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Abstract 

Tracking articulated hand motion from visual observations is challenging mainly due 

to the high dimensionality of the state space. Dense sampling is difficult to be performed 

in such high-dimensional space, so the traditional particle filtering can’t track articulated 

motion well. In this paper, we propose a new algorithm by combining differential 

evolution with a particle filter, to track the articulated motion of a hand from single depth 

images captured by a Kinect sensor. Through the optimization procedure of differential 

evolution, the particles are moved to the regions with a high likelihood. Only single depth 

information is used as the input, so our method is immune to illumination and background 

changes. The tracking system is developed with OpenSceneGraph (OSG). Experiments 

based on both synthetic and real image sequences demonstrate that the proposed method 

is capable of tracking articulated hand motion accurately and robustly.   
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1. Introduction 

Estimation and tracking of articulated hand motion from visual observations is an 

important technique that has a variety of applications, including, but not limited to, 

visual surveillance, computer animation, human-computer interaction, robot 

instruction. However, it is also a challenging problem in the area of computer vision, 

because of self-occlusions, the high-dimensional state space, and the time-varying 

dynamics of hand motions. 

Various methods have been proposed to capture articulated hand motion. One 

kind of method is the appearance-based method [1-4], which estimates the hand 

poses directly from the images, by using a pre-learned mapping from the image 

features to the hand state space. These “bottom-up” methods are usually 

computationally efficient, but the accuracy of pose estimation depends on the 

training data collected for learning the mapping. 

Another kind of method is the model-based method [5-12], which solves the 

problem in a “top-down” manner, by generating model hypotheses and then 

evaluating them on the visual observations. The task becomes a search for the state 

parameters that minimize the matching error between model features and observed 

image features. The block diagram for model-based tracking is shown in Figure 1. 

For these methods, the high dimensionality of the state space needs to be tackled 

specifically. 

Model-based tracking is often addressed in a particle filter framework which can 

deal with multiple hypotheses [5-11]. However, in a high-dimensional space, the 

traditional particle filtering needs a large number of samples to represent the true 
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posterior, making the algorithm too slow. Therefore, some research focuses on 

reducing the dimensionality of the state space by using the learned strong motion 

prior models [5-6]. But these methods are restricted to specific activities and have 

problems dealing with general motions that are too different form the training set.    

Other efforts have been devoted to providing a modified particle filter that works 

well with fewer samples by introducing some kind of optimization method [7-11]. 

During the optimization procedure, the particles are moved to the peaks of the 

posterior distribution. Gradient-based optimization [7-8], simulated annealing [9], 

swarm-based optimization [10-11] all have been used for this purpose. As the 

development of the computational power of computer hardware, swarm-based 

methods have attracted more attention. Cui, et al., [10] introduce genetic algorithm 

into a particle filter to track articulated hand motion from RGB images. And Zhang, 

et al., [11] integrate a niching particle swarm optimization (PSO) into a particle 

filter to capture full-body motion from volume data reconstructed with multiple 

RGB image views. 

In this paper, we propose to combine differential evolution with a particle filter to track 

the articulated motion of a hand from single depth images captured by a Kinect sensor. 

Although, recently, Oikonomidis, et al., [12] have proposed a model-based method for 

articulated hand tracking from the observations of a Kinect sensor, there are some 

differences between our work and theirs. [12] uses the RGB color plus depth observation 

as the input of the system, however, to make our system immune to illumination and 

background changes, we only use single depth information. And different from [12] using 

a PSO-based single hypothesis tracking method, we perform the tracking in a modified 

particle filter framework which incorporates an optimization procedure of differential 

evolution.  

 

 

Figure 1. Block Diagram of the Model-based Tracking System 

2. Hand Model 

The hand model is built with basic geometric primitives in the 3D parametric 

modeling software Pro/Engineer. Though the Wavefront OBJ file format, it is then 

imported into Multigen Creator, a 3D modeling software for visualization. In 

Creator, we organize the meshes of the hand model into a hierarchical structure and 

add DOF nodes into the structure. The final resulting model is saved as an 

OpenFlight file and shown in Figure 2(b). 

