
International Journal of Signal Processing, Image Processing and Pattern Recognition

Vol.8, No.3 (2015), pp.235-250

http://dx.doi.org/10.14257/ijsip.2015.8.3.22

ISSN: 2005-4254 IJSIP

Copyright ⓒ 2015 SERSC

Design of Sliding Window Based Corner Detection Algorithm and

Architecture for Image Mosaicing

Jayalaxmi H
1
 and S. Ramachandran

2

Research Scholar

1
JNTU, Hyderabad, India

2
SJBIT, Bengaluru, India

jayalaxmi@acharya.ac.in

Abstract

A new Sliding Window Based Corner Detection Algorithm has been developed for image

mosaicing. Using this algorithm, a new architecture suitable for VLSI implementation has

also been designed. The proposed design incorporates a high degree of pipelining and

parallelism and hence offers high throughputs. The color image mosaicing is achieved by

first convolving an original image using a 3x3 sliding window followed by smoothening the

image using median filters. The design has been coded in Verilog as per RTL coding

guidelines. The algorithm has also been coded in Matlab in order to validate the hardware

results. The Verilog design of the proposed architecture for image mosaicing has been

implemented on Xilinx Spartan 6 xc6slx45-3fgg676 FPGA device. The design utilizes about

144,858 gates and the operating frequency is about 100 MHz. The design is capable of

processing high resolution color pictures of sizes of up to 1600× 1200 pixels in real time.

Keywords: Corner detection, Sliding Window, Verilog, RTL Coding, Pipelining and

Parallelism FPGA

1. Introduction

Image mosaicing algorithms produce high resolution photo-mosaics used to construct

today’s digital maps and satellite photos. These algorithms get the alignment estimates

produced by such registration algorithms and blend the images in a seamless way, taking care

to deal with possible problems such as blurring or ghosting caused by alignment error and

scene movements as well as unstable image exposures [1]. Many alignment problems are

caused in cases where the detected features are not uniform. Feature based approaches have

the benefit of being more robust to inter boundary of images being mosaiced and offer faster

processing speed. Hitherto, the major area of concern for the corner detection algorithms was

that unwanted boundaries were detected along with corners. In order to remove these

boundaries, feature based corner detection algorithm was developed by the present authors

[2].

Image and Video Processing has been a very active field of research and development for

over 20 years and many different systems and algorithms for image Mosaicing, compression,

filtering and smoothing have been proposed and developed. Only marginal improvement has

been achieved since parallelism and pipelining incorporated in the existing work [3-4] are

inadequate.

O. Ranganathan et al. have presented the design of a modern camera interface controller

that has high processing speed [5]. The focus of the design is on developing the input

International Journal of Signal Processing, Image Processing and Pattern Recognition

Vol.8, No.3 (2015)

236 Copyright ⓒ 2015 SERSC

interface controller module for interfacing CMOS sensor with FPGA module for converting

the raw data into RGB pixel information and the output interface controller. The captured

information from the sensor is then converted into RGB pattern and processed for streaming

in VGA display. However, the frame rate is limited to 10 fps.

Matthew Zubiel et al. have designed an image processing module interface to VmodCAM

module [6] for real time. C# program was developed in order to grab the image in a format

called RGB565 using the VmodCAM module. Thereafter, the corner detection algorithm was

coded in VHDL. Abdul Manan has proposed an algorithm and implementation of

morphological image processing on FPGA [7]. To enhance the performance, this work

addresses implementation of image processing algorithms like median filter, morphological,

convolution and smoothing operations and edge detection on FPGA using VHDL language.

Since they [6-7] have used only behavioral type of coding and not RTL coding, the

processing speed is low. The speed can be improved by incorporating high parallelism and

pipelining in the corner detection as is the case with the present work.

Vimal Singh has designed a feature based image mosaicing using image fusion method [8].

To extract the features from the stitching results, the blending process is done by means of

Discrete Wavelet Transform. They have used only planar images as test input images instead

of cylindrical and spherical images for mosaicing.

