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Abstract 

As the state-of-art denoising method, BM3D is capable of achieving good denoising 

performance by exploiting both the non-local characteristics and sparsity prior 

knowledge of images. Nevertheless, experimental results show that the dissimilarity 

measurement defined in BM3D sometimes results in grouping patches with 

distinct structure. Inspired by the fact about the different impact of noise on patches with 

various structures, we propose a structure-adaptive image denoising method with 3D 

collaborative filtering by optimizing the block matching procedure. In our method, the 

similarity in the variance between patches  is incorporated in block matching procedure. 

Besides, based on the prior knowledge of correlation among patches in the same 

neighborhood, the spatial distance between the reference patch and the candidate is also 

taken into account when measuring patches’ dissimilarity. Several numerical experiments 

demonstrate that the proposed approach achieve better results in PSNR and visual effect 

than original BM3D. 
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1. Introduction 

Image denoising problem has drawn considerable research attention in past decades. It 

aims at separating the true signal from random noise. All the existing approaches rely on 

some explicit or implicit assumptions or prior knowledge of the noise-free image. 

Traditional means, such as Gaussian spatial filtering, exploit spatial similarity to remove 

noise. The non-local mean (NLM) [1] denoising method is a typical up-to-date example 

of this type. It exploits the inter-patch correlations and adopts neighborhood filters to 

reduce the noise by averaging similar pixels. However, due to the averaging operation, 

NLM method may give rise to over-smooth visual effect. In the recent years, sparse 

representation based methods have proven to be more effective in denoising. They take 

full advantage of sparsity prior knowledge of image in transform domain to attenuate 

noise. A typical instance is Wavelet shrinkage approach, which performs thresholding 

operation on wavelet coefficients to yield approximate estimate of original true image. To 

achieve good sparsity for spatially localized details, a variety of multiresolution 

transforms or overcomplete representations have been developed in shrinkage denoising 

methods [2-4].  

BM3D [5] integrates both sparse representation and non-local averaging operation, and 

is widely recognized as the state-of-art denoising technique. By grouping similar patches 

together to form 3D array, it can achieve an enhanced sparse representation in transform 

domain, which ensures its outstanding denoising performance.  
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2. Related Work about BM3D 

There are two critical procedures in BM3D: block matching and 3D collaborative 

filtering. Block matching is performed to find patches similar to a given reference one, 

and in the original BM3D, the 2-norm distance is adopted to measure patches’ 

dissimilarity. To prevent the output-PSNR from sharp drop in case of heavy noise, BM3D 

introduces coarse prefiltering before the block-distance measurement, by applying hard-

thresholding operator on the coefficients of a normalized 2D linear transform. 

Experimental results show that prefiltering may bring visual blocking effect and result in 

the removal of the true image signal [6]. To achieve better visual effect, Omid [7] 

proposed to remove prefiltering and adjust the parameters adaptively according to the 

estimated noise level.  

In two denoising stages, collaborative filtering is implemented through hard 

thresholding and wiener filtering respectively. In collaborative filtering, it is likely for 

noise and true signal to be inseparable if patches can not be sparsely represented in 3D 

transform domain. In this case, it happens inevitably that filtering operation may remove 

partial energy of image signal. Furthermore, edges in images may be blurred since the 

weighted averaging behavior in aggregation actually acts as a low-pass filter. To mitigate 

this drawback, Chen [8] presented a bounded BM3D scheme, in which image is 

partitioned into multiple regions and a partial block matching is conducted when the 

reference patch contains several segments separated by edge. In fact, it is difficult to 

recognize the boundary of multiple regions in heavy noise, and erroneous region 

partitioning will pose a negative effect in block matching. In addition, Dabov [9] proposes 

a shape-adaptive collaborative filtering method, in which the shape of neighborhood can 

be selected adaptively and Shape-Adaptive DCT takes the place of DCT to perform 2D 

transform. On the basis of [9], Dabov [10] also incorporates Principle Component 

Analysis (PCA) into BM3D and designs the improved BM3D method with shape-

adaptive PCA. Both methods in [9, 10] are invalid for images in heavy noise, because it is 

tough to discern the shape of neighborhood when images are immerged in strong noise.  