AS shown in Figure 2(a), the hand kinematics is modeled with 26 DOF, including 

6 DOF for the global motion of the palm and 20 DOF for the local motion of the 

fingers. Assuming the CMC joints fixed, the palm is modeled as a rigid body with 6 

DOF. All fingers are connected to the palm by five 2-DOF revolute joints (TM for 

the thumb and MCP for the other fingers), with 1 DOF for flexion-extension motion 

and 1 DOF for abduction-adduction motion. Each finger consists of three parts 

connected by two 1-DOF joints which are only capable of flexion-extension motion. 
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(a) Skeleton model                          (b) Mesh model 

Figure 2. Hand Skeleton Model and Mesh Model 

3. Observation Model 

To measure the compatibility of a hand pose hypothesis s  to the observation o , 

we establish the observation model by comparing the feature maps extracted from 

the observation and the ones rendered from the hypothesis s . Specifically, for a 

given input frame, the hand area is extracted from the depth observation by using 

simple depth segmentation, resulting a depth map 
d

o . And, for a given hand pose 

hypothesis s , a depth map 
d

r  is rendered by using the configurable 3D hand model. 

Then, two binary silhouette maps 
b

o  and 
b

r  are derived from 
d

o  and 
d

r , 

respectively, by labeling foreground pixels to be 1. To measure the matching error 

between the observed features { , }
d b

o o  and the rendered features { , }
d b

r r , a function 

is defined as follows: 

 ( , ) ( , ) ( , ) ( )
d d b b m m

f f f f    o s o s o s s  (1) 

which consists of three terms: the depth term 
d

f , the silhouette term 
b

f  and the 

smoothness term 
m

f . By experimental research, the weights 
d

 , 
b

  and 
m

  are set 

to 1.0, 2.22 and 0.005, respectively, in this paper. 

The depth term 
d

f  measures the depth difference between the observed depth 

map 
d

o  and the rendered depth map 
d

r  

 
 

 

m in ,
( , )

d d d

d

b b

o r T
f

o r


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


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The calculation of the depth differences (in millimeters) is operated in a pixel-

wise manner. To avoid some large differences impacting the performance of the 

search method, the absolute depth differences are clamped in the range [0 , ]
d

T . In 

this paper, 
d

T  is set to 40mm.  

The silhouette term 
b

f  measures the area of non-overlapping hand regions 

between the rendered silhouette map 
b

r  and the observed silhouette map 
b

o  

 
   1 1

( , )
b b b b

b

b b

o r r o
f

o r

 
 
 

 
o s  (3) 

whose first term describes the non-overlapping hand regions in 
b

o  and second 

term describes the non-overlapping hand regions in 
b

r . The introduction of the 

silhouette term 
b

f  makes the objective function smoother and helps the search 

process converge to the true optimum. 
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To penalize the sudden changes of hand poses between two consecutive frames, a 

smoothness term is introduced 

 
1

ˆ( ) || | |
m t t t

f


 s s s  (4) 

where 
t

s  is a hypothetical pose for the current frame and 
1

ˆ
t 

s  is the reconstructed 

pose for the previous frame.  

Then, for a given pose s , the likelihood of the observation o  is defined as 

  ( | ) e x p ( , )
f

p f  o s o s  (5) 

where 
f

  is a normalization factor that is set according to the noise of the 

observation. 

 

4. The Tracking Algorithm 
 

4.1. Particle Filtering 

In this paper, we address the problem of articulated hand tracking in a particle 

filter. Based on a stochastic sampling method, particle filtering implements a 

recursive Bayesian filter, which approximates the posterior distribution by a set of 

weighted particles 
1

{ ( , )}
i i N

i



s , where i

s  is a sample state and i
  is its 

corresponding weight. After particles 
1 1 1

{ ( , )}
i i N

t t i


  
s  are sampled from the posterior 

distribution of time t–1, they are propagated to new positions according to the 

transition model 
1

( | )
t t

p


s s , and then based on the observation likelihood ( | )
t t

p o s  

their weights are updated to obtain a new particle set 
1

{ ( , )}
i i N

t t i



s , which represents 

the posterior distribution 
1:

( | )
t t

p s o  of the state 
t

s  conditioned on the observations 

1: 1
{ , .. . , }

t t
o o o  up to time t.  

