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Abstract 
 

Moving shadow detection is a challenging task in computer vision applications, such as 

surveillance, video conference, visual tracking, object recognition, and many other important 

applications. In this paper, region-based moving shadow detection using affinity propagation 

(RMSDAP) is presented, which detects shadows in terms of texture similarity. Firstly, we 

divide foreground image into no overlapping blocks and extract color features from each 

block. Secondly, affinity propagation is utilized to cluster foreground blocks adaptively and 

sub regions are generated after coarse segmentation. Specially, each sub region has the 

characteristics of regional uniformity. Finally, we extract texture feature from irregular sub 

regions while calculate texture similarity and normalized correlation coefficient 

simultaneously for each sub region to classify moving shadows. Extensive experiments 

demonstrate that RMSDAP is superior to some well-known methods especially pixel-based 

methods. In particular, our method exhibits much better performance compared with fixed 

block method, which can maintain the texture consistency in one region adequately. 

Keywords: Moving shadow detection, region-based detection, affinity propagation, texture 

consistency 

1. Introduction 

Shadows often share the same movement characteristic and have similar intensity 

change with that of moving objects, which will give rise to detect shadows as parts of 

moving objects. Therefore, moving cast shadow detection is a critical step for 

improving accuracy of moving object detection in computer vision.  

In the past decade, many moving shadow detection methods have been studied, most 

of which are based on pixels [1-7]. Sanin et al. [1] proposed a comprehensive review 

about pixel-based methods and analyzed the advantages and disadvantages for each 

method. Cucchiara et al. [2] pointed that hue and saturation components varied a little 

for moving shadows which were darker than background in luminance component. 

Hence, they detected shadows with color information in HSV color space. Song and Tai 

[4] suggested color ratio model to detect shadow pixels and presented two kinds of 

spatial processing operations to enhance shadow detection accuracy. Khan et al. [6] 

constructed a framework to automatically detect shadows, which learned the most 

relevant features at super-pixel level and along the object boundaries in supervised 

manner. Wang et al. [7] employed online sub-scene shadow modeling learned by 

Gaussian functions and object inner-edges analysis to detect moving shadows 

adaptively. These methods achieved better performance and outperformed some state-

of-the-art methods. 

However, most of pixel-based methods are easily influenced by noise or uncertain 

factors which will lead to lower shadow detection accuracy. To solve this issue, many 
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researchers utilized local spatial correlation of pixels and a series of morphological 

operations to refine shadow detection results further. Nevertheless, with the increase of 

the number of pixels in foreground image, the computational complexity for pixel-

based methods will be increased accordingly. Recently, region-based methods have 

been attracting much attention in moving shadow detection field. In terms of the 

nonlinear tone mapping existed between shadow patches and that of corresponding 

background patches, Bullkich et al. [8] adopted Matching by Tone Mapping as the 

metric to distinguish shadows from suspected foreground patches. 

Inspired by the problem, we suggest a region-based moving shadow detection method 

which has better robustness compared to pixel-based methods in this paper. After 

dividing foreground image into no overlapping blocks, we extract color information in 

HSV color space for clustering. Subsequently, due to the complexity and uncertainty of 

video scenes, we employ affinity propagation to cluster foreground blocks adaptively 

and obtain coarse segmentation regions. Meanwhile, Gabor feature is extracted from 

each irregular sub region. At last, texture similarity based on Gabor feature and 

normalized correlation coefficients are calculated simultaneously to classify for each 

sub region. Aiming to evaluate the performance of RMSDAP, we test it on several 

different surveillance videos and compare it with some well-known method, which is 

demonstrated that RMSDAP exhibits excellent performance and outperforms some 

existing methods especially fixed block method.  

The reminding parts of this paper are organized as follows. Section 2 describes the 

proposed method in detail. Experiments and comparisons are given in Section 3, and Section 

4 is the conclusions. 

 

2. The Proposed Method 

 

 
 

Figure 1. The Flowchart of Proposed Method 
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In this section, we describe the region-based moving shadow detection method using 

affinity propagation (RMSDAP) in detail. The flowchart of RMSDAP is illustrated in 

Figure 1. On the basis of foreground extraction, RMSDAP is composed of two parts: 

adaptive foreground segmentation and region-based shadow detection. 