Algorithms are essential for processes related to geometric transformations and distortions

for mosaicing applications. In order to resize, rotate, image shape rectification and distortion

removal, there are numerous approaches to solve this problem that differ in image quality,

processing speed and complexity. Median filtering is very widely used in digital image

processing [9, 20]. In our previous work [2, 10], Gaussian based design of an algorithm for

feature based corner detection image mosaicing has been presented in order to overcome the

limitations of Harris corner and Edge-based corner methods. The Gaussian function used in

that work was effective at removing noise in smooth patches or smooth regions of a signal,

but unfavorably affect edges or corners. Edges or corners are essential to the visual

appearance of images [11-18]. The median filter is obviously better than Gaussian blur at

removing noise, preserving edges or corners for any size of the window. In the present work,

this limitation has been overcome by convolving the input image using 3×3 sliding window

followed by smoothing the image by using median filters. The proposed method uses a new

Sliding Window Based Corner Detection Algorithm based on Median arithmetic instead of

the time consuming data sorting method.

The rest of the paper is organized as follows. The proposed image mosaicing algorithm is

presented in Section 2. Section 3 presents details of architectural design of the proposed

algorithm. The penultimate section provides the Simulation and Place and Route results.

Conclusion is presented in Section 5.

2. Proposed Image Mosaicing Algorithm

The color image mosaicing algorithm proposed in this paper uses 3×3 Sliding window,

where in block of nine pixels of original image are convolved with median filter. The input

pixel window may still be chosen as convolution mask for various window sizes such as 3x3,

5x5, and 7x7, without affecting the throughput. In this work, the convolution mask is chosen

as 3×3 in order to improve the implementation speed, at the same time minimizing blocking

artifacts. Also 3×3 window is small enough to fit into the target FPGA and can be easily

compute corner values in the sliding window.

http://en.wikipedia.org/wiki/Image_processing
http://en.wikipedia.org/wiki/Image_processing

International Journal of Signal Processing, Image Processing and Pattern Recognition

Vol.8, No.3 (2015)

Copyright ⓒ 2015 SERSC 237

2.1 Design of ASM Chart

Algorithmic State Machine (ASM) charts developed along with their designed

architectures can be converted directly to a hardware using Hardware Design Language

(HDL) such as Verilog. The developed ASM chart for Sliding Window Based Corner

Detection Algorithm for image mosaicing is shown in Figure 1a and Figure 1b. State “0”

initializes all the registers and outputs used in the design. State “1” reads the input gray level

image. State “2” is used to select 3x3 sliding window to process the image data. The state “3”

is used to convolve 3x3 window. State “4” to state “6” are used to compute gradients. State

“7” to state “9” are used to compute image derivatives from convolution window. State “10”

computes the corner value and is used to extract features from images in state “11”. The

above process is repeated for all the blocks of the images. State “12” combines separated

components of R, G and B into composite RGB and displays the mosaiced image in the last

state.

Figure 1a. ASM Chart for Sliding Window Based Algorithm (Continued)

International Journal of Signal Processing, Image Processing and Pattern Recognition

Vol.8, No.3 (2015)

238 Copyright ⓒ 2015 SERSC

Figure 1b. ASM Chart for Sliding Window Based Algorithm

International Journal of Signal Processing, Image Processing and Pattern Recognition

Vol.8, No.3 (2015)

Copyright ⓒ 2015 SERSC 239

3. Architecture of the Proposed Sliding Window Based Color Image

Mosaicing System

This section presents the architecture of the Sliding Window Based Corner Detection

Algorithm presented in the previous section. It is composed of several components such as

Color and Gray Image module, 3x3 Sliding Window, 3x3 Convolution module, Corner

module, Image Transformation module and Image Blending module.