Particle filtering provides a robust framework for motion tracking in cases of 

clutter and occlusion. By modeling uncertainty and keeping multiple hypotheses 

along time, it has the power to represent multimodal distributions. However, for 

easy implementation, the transition prior 
1

( | )
t t

p


s s , instead of the optimal 

distribution 
1

( | , )
t t t

p


s s o [13], is usually taken as the proposal distribution for 

importance sampling. This is inefficient when 
1

( | )
t t

p


s s  lies in the tail of the 

observation likelihood ( | )
t t

p o s , which is a case that happens quite often. As 

articulated hand tracking is a high-dimensional problem, a very large number of 

samples are needed to maintain an effective representation of the true posterior, 

making the algorithm too slow. If the number of samples is not enough, the samples 

will be too diffused and the tracking could be lost.  To provide solutions that work 

well with fewer samples, some kind of optimization method is often introduced into 

the framework of particle filtering. 

 
4.2. Differential Evolution 

In this paper, we use differential evolution for the minimization of the matching 

error function (see Equation (1)). Differential evolution (DE) [14] is a simple and 

efficient swarm-based optimization method for minimizing non-linear and non-

differentiable objective functions. After initialized, DE evolves a set of N D-

dimensional vectors 
1

{ }
i N

g i 
x  with the proceeding of generation g to search the global 

optimum over continuous space. The evolution is performed via three operations: 
mutation, crossover, and selection. Mutation and crossover are used to produce the 

trial vectors and selection is used to determine whether the new trial vector should 

survive into the next generation.  
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During mutation, for each vector index i in the population, DE randomly chooses 

three different vectors from the previous generation and combines them to create a 

mutant vector 

 31 2

1
( )

rr ri

g g g g
F


  v x x x  (6) 

where vector indexes 
1

r ,
2

r ,
3

r  are randomly chosen in the range [1,2,…,N], 

different from each other and different from the index i. The scale factor F for the 

difference vector 32( )
rr

g g
x x  controls the convergence rate of the search. Originally, 

F is a constant. In this paper, to improve convergence, we use a jitter [15] factor 

1 .0   to modulate F for each parameter. Then, we have (0 ,1)
C

F F N  , where 
C

F  

is a constant and (0 ,1)N  is a Gaussian random number with mean 0 and variance 1.0. 

For the 6 global dimensions, we set 
C

F =0.5, and for the 20 finger joint dimensions, 

we set 
C

F =0.7. 

The mutant vector 
1

i

g 
v  is then combined with the old vector i

g
x  to form the trial 

vector ,

1 1 1
{ }

i j i D

g g j
u

  
u  via the crossover operation 

 

,

1, 1
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 (7) 

where ~ (0 ,1)
j

ra n d U  is a uniform random number in the range [0,1] for the j-th 

dimension. The crossover constant CR determines the probability for the trial 

parameter to be inherited from the mutant vector. In this paper, we set CR=0.9. A 

parameter index 
1

i

g
r


 is randomly chosen in the range [1,2,…,D] to make sure that 

the trial vector gets at least one parameter from the mutant vector. 

After mutation and crossover, a greedy selection operation is performed 

 
1 1

1

if   ( ) ( )

o th e rw ise
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gi g g

g i

g

f f 



 
 


u u x
x

x
 (8) 

The trial vector 
1

i

g 
u  is compared with the old vector i

g
x  to decide whether it 

should be passed to the next generation. If the trial vector gets an equal or better 

objective function value than the old vector, then it replaces the old vector in the 

next generation; otherwise, the old vector is retained for at least one more 

generation.    

According to [14], DE has several variants and the one described above can be 

noted as DE/rand/1/bin where ‘rand’ means the base vector for mutation is a 

randomly chosen population vector, ‘1’ indicates only one difference vector is used, 

and ‘bin’ denotes binomial crossover. The original DE algorithm is a parallel search 

method which maintains two distinct vector sets for two consecutive generations 

respectively. However, to accelerate the convergence rate, we makes DE a serial one 

by mixing two generations into one vector set. 

