz    

 (2.2) 

Actually the dual norm is the 
2

l  norm of the largest k  entries in vector z  and 

interpolates between the 


l  norm and the 
2

l  norm. If 1k , we have 
1

|||||||| zz
sp

k
  and 

its dual norm 


 ||||||||}||{||
*

1

*

zzz
sp

k
; when dk  , the k-support norm 

2
|||||||| zz

sp

k
  

and its dual norm 
2

*

2

*

||||||||}||{|| zzz
sp

k
 . Moreover, when solving the optimization 

problem with the k-support regularization term, a proximal algorithm is given in [17]. 

Here, we describe it briefly in Algorithm 1. 

According to the elaboration in [17], the k-support norm is tighter than the elastic net 

by a factor of 2  and can also encourage a grouping effect. When regularized with the 

k-support norm, we can obtain a sparse solution that not neglects the correlations among 

non-zero entries. Therefore, we introduce the k-support norm in image processing. 

However, if we apply the k-support norm to the image processing problem directly, the 

obtained solution will not be good enough. Take a 256*256 image as an example. In such 

an image, there are 65536 pixels. When the k-support norm is chosen to sparse represent 

the image directly, k  pixels with a big gray value are retained while the rest pixels are 

disregarded. Since the gray value of a pixel distributes randomly in [0, 255], the value of 

k  should set to be very large so that the k-support norm can represent the image precisely. 

However, it is contrary to our original intention and also impracticable. 

Considering the problem in the image gradient domain, the points with a big gradient 

value are always located around the edges and points with a gradient value close to zero 

are located in smooth areas. In an image, the most parts are smooth areas and only a small 

portion of it is edges. That is to say, in the gradient domain, the number of the points with 

a big gradient value is small and a lot of points with a gradient value close to zero. 

Moreover, the gradient values of points in the same edge are almost the same with each 

other. Therefore when one of them has been selected, then the rest may also be picked 

out. These characters are well in line with the properties of the k-support norm. Naturally, 

we introduce the k-support norm to our model in the following section. 

 



International Journal of Signal Processing, Image Processing and Pattern Recognition 

Vol. 8, No. 4 (2015) 

 

 

260   Copyright ⓒ 2015 SERSC 

Input: 
d

Rv   

Output: 
)()||(||

2

2

1
vproxq

sp

k

L


 

Find }1...,,1,0{  kr , }...,,{ dkl  , such that 

rk

lr

rk
z

LLrLkl

T
z

L








 1

1

1)1(1

1 ,

1

 

1

,

1)1(






l

lr

l
z

LrLkl

T
z

 

where 

 ||: vz , :
0

z , 


:
1d

z , 



l

rki

ilr
zT :

,

 

dliif

lrkiif

rkiif

LrLkl

T
z

z
L

L

q

lr

i

i

...,,1

...,,

1...,,1

0

11

1

,






























 ）（

 

Algorithm 1. Computation of the Proximal Operator for 
sp

k
||||   Norm 

3. Image Processing Model and Optimization 

In this section, an image processing model with the k-support norm is proposed. We 

formulate the model as: 
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22212 sp

ky

sp

kx
u
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where f  denotes the observed image, 0
21
 ，  are regularization parameters, 

x
u and 

y
u  are the gradient in x and y direction respectively. To settle (3.1), we 

introduce two auxiliary variables 
x

z  and 
y

z  to separate the calculation of the non-

differentiable terms and the fidelity term. The model (3.1) is thus equivalent to the 

following formulation: 
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The constrained optimization problem (3.2) can be solved by the Augmented 

Lagrangian method [19, 20]. 
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(3.3) 

where 
1

 , 
2

  are the Lagrangian multipliers and 
1

r , 
2

r  are positive constants. To 

settle the problem (3.3), we should seek a saddle point of the augmented Lagrangian 

function ),,,,(
yxyxc

zzuL   [20]. So we solve the problem (3.3) as following. 