In this paper, we examine the dissimilarity measurement method in the original BM3D 

through the experimental results of block matching, and propose an improvement on 

BM3D. In our method, structure-adaptive block matching procedure is adopted, and 

different types of patches are grouped in different ways. The similarity in the variance is 

incorporated in block matching procedure. Besides, based on the prior knowledge of 

correlation among patches in the same neighborhood, the spatial distance between the 

reference patch and the candidate is also taken into account when measuring patches’ 

dissimilarity. Numerical experimental results illustrate that the proposed method could 

achieve better performance in image denoising.  

This paper is organized as follows. In Section 3, an improved BM3D denoising scheme 

is proposed. The experimental results are presented in Section 4. Section 5 concludes the 

paper. 

 

3. Structure-adaptive BM3D Denoising Scheme (SA-BM3D) 

In BM3D, grouping procedure collects similar patches into 3D array through block 

matching. Only patches whose dissimilarity with respect to the reference one is smaller 

than a fixed threshold are considered similar. The original BM3D defines to measure the 

dissimilarity between the reference fragment 
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Generally, it is effective to compute the dissimilarity using the 2-norm distance 

illustrated in Eq. (1). Nevertheless, experimental results show that Eq. (1) will result in 
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erroneous grouping possibly even for clean images. For example, as shown in Figure 1(a), 

if the procedure of block matching proceeds with Eq. (1) in a non-overlapping manner, 

the eight rectangles highlighted will be regarded as similar ones. Obviously, the block on 

the left-down differs greatly from the other seven ones in texture, and it is regarded as 

‘pseudo-similar’ and should be weed out. To eliminate the erroneous grouping like this, 

some extra information about blocks’ structure needs to be merged into dissimilarity 

measurement. Recall that variance is capable of measuring the complexity of image 

patches in texture or structure to some extent, so patches with similar structure may have 

similar variances. It occurs to us that better grouping result may be achieved by excluding 

those patches with small dissimilarity measured by Eq. (1) and large difference in 

variance from the reference one. Figure 1(b) shows the corresponding matching result 

when variance is integrated into grouping procedure as above. Obviously, the pseudo-

similar block in Figure 1 (a) is eliminated and no longer regarded as similar one. 

Actually, block matching procedure is performed on noisy images. Once image patches 

are contaminated with random Gaussian noise, they experience an unexpected change in 

pixel intensity. And erroneous grouping is often the case if only the 2-norm distance in Eq. 

(1) is adopted in dissimilarity measurement. Then does variance work in grouping for 

noisy images as well? In order to evaluate whether the integration of variance into block 

matching make sense, it is necessary to examine the impact of noise on patches’ variance. 

In Figure 2(a), we select four patches with distinct structures (denoted by ‘1#’ ,‘2#’,’3#’ 

and ‘4#’) from lena image, and the trend these patches’ variances change with noise level 

is illustrated in Figure 2 (c). As seen from Figure 2(c), when patches are polluted with 

noise, the variance of them will increase inevitably. And stronger noise results in greater 

variance. In fact, what we are really concerned about is the relative change rate in 

variance among distinct patches. To achieve this goal, we propose the approach to 

normalize the patch variance, as shown in Eq. (2) and (3). In Eq. (2), V denotes the set of 

patches’ variance and 'V  is the deviation of V  from the average. Eq. (3) maps the result 

from Eq.(2) to the corresponding normalized value in the range between 0 and 1.  

' ( )V V m e a n V                                                                                                                         (2) 

( ) ( ' m in ( ') ) / (m ax ( ') m in ( '))n o rm a lize V V V V V                                                    (3) 

Figure 3 shows the normalized variance defined in Eq. (3) of 130 patches extracted 

from two standard gray images, ‘lena’ and ‘barbara’, in different noise levels. As seen 

from Figure 3, if the image is polluted by a small amount of noise, the normalized 

variance of noisy patches nearly coincides with that of the corresponding clean ones. 