 

4.3. Combining Differential Evolution with Particle Filtering 

In this paper, DE is integrated into a particle filter to create a new solution for 3D 

articulated hand tracking. After predicting new positions for the particles using the 

transition prior, we run DE to optimize the particles based on the newest 

observation 
t

o . By this way, the particles are moved towards the promising areas in 

the state space where the observation likelihood has a larger value. The optimization 

of DE can be seen as a procedure of importance sampling, which results a new 

particle set to approximate the optimal proposal distribution 
1

( | , )
t t t

p


s s o . 
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Algorithm 1: Combining differential evolution with particle filtering  

For t > 0: 

1) Resample: resample 
1 1 1

{ ( , )}
i i N

t t i


  
s into

1 1
{ ( ,1 ) )}

i N

t i
N

 
s based on 

weights 

2) Predict: propagate the particles from t–1 to t to give 
1

{ ( ,1 ) )}
i N

t i
N


s  

using Equation (9)  

3) Optimize: optimize 
1

{ ( ,1 ) )}
i N

t i
N


s  via DE 

 initialize the population of DE 

for i=1 to N  

   
0

i i

t
x s  

 iterate 

for g=1 to G 

   for i=1 to N 

      do the mutation operation to obtain i

g
v  using Equation (6) 

      do the crossover operation to obtain i

g
u  using Equation (7) 

      do the selection operation to obtain i

g
x  using Equation (8) 

 after optimization 

for i=1 to N 

   i i

t G
s x  

4) Weight: weight the particles as ( | )
i i

t t t
p  o s  to give 

1
{ ( , )}

i i N

t t i



s , 

and normalize 
1

{ }
i N

t i



 so that 

1
1

N i

ti



  

5) Estimate: use the particle with the biggest weight as the output 

To propagate the particles along the sequence, a first-order motion model is 

defined for the transition prior 

 
1 1

i i i

t t t 
  s s w  (9) 

where 
1 1

{ }
i N

t i 
s  are the final positions of the particles converged after the 

optimization procedure of DE at time t–1. 
1

~ (0 , )
i

t
N


w   is a multivariate Gaussian 

noise with mean 0 and a diagonal covariance   whose diagonal elements are 

determined according to the maximum inter-frame angular or translational 

differences. The obtained new particle set 
1

{ }
i N

t i 
s  is then used to initialize the 

population of DE for time t. Finally, the presented tracking algorithm is summed up 

in Algorithm 1. 

 

5. Experiments 

The tracking system is developed with OpenSceneGraph (OSG), an open source 

3D graphics toolkit. In OSG, we use a framebuffer object to render each pose 

hypothesis into a depth image for the calculation of its observation likelihood. The 

system runs on a computer with a 2.0 GHz Intel dual-core CPU, 2 GB RAM and a 

GeForce 8400M GS GPU. Using 40 particles and 45 generations for the 

optimization process of DE, the proposed method takes about 5 seconds to track one 

frame. 

To evaluate the proposed method, experiments are performed based on both 

synthetic data and real image sequences. We compare the proposed method with the 

standard particle filtering (PF) and the standard PSO [16] based single hypothesis 

tracking method. To make fair comparisons, standard PF uses 1800 particles, while 
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standard PSO is run with 60 particles and 30 generations. Hence, for the three 

methods, the numbers of likelihood evaluations to track one frame are all 1800.  

 

5.1. Experiments on Synthetic Sequences 

It is difficult to obtain the ground truth of hand motions from a real image 

sequence. Therefore, we produce a synthetic sequence of 150 hand poses by linear 

interpolation among four predefined key poses shown in Figure 3. Rendering is used 

to synthesize the required depth image for each hand pose. By using the synthetic 

image sequence as the input of the system, the tracking results can be compared 

against the ground truth. 