Fix   and z , the first is for u : 
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for the sake of simplicity, we use  ,uz  denotes 
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. The optimality condition for (3.4) is: 
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                        (3.5) 

The second is to obtain the solutions of 
x

z  and 
y

z  by fixing   and u . To settle this 

problem, we need to address the following two sub-problems: 
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(3.6) and (3.7) are also optimization problems. We firstly solve the problem (3.6) as 

following: 
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Now do the same steps to (3.7), we can get 
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after ignoring constant terms, (3.8) and (3.9) can be rewritten as: 
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The Lagrangian multipliers 
1

  and 
2

  are updated by (3.12) and (3.13) respectively: 
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Deducing from (3.5), (3.10), (3.11), (3.12) and (3.13), the solution for (3.3) can be 

obtained by iterating the followings: 
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zzz ),( . The first line in (3.14) can be solved 

easily. Here, we use the function handle and the PCG function in Matlab to solve it and 

the solution achieves very high precision. The second and third lines are solved by the 

proximal method: 
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  are the Lipschitz constants of the convex functions 
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4. Examples 

In this section, some experimental results are given to demonstrate the effectiveness of 

our model. We compare our model with the isotropic ROF model [1] and anisotropic 

ROF model [18]. Two simple geometry examples are firstly designed for comparing our 

new model with the two ROF models in terms of the visual effects, corner protecting, 

edge-preserving and the brightness level. In all experiments, we set the most suitable 

parameters and do enough iteration when applying the two ROF models.  

 

   
(a)                                           (b) 
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                     (c)                                             (d)                                             (e) 

Figure 1. (a) Original Image (b) Noisy Image with 50 , PSNR=14.1 (c) 

Denoising Result by the Isotropic ROF Model, PSNR=29.8 (d) Denoising 
Result by the Anisotropic ROF Model, PSNR=30.79 (e) Denosing Result by 

Our Model, PSNR=39.45 

The first example is shown in Figure 1(a). It is a clean 200*200 pixel image with two 

rectangles located in (30:150, 30:130) and (100:170, 100:170) respectively. We add the 

zero-mean additive Gaussian noise with 50  to the image and get the corrupted 

version that is shown Figure 1(b). Figure 1(c) and (d) are the denoising results of the 

isotropy ROF model [1] and the anisotropy ROF model [18] respectively. The denoising 

result of our method with 20k  is shown in Figure 1(e). We can see directly that Figure 

1(e) looks much better than Figure 1(c). Obviously, one shortcoming of Figure 1(c) is that 

the corners are seriously defiled while they are well preserved in Figure 1(e). Looking 

carefully, we can find that Figure 1(e) is brighter than Figure 1(d) in terms of visual 

effects. Moreover, the PSNR value of Figure 1(e) is much better than that of Figure 1(d). 

 

   
                (a)                               (b)                                (c)                                  (d) 

Figure 2. The Gradient of 99th Row for Figure 1(a), Figure 1(d) and Figure 
1(e) 

Figure 2 shows the gradient value of the 99th row (the top edge of the small rectangle) 

for Figure 1(a), Figure 1(d) and Figure 1(e). The green line in Figure 2 is for the original 

image Figure 1(a). The red line and the blue line are for Figure 1(d) and Figure 1(e) 

respectively. Figure 2(a) and Figure 2(b) are the gradient in x direction and the rest of 

Figure 2 is for the gradient in y direction. Comparing with the red line in Figure 2, the 

blue line fits the green line much better. We can see that in Figure 2(a) and Figure 2(c), 

the green line and the blue line are almost overlapping. It means our new method can 

provide a well approximation for the gradient of the original image. This property can 

also be used to edge detection and its applications will be given latter. 
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(a)                                      (b)                                        (c) 

      
(d)                                       (e)                                        (f) 

Figure 3. (a) Original Image (b) Noising Image with 50 , PSNR=14.1 (c) 