When noise intensity increases, much burr appears in the regions of relatively small 

variance. For patches with smooth structure or simple regular texture, most of energy 

concentrate in a narrow range of gray level, as shown in Figure 2.(b). And their variances 

are relatively small compared to patches with complex texture. Hence, we can infer that 

noise imposes less impact on variance change of patches with more detail information, 

and there is a significant uncertainty in variance change rate for smooth patches or those 

with simple regular texture. In other words, for two noisy patches with smooth structure, 

they are more likely to differ greatly in variance, even if they resemble each other in the 

absence of noise. Therefore, it is more appropriate for noisy patches with complex 

structure to take variance into account when grouping.  
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(a)                                     (b) 

Figure 1. Comparison of Grouping Results 

         
                                     (a)                                                                  (b) 

 
(c) 

Figure 2. (a) Four Patches Denoted by ‘1#’,’2#’,’3#’and ‘4#’ in Lena Image (b) 
Histogram of these Four Patches (c) Variance Change of Four Patches with 

Noise Level 

 
(a) lena                                                                 (b) barbara 

Figure 3. Normalized Variance of Block Sequence from Lena and Barbara in 
Different Noise Levels 
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(a) Lena Image                      (b) Results of (a)           (c) Results of Noisy Lena ( 5  ) 

Figure 4. Classification Results from DCT Method: the Black and White 
Indicate Smooth and Non-smooth Patches Respectively 

                              
            (a) clean image               (b) noisy image( 1 0  )          (c) noisy image( 2 0   ) 

Figure 5. Classification Results from Variance based Method: the Black and 
White Indicate Smooth and Non-smooth Patches Respectively 

In the original BM3D, when the clean image encounters strong noise, its matching 

results differ greatly from that of the corresponding noise-free one, and it is more likely to 

produce 3D group comprising of patches scattered in a wide range. Especially, since 

smooth patches are more susceptible to noise than non-smooth ones, the block matching 

procedure on smooth patches is prone to generate more ‘pseudo-similar’ patches. Due to 

the decrease in inter-patch correlation resulting from the presence of pseudo-similar 

blocks, the denoising performance in collaborative filtering suffers.  

As a matter of fact, in the smooth region of a given image, patches in the neighborhood 

are more likely to be correlative and become mutual similar ones. This fact inspires us to 

take the local spatial distance between patches into account when computing the 

dissimilarity. That is, for smooth region, nearby patches take precedence to be selected as 

similar ones. So we need to introduce an additional scalar weight to the original 2-norm 

definition of dissimilarity, the value of which depends on the spatial distance between the 

candidate patch and the reference one. Intuitively, small weight should be assigned to 

patches close to the reference one. Therefore, we modify Eq. (1) into    
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Where ( , )
R

x x
w Z Z the non-negative is valued weight and defined in Eq. (5). Here, our 

choice for the weight is the sigmoid function of the spatial distance between 
R

x
Z  and 

x
Z . 

If 
2R

x x  is large, then ( , )
R

x x
w Z Z  is close to 1. The parameter h  controls how quickly 

patch’s weight increases with its distance from the reference one.  
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On the basis of the above analysis, we put forward a structure-adaptive grouping 

approach. The basic idea is to determine block matching scheme adaptively according to 

the structure type of the reference patch. For the sake of simplicity, we classify all blocks 

into two types, smooth and non-smooth. Smooth patches are homogeneous while non-

smooth ones contain rich texture details. For a smooth reference patch, Eq. (6) is used to 

execute the pair-wise testing of the inter-patch similarity. The patches whose distance 

from the reference one is smaller than the given threshold are considered similar and are 

subsequently grouped. On the other hand, if the reference block is anisotropy and contains 

complex texture details, block matching procedure adopts dual thresholding operator to 

select similar patches, as shown in Eq. (7). That is, besides the similarity testing in form 

of 2-norm distance, an extra judgment about the variance similarity is also required 

simultaneously. In other words, the patches are considered as similar ones only when 

dissimilarity in both pixel and variance do not exceed 1

h t


 and 2

h t


 at the same time. Due 

to the wide variations in variance of different images, it is inappropriate to configure 2

h t


 

as a fixed threshold. In our proposed method, 2

h t


 is configured dynamically as the 

median of the absolute variance differences of all candidates from the reference patch. 

Since two types of patches vary in grouping procedure, it becomes a key issue to 

recognize the type of a given patch. A variety of methods are available to implement it. 

But most of them are invalid in correctly classifying polluted blocks. For instance, Zhang 

[11] exploited the prior knowledge of DCT energy distribution to perform classification. 

For a noise-free image, it works well and is capable of achieve good results. Nevertheless, 

the energy distribution of patches will be destructed by the presence of noise because 

most of the noise energy concentrate on the medium or high frequency band in DCT 

transform domain. It can be seen from Figure4 that even with a small amount of noise 

injected, numerous misclassifications arise. In addition, average gradient or information 

entropy can also be adopted in patch type recognition, and they are prone to 

misclassification for noisy images as well.  