2.1. Adaptive Foreground Segmentation 

To maintain consistency attributes in one region, adaptive foreground segmentation is 

taken into account in our study. Moreover, due to the complexity of video scenes, it is hard to 

determine the number of sub regions. Consequently, unsupervised clustering method named 

affinity propagation (AP) [9] is adopted to achieve foreground segmentation adaptively. 

Given foreground image F, the corresponding binary mask image is M
F
, and the block size is 

set to b b . 

 

2.1.1. Dividing Foreground into Blocks: Before adaptive segmentation, the foreground F is 

divided into regular blocks with size of b b , and each block is denoted as F

iB . Meanwhile, 

the binary mask image M
F 

is also divided into blocks with the same size. According to the 

following rule, we extract blocks which contain foreground pixels from all blocks and put 

them into the set SF. Initially, 
FS  . 

F

F F iS S B   s.t. 
1 2

1 2

0 0

( , ) 0
n n

M

i

n n

B n n
 

                                        (1) 

Where n1and n2 are coordinates of pixels in ith block M

iB . 

 

2.1.2. Feature Extraction: In HSV color space, color feature fea are extracted from blocks in 

SF. Subsequently, mean and variance are employed to describe color information. 

( )
cc F

i im Mean B                                                                (2) 

( )
cc F

i iv Var B                                                                    (3) 

Where 1, ,i N , N is the number of blocks in SF , c

im and c

iv are the mean and variance of 

ith F

iB at channel c in HSV color space,  , ,c H S V . Therefore, feai of ith block is defined: 

1 2 3 1 2 3[ , , , , , ]i i i i i i ifea m m m v v v                                                   (4) 

Clearly, the dimension of feai is 6. 

 

2.1.3. Adaptive Clustering: As a result of complexity and uncertainty for video scenes, AP 

is introduced to cluster foreground blocks automatically. The advantage of AP is that it does 

not need to determine the clustering number beforehand. The feature similarity of blocks in SF 

is: 

2
2 2( , ) ( . . ) ( . . )i j i j i j i jsim fea fea fea fea fea x fea x fea y fea y

 
       

 
          (5) 

Where feai and feaj are the features of ith and jth blocks, respectively. Sim (feai, feaj) is 

similarity derived from ith and jth blocks. feai.x、feai.y and feaj.x、feaj.y are coordinates of 

ith and jth blocks. During computing the similarity, not only the similarity between features is 

taken into account, but also position information of blocks is considered. The larger sim (feai, 

feaj) is the higher similarity between feai and feaj and the closer between ith block and jth 

block is. 
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After implementing AP algorithm for foreground blocks, we can obtain several irregular 

sub regions which can be regarded as coarse segmentation result of foreground. Each sub 

region is denoted as F

iSub . And then, for each region F

iSub , we use texture similarity and 

normalized correlation coefficient to determine it whether is shadow or not. 

 

2.2. Region-based Shadow Detection 

In the process of region-based shadow detection, texture similarity obtained by Gabor 

feature and normalized correlation coefficients are used to calculate the similarity between 

foreground sub region F

iSub and background sub region B

iSub . Subsequently, we determine 

whether the sub region belongs to shadow or not. 

 

2.2.1. Shadow Detection based on Texture Similarity: Gabor filter [10] is widely applied in 

the fields of image processing, computer vision and pattern recognition. The Gabor feature of 

foreground sub region F

iSub is calculated by: 
1 1

( , ) ( , ) ( , )
W H

F F

mn i mn

w h

g x y Sub x w y h G w h
 

                                        (6) 

Where W H´ the size of Gabor is kernel Gmn, m and n denote the scale and orientation of 

Gmn, respectively. Likewise, Gabor feature of background sub region B

iSub is denoted as B

mng . 

 Thus, Gabor energy of ith region F

iSub at scale m with orientation n is: 

( , ) ( , )F
i

F

mnSub
E m n g x y                                                          (7) 

 Then, we adopt mean and variance to describe Gabor energy for each sub region, as 

follows: 

( , )F
FSub ii

Sub

mn F

i

E m n

Sub
                                                                 (8) 

 
2

( , )
FSubi

FSubi

F

mn mn

mn F

i

g x y

Sub










                                            (9) 

Where F

iSub denotes the number of pixels in F

iSub . In the same way, the mean
BSubi

mn  and 

variance
BSubi

mn  of background sub region B

iSub are also can be computed. To compare the 

texture difference between B

iSub and F

iSub , Euclidian distance is used to calculate the 

similarity: 

   
2 21 1

( , )
B F B FSub Sub Sub Subi i i i

M N
F B

i i mn mn mn mn

m n

dist Sub Sub    
 

                         (10) 

Where ( , )F B

i idist Sub Sub is the texture similarity. The smaller ( , )F B

i idist Sub Sub is, the higher 

similarity between B

iSub and F

iSub is. 