Denoising Result by Isotropic ROF Model, PSNR=31.7 (d) Denoising Result 
by Anisotropic ROF Model, PSNR=32.6 (e) Denoising Result by Our Model, 

PSNR=44.30 (f) Intensity of the 100th Row Pixels 

The second example is shown in Figure 3. Figure 3(a) is the original image of size 

200*200 and the white rectangle is located in (50:150, 50:150). After adding the zero-

mean additive Gaussian noise with 50 , we get the noisy image Figure 3(b) 

(PSNR=14.1). Figure 3(c) and Figure 3(d) are the denoising results of the isotropic ROF 

model and the anisotropic ROF model respectively. Figure 3(e) is the denoising result by 

(3.1) with 20k .  We see that four corners in Figure 3(c) are defiled. It means that the 

isotropic ROF model fails to protect corners. Similar to the first example, the denoising 

result of our model is brighter than that of the anisotropic ROF model in terms of visual 

effects. Moreover, we find the PSNR value of our method is much better than the 

anisotropic ROF model. Looking locally, Figure 3(f) shows the grey value of the 100th 

row pixels for Figure 3(a), Figure 3(d) and Figure 3(e). We use the blue line and the green 

line to denote the denoising result of our model and the original image respectively. The 

red line is for the anisotropic ROF model. In Figure 3(f), we see that the blue line fits the 

green line much better than the red line. This means that our method outperforms the 

anisotropic ROF model. 

The above examples illustrate our model performs much better than the two ROF 

models when denoising simple geometry images. Now we give two natural image 

examples to compare our model with the two ROF models. In the experiments, we set the 

most suitable parameters and do enough iteration to the two ROF models. The value of k  

in our model is set to 28 in both real image examples. The results are shown in Figure 4 

and Figure 5. As we see, Figure 4(a) is the original Hepburn image and the noisy version 

of it is shown in Figure 4(b). Here we add the zero-mean additive Gaussian noise with 

25  to the original image. The denoising results of the isotropic ROF model and the 

anisotropic ROF model are shown in Figure 4(c) and Figure 4(d) respectively. Figure 4(e) 

is the denoising result of our method. Figure 4(f) is the edge detection result by our 

method and more details are shown in Figure 4. In the second real image experiment, we 

use the Pepper image that is shown in Figure 5(a). The same noise is added to the original 

image and the corrupted version is shown in Figure 5(b). All the results obtained in the 
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second experiment are shown in the rest of Figure 5. The PSNR values of denoising 

results demonstrate our method performs better than two ROF models. Moreover, we can 

obtain the edge detection result simultaneously. Figure 4(f) and Figure 5(f) show the edge 

detection results of our method. We can see the edge detection results fit the edges of the 

original image very well. After doing these two experiments, we demonstrate the model 

(3.1) can be applied to image denoising and edge detection simultaneously. 

 

     
                         (a)                                       (b)                                       (c)   

     
(d)                                       (e)                                       (f) 

Figure 4. (a) Original Image (b) Noisy Image with 25 , PSNR=20.2 (c) 

Denoising Result by Isotropic ROF Model, PSNR=27.44 (d) Denoising Result 
by Anisotropic ROF Model, PSNR=27.59 (e) Denoising Result by Our Model, 

PSNR=28.47 (f) Edge Detection Result by Our Method 

     
                          (a)                                      (b)                                       (c) 
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(d)                                      (e)                                        (f) 

Figure 5. (a) Original Image (b) Noisy Image with 25 , PSNR=20.15 (c) 

Denoising Result by Isotropic ROF Model, PSNR=27.51 (d) Denoising Result 
by Anisotropic ROF Model, PSNR=27.64 (e) Denoising Result by Our 