As mentioned above, there is great difference in the variance between smooth and non-

smooth patches, and non-smooth patches usually possess larger variance than smooth 

ones in general. And this prior knowledge of variance could be applied to roughly classify 

image patches in a simple way. That is, patches with variance larger than average are 

recognized as non-smooth, otherwise, as smooth. It proves to be effective to perform 

classification using variance despite of its simplicity. As shown in Figure5, the 

classification results are satisfactory even for noisy images.  

 

4. Simulation Results 

To validate the improvement of the proposed approach over original BM3D, we 

implement the corresponding simulation programs in matlabR2012a. The standard test 

images we select include Barbara, Lena, peppers, which show different features in texture 

structure. And the configuration of parameters adopted in our simulation refers to the 

normal profile in [5]. Table 1 compares the PSNR (dB) performance of the proposed 

algorithm with BM3D in denoising images with noise level at  =20, 30, 40, 50, 60 

respectively. In Table 1, the column of ‘scheme I’ shows the PSNR results when Eq. (6) 

is adopted to group similar patches; The column of ‘scheme II’ displays the PSNR results 

when dual-thresholding in Eq. (7) is applied to all reference patches to select similar ones. 

The right-most column provides the denoising results when the grouping procedure uses 

the structure-adaptive block matching method proposed in Section 3, which combines 

scheme I and scheme II. Obviously, compared with original BM3D, all three schemes 

identified with ‘scheme I’, ‘scheme II’ and ‘combined’ achieve better results in PSNR. 
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Moreover, it can be clearly seen from Table I that scheme II outperforms scheme I in 

general cases while ‘peppers’ is an exception. When denoising ‘peppers’ image with noise 

level at 4 0   scheme I gets better outcome than scheme II. The major reason for this 

exception is that in ‘peppers’, the smooth patches account for most part and consequently, 

the effect of denoising assisted by variance in heavy noise is weakened. Also we note that 

the joint scheme identified with ‘combined’ is inferior to scheme II when denoising the 

‘barbara’ image, which may be caused by existence of lots of texture in the image.  

Figure 5 compares the visual effect of denoising images in the proposed method and 

original BM3D. From Figure 5, we can see that the proposed method can retain more 

detail information and images in column (d) contains more clear texture than that of 

column (c).  

 

5  Conclusion 

In order to group as few pseudo-similar patches as possible, the structure-adaptive 

block matching algorithm is presented in this paper. Inspired by the experimental results 

illustrating the impact of noise on patches with various structures, we propose an 

improvement on the original 2-norm distance measurement by incorporating the similarity 

in the variance between patches to find mutual similar ones. Besides, based on the prior 

knowledge of correlation among patches in the same neighborhood, the 2-norm 

dissimilarity measurement is modified by adding an extra scalar weight, which depends 

on the spatial distance between the reference patch and the candidate. Simulation results 

demonstrate the proposed method outperforms the original BM3D in both PSNR and 

visual quality at the cost of extra computational overhead. 
 

Table 1. PSNR(dB) COMPARISON BETWEEN our Proposed Method AND 
Original BM3D 

  image BM3D Scheme I Scheme II Combined  

20 Lena 32.75 32.78 32.86 32.87 

Peppers 32.37 32.41 32.44 32.45 

Barbara 31.90 31.96 32.09 32.06 

30 Lena 30.88 30.94 30.96 30.98 

Peppers 30.76 30.81 30.83 30.85 

Barbara 29.65 29.72 29.79 29.77 

40 Lena 29.44 29.52 29.53 29.55 

Peppers 29.30 29.33 29.31 29.39 

Barbara 27.86 27.91 27.97 27.95 

50 Lena 28.74 28.83 28.88 28.90 

Peppers 28.75 28.82 28.79 28.83 

Barbara 27.14 27.21 27.33 27.32 

60 Lena 27.89 27.98 28.03 28.04 

Peppers 27.78 27.87 27.83 27.91 

Barbara 26.24 26.33 26.42 26.43 
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(a) Clean Image (b) Noisy Image( =40) (c) Original BM3D (d) the Proposed Method 

Figure 5. Comparison of Visual Denoising Effect   
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