 Finally, according to the following rule, we determine each region B

iSub whether belongs 

to shadow or not. 

1
1

1 ( , )

0

F B

i i

i

dist Sub Sub T
M

otherwise

 
 


                                           (11) 
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Where 1 1iM  indicates that the ith sub region F

iSub belongs to shadow 

whereas 1 0iM  implies that the region is object. T1 is the threshold determined empirically. 

 

2.2.2. Shadow Detection based on Normalized Correlation Coefficient: Normalized 

correlation coefficient (NCC) has better performance for evaluating the similarity between 

foreground and background. In our work, NCC is computed as: 

( , )

( , ) ( , )

( , ) ( , )

( , )
( , ) ( , ) ( , ) ( , )

i

i i

F B

i i

x yF B

i i
F F B B

i i i i

x y x y

Sub x y Sub x y

ncc Sub Sub
Sub x y Sub x y Sub x y Sub x y



 




  



 
        (12) 

Where
i is the set of pixel coordinates in ith sub region, ( , )F B

i incc Sub Sub is similarity 

coefficient of ith foreground sub region F

iSub and background sub region B

iSub . The larger 

( , )F B

i incc Sub Sub is the higher similarity between B

iSub and F

iSub is and vice versa. Therefore, 

we can judge ith sub region is shadow or not according to the following rule: 

 
2

2
1 ( , )

0

F B

i i

i

ncc Sub Sub T
M

otherwise

 
 


                                             (13) 

Where 2 1iM  states that F

iSub is shadow. T2 is the threshold determined empirically. 

Figure 2 shows one foreground image from Campus sequence, and shadow detection 

results obtained from texture similarity and NCC, respectively. Obviously, single feature 

cannot fully classify all shadow regions correctly. In order to obtain a more complete result, 

the two results are integrated effectively, which is shown in Figure 2(d). The classification 

decision is: 
1 2S

i i iM M M                                                             (14) 

Where S

iM is the binary shadow mask corresponding to F

iSub .  denotes logical and 

operation. 

    
                        (a)                             (b)                             (c)                         (d) 

Figure 2. Shadow Detection Results (a) Foreground, (b) Result Obtained by 
Texture Similarity, (c) Result Obtained by NCC (d) Result from (b) and(c) 

3. Experiments and Comparisons 

In this section, to evaluate the performance of RMSDAP, experiments are tested on 

several challenging video sequences [11-13] known in the literatures. One side, we 

discuss and determine the suitable block size for different videos. One the other side, 

we compare our shadow detection results with results from fixed block method and 

some well-known methods from the quantitative and qualitative aspects. 

The process of fixed block method is: firstly, dividing foreground image into blocks 

with b b and then extracting Gabor and NCC features for shadow detection, 

respectively. Lastly, we integrate the results effectively for the final result. Different 
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from RMSDAP, fixed block method do not utilize affinity propagation for coarse 

segmentation regions before shadow detection. 

In order to verify the effectiveness of RMSDAP, three metrics are applied to analyze 

shadow detection performance, named as shadow detection rate (  ), shadow 

discrimination rate (  ) and weighted accuracy (  ) [14]: 

100%S

S S

TP

TP FN
  


, 100%O

O O

TP

TP FN
  


, S OGT GT

GT GT
                (15) 

Where subscripts S and O denote shadow and object, respectively. TPS and TPO are the 

number of shadow and object pixels classified correctly. FNS and FNO are the number 

of shadow and object pixels detected incorrectly. 
S OGT GT GT  , 

S S SGT TP FN  and
O O OGT TP FN  . 

 

3.1. Parameter Selection 

During adaptive image segmentation, it is necessary to determine the block size 

primarily. Considering the shadow size in different videos and clustering speed, block 

size is set to 8 8 , 9 9 ,10 10 , 11 11 and12 12 , respectively. Figure 3 indicates the 

weighted accuracy trends derived from different block size in various videos. 