Method, PSNR=28.79 (f) Edge Detection Result by Our Model 

Besides, a series of experiments on the two natural images have been done. We use 

different parameters and compare our method with the two ROF models. The results of 

experiments are given in Table 1 and Table 2. In experiments, we add different noise to 

original images to get corrupted version, then use our method and the two ROF models to 

deal with the noisy images. When applying our model, different k  are set to obtain 

different denoising results. As we can see, under a little noisy situation, the denoising 

results by our method are slightly better than the two ROF models. However, with the 

increase of the noise level, our method performs much better than the latter two. There 

exist significant differences between our method and the two ROF models. In addition, 

the value of k  can also influence the result of our method. Under the heavy noisy 

situation, the value of k  has a great influence on PSNR and should not be chosen too 

large. We find that with the increasing of k , our method takes more time. It is meaningful 

for us to choose an appropriate k  for our model. 

 

Table 1. PSNR Values of Denoisied Hepburn Image with Different 
Parameters 

Hepburn 10  15  20  25  30  35  

ours 

k=10 

k=20 

k=30 

k=40 

k=50 

32.52 

32.72 

32.82 

32.89 

32.95 

30.69 

30.83 

30.87 

30.82 

30.78 

29.56 

29.63 

29.60 

29.46 

29.53 

28.56 

28.55 

28.36 

28.09 

27.67 

27.72 

27.60 

27.44 

27.08 

26.91 

27.09 

26.83 

26.53 

25.96 

25.74 

ROF [1] 31.53 30.70 29.44 27.39 25.17 23.22 

ani-ROF [18] 31.51 30.75 29.56 27.53 25.29 23.32 

 

Table 2. PSNR Values of Denoisied Pepper Image with Different Parameters 

Pepper 10  15  20  25  30  35  

ours 

k=10 

k=20 

k=30 

k=40 

k=50 

32.71 

33.01 

33.26 

33.43 

33.46 

30.98 

31.26 

31.35 

31.33 

31.32 

29.71 

29.84 

29.91 

29.73 

29.71 

28.80 

28.86 

28.73 

28.51 

28.16 

27.92 

27.90 

27.87 

27.35 

27.01 

27.12 

27.06 

26.78 

26.18 

25.83 

ROF [1] 32.03 31.20 29.63 27.55 25.28 23.16 

ani-ROF [18] 32.09 31.28 29.73 27.67 25.40 23.25 
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Although many experiments have been done, they are on the same test images. In order 

to verify the practicability of our model, we also do some experiments on other images. In 

these experiments, we set the most suitable value to k  and add the zero-mean additive 

Gaussian noise with different   to the test images. Table 3 shows the PSNR values of the 

denoising images. The results demonstrate that our method is well performed with 

different pictures. 

 

Table 3. PSNR Values of Different Denoising Images by Our Method 

Image 10  15  20  25  30  35  

barbara 31.15 29.10 27.66 26.59 25.75 24.95 

bowl 32.50 30.49 29.03 27.91 27.04 26.31 

chart 29.30 27.53 27.20 26.79 26.31 25.53 

clock 32.91 31.31 30.05 28.76 27.44 26.47 

bartexture 29.78 27.55 26.20 25.21 24.58 24.08 

lena 32.05 30.07 28.79 27.74 26.80 25.75 

cameraman 31.13 29.46 28.31 27.42 26.45 25.62 

plane 36.41 33.78 31.75 30.61 28.87 27.53 

 

After doing a series of experiments on different examples, the results indicate that our 

model (3.1) outperforms the isotropic ROF model and the anisotropic ROF model. 

Moreover, the edge detection result can be obtained simultaneously since we use the k-

support norm to sparse represent the gradient of the image. 

 

5. Conclusions 

Considering the largest k  non-zero entries of the sparse vectors, we propose a new 

model with the k-support norm for image processing. In this model, we use the k-support 

norm to sparse represent the gradient of the image. Our model can be applied to image 

denoising and edge detection simultaneously. In fact, how to organize atoms in dictionary 

for correlated sparse norm in image processing is worth to be studied and is easily 

extensible according to different tasks. 
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