 

 

Figure 3. The Key Poses of the Synthetic Sequence 

Figure 4(a) plots the matching errors (see Equation (1)) of the three methods on 

the synthetic sequence, while Figure 4(b) plots the mean errors of the pose angles 

(including the 20 finger joint angles and the 3 global angles which represent the 

orientation of the palm). The statistics of the mean angle errors along the sequence 

is shown in Table 1. The results show that the standard PF method meets the 

problem of serious error accumulation and thus can’t track articulated hand motion 

well. In Figure 4(b), it can be seen that the errors of standard PF even accumulate to 

a peak value larger than 35 degrees. The proposed method and the standard PSO 

method both clearly perform better than standard PF. However, the proposed 

method attains higher accuracy than the standard PSO method. 

 

 
(a) Matching Errors                                  (b) Mean Angle Errors 

Figure 4. Tracking Errors on the Synthetic Sequence 

Table 1. Statistics of Mean Angle Errors 

Method Total Average(°) Standard Deviation(°) 

PF 13.5243 9.8956 

PSO 4.8908 3.9283 

Proposed method 2.6748 1.8660 

 

Some of the state parameters attained by the proposed method are shown in 

Figure 5. The results are plotted in solid curves while the ground truth data is 

plotted in dash curves. It can be seen that our results are in good agreement with the 

ground truth. 
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(a) MCP Flexion of the Index Finger        (b) PIP Flexion of the Middle Finger 

 
(c) DIP Flexion of the Middle Finger      (d) TM Flexion of the Thumb Finger 

Figure 5. Comparison of our Estimates and the Ground Truth 

5.2. Experiments on Real Sequences 

A Kinect sensor is used to capture two real image sequences, the first one 

consisting of 300 frames and the second 270. By using the Microsoft Kinect 1.0 

Beta2 SDK, the images are captured at a resolution of 640×480 pixels and a rate of 

30 fps. As the ground truth can’t be obtained, we only compare the matching errors 

on the real sequences (see Figure 6). It can be seen that the proposed method and the 

standard PSO method still clearly perform better than standard PF. However, for 

some frames when the articulated motion of the hand becomes a little more 

complicated, such as frame 20~40, 60~80, 260~290 in the first sequence and frame 

220~270 in the second sequence, the proposed method outperforms the standard 

PSO method in accuracy and robustness. 

 

 
(a) The First Real Sequence                   (b) The Second Real Sequence 

Figure 6. Matching Errors on Real Sequences 



International Journal of Signal Processing, Image Processing and Pattern Recognition 

Vol. 8, No. 4 (2015) 

 

 

Copyright ⓒ 2015 SERSC  245 

 

Figure 7. Some of Our Results on the First Real Sequence 

Figure 7 and Figure 8 show some visual results of the proposed method on the 

two real sequences, respectively. The left column of each figure shows the 

corresponding synchronized RGB color images captured by the Kinect RGB camera. 

The middle column of each figure shows the depth images captured by the Kinect 

depth camera, which are used as the input of the tracking system. The results of the 

proposed method are presented in the right column of each Figure. It can be seen 

that the proposed method can track articulated hand motion accurately and robustly. 
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Figure 8. Some of Our Results on the Second Real Sequence 

6. Conclusion 

In this paper, we have presented a new algorithm by combing differential 

evolution and a particle filter, to track articulated motion in a high-dimensional state 

space. Through the optimization procedure of differential evolution, the particles are 

moved to the regions with a high likelihood. By using single depth images as the 

only input, our system is immune to illumination and background changes. 

Experiments based on both synthetic data and real image sequences have 

demonstrated that the proposed method is accurate and robust for articulated hand 

motion tracking. 

The depth observation obtained from the Kinect sensor is rough and noisy, where 

the depth “holes”, which result from the missing depth information, happen all the 

time. That causes a big impact on the accuracy of our system. In the future, to make 

the system more robust to sensor noise, we will apply multiple depth cameras for 

tracking. The most time-consuming step of the tracking system is the calculation of the 
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matching error function, which is easy to be parallelized and implemented on a GPU. For 

future work, we will accelerate the tracking system by using GPU implementations. 
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