Particularly, in Hallway and Highway, shadow size is small. In these sequences, 

choosing relatively small block size can better maintain the consistency attributes in 

one region. While CAVIAR and Campus have larger shadow, in which choosing 

relatively larger block size not only can retain the consistency attributes in one region, 

but also can improve the clustering speed. Obviously, the similar trends are shown in 

Figure 3. In our experiments, the weighted accuracy reaches the top when block size of 

Hallway, Highway, Campus and CAVIAR is set to 8 8 , 9 9 , 12 12 and 11 11 , 

respectively. 

 

 

Figure 3. The Weighted Accuracy Trends with Various Block Sizes 
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3.2. Quantitative Comparisons 

Table 1 lists the shadow detection rate , shadow discrimination rate  and weighted 

accuracy resulting from RMSDAP, fixed block method and traditional methods (DNM [2], 

ICF [3], SNP [4], CCM [5], and MTM [8]). From the aspects of weighted accuracy to 

analyze, it can be seen that RMSDAP is superior to fixed block method and traditional 

methods in Hallway, Highway and Campus. In CAVIAR, the weighted accuracy  obtained 

from RMSDAP is only lower than MTM with 0.30%. Specifically, RMSDAP has higher 

weighted accuracy than fixed block method about 2.61%, 17.67%, 5.44% and 0.56%, which 

demonstrates that the validity of adaptive segmentation for foreground image. 

Table 1. Quantitative Comparison Results 

Videos Metric DNM ICF SNP CCM MTM 
Fixed 

block 
RMSDAP 

Hallway 


 83.73 95.32 83.93 96.46 85.16 83.73 88.29 


 79.61 83.01 98.10 68.55 83.18 94.71 96.36 


 81.77 88.19 92.94 79.92 85.79 91.33 93.94 

Highway 


 86.84 84.54 86.18 87.65 70.14 30.87 73.38 


 58.31 60.93 58.07 36.37 95.14 91.16 94.69 


 69.36 0.19 68.71 56.18 84.60 68.61 86.28 

CAVIAR 


 93.24 92.76 88.12 87.45 92.16 91.14 89.68 


 78.80 88.56 97.60 94.77 95.96 88.08 96.42 


 84.22 90.01 94.07 91.64 94.45 88.71 94.15 

Campus 


 52.84 56.22 65.85 62.56 53.23 42.56 33.78 


 90.44 82.74 75.36 43.07 81.36 93.42 96.52 


 87.67 82.36 78.49 52.24 81.95 89.18 89.76 

 

3.3. Qualitative Comparisons 

To validate the effectiveness and superiority of RMSDAP intuitively, comparison 

results are displayed in Figure 4, with the detected moving shadows and moving objects 

being marked in blue and white, respectively. Figure 4 (a) and Figure 4 (b) show 

original frames and their ground truths. For sake of indicating the superiority of 

RMSDAP shown in Figure 4 (g), we compare the results with well-known pixel-based 

methods such as ICF and SNP shown in Figure 4(c)-(d) and patch-based method MTM 

shown in Figure 4 (e). In addition, results in Figure 4(f) derived from fixed block 

method verify the performance of RMSDAP further. Moreover, we can see that MTM, 

fixed block method and RMSDAP have a certain resistance to noise or uncertain 

factors. However, the detected results from fixed block method have more incorrect 

regions. In contrast, RMSDAP can guarantee the region consistency adequately and 

achieve well results, which is owing to RMSDAP adopts adaptive clustering method for 

coarse segmentation. 
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(a) Original frames 

    
(b) Groundtruth 

    
(c) ICF 

    
(d)SNP 

    
(e) MTM 

    
(f) Fixed-Sized Partitioning 

    
(g) RMSDAP 

Figure 4. The Qualitative Comparison Results 

4. Conclusions 

Different from pixel-based methods, RMSDAP detect moving shadows on the basis of 

adaptive segmentation regions derived from affinity propagation. The proposed RMSDAP 

can reduce the influence of noise or uncertain factors for detection results, which has good 

robustness for surveillance videos. Besides, experiment results demonstrate that RMSDAP is 

superior to fixed block method and some well-known method. 
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