3.1 Architecture for Sliding Window Based Color Mosaicing System

The Signal Diagram of the Top Level Color Image Mosaicing System is shown in Figure 2

and the signals used in this module are presented in Table 1. The architecture for Sliding

Window Based Corner Detection uses

Figure 2. Block Diagram of Top Level Color Image Mosaicing Module

Table 1. Signal Description for Color Image Mosaicing Module

Signals Input/Output Description

clk Input Clock Signal

reset_n Input Active low system reset

img_dval Input Input image Data Signal

din1_r [7:0] Input First Image data for ‘r’ color

din1_g [7:0] Input First Image data for ‘g’ color

din1_b [7:0] Input First Image data for ‘b’ color

din2_r [7:0] Input Second Image data for ‘r’ color

din2_g [7:0] Input Second Image data for ‘g’ color

din2_b [7:0] Input Second Image data for ‘b’ color

dout_r [7:0] Output Mosaiced Image for ‘r’ color

dout_g [7:0] Output Mosaiced Image for ‘g’ color

dout_b [7:0] Output Mosaiced Image for ‘b’ color

data_val Output Data Valid Signal

data_val

dout_b[7:0]

 dout_g [7:0]

dout_r [7:0]

 img_dval

 clk

Color Image

Mosaicing

Module

 din1_r [7:0]

 din1_g [7:0]

 din1_b [7:0]

 din2_r [7:0]

 din2_g [7:0]

 din2_b [7:0]

 reset_n

International Journal of Signal Processing, Image Processing and Pattern Recognition

Vol.8, No.3 (2015)

240 Copyright ⓒ 2015 SERSC

Pipelining stages and parallel processing in the design in order to increase the processing

speed. This architecture mosaics two images whose inputs “din1” and “din2” are fed pixel by

pixel. The input pixels are valid at the positive edge of the clock. When the pixel is valid, the

“img_dval” signal is asserted. Each of the color components from the two images being

mosaiced is integrated and output as “dout_r”, “dout_g”and “dout_b” of size 8 bits. Basic

Architecture for the Sliding Window Image Mosaicing System is shown Figure 3. This

architecture mosaics two images whose inputs “din1” and “din2” are fed pixel by pixel. The

input color images “image1” and “image2” from a camera arrive as separated color

components Red (R), Green (G) and Blue (B).

The “din1_r”, “din1_g”, “din1_b” and “din2_r”, “din2_g”, “din2_b” of size 8 bits are the

individual color components are fed to the 3x3 pixels sliding window in a raster scan manner.

The input pixels are valid at the positive edge of the clock. When the pixel is valid, the

“data_val” signal is asserted. The output values from 3x3 pixels Sliding Window are sent to

the 3x3 Convolution Module for convolving the gradients of each pixel using a pipelined

architecture with FIFO module [19, 20]. The convolved derivatives are input to the next

module in order to compute the corner values for each of the two images being mosaiced. The

choice of corner for feature detection is stable when corner is greater than 1.

Figure 3. Basic Architecture for the Sliding Window Based Image Mosaicing

Once the two sets of corner values in the images have been detected, the aim is to match

the corresponding features to align the images. These corner values of each block are aligned

pixel by pixel using Image Warping in order to correct image distortion, if any. The final step

is to blend the pixel in the overlapped region to avoid the seams or artifacts. Image blending

is the technique, which modifies the image in the overlapped area to obtain a smooth

3x3

Convolution

Module

Original

Image 1

(RGB)

R, G and B

Color

Component

s

3x3 pixels

Sliding

Window

Module

Original

Image 2

(RGB)

R, G and B

color

Components

Corner

Module

Image

Transformati

on Module

Image

Warping

Integrate

R, G and B

Color

Component

s

Mosaic

Image

Corner

Module

3x3 pixels

Sliding

Window

Module

3x3

Convolution

Module

w11 [7:0]

¦
¦

w33 [7:0]

W55r

[7:0]

din1[7:0]

W55r

[7:0]

gx_11 [7:0]

¦
¦

gy_33 [7:0]

W55r

[7:0]

dout[7:0]

W55r

[7:0]

din2[7:0]

W55r

[7:0]

w11 [7:0]
¦

¦

w33 [7:0]

W55r

[7:0]

gx_11 [7:0]
¦

¦

gy_33 [7:0]

W55r

[7:0]

R_out1

r [7:0]

R_out2

International Journal of Signal Processing, Image Processing and Pattern Recognition

Vol.8, No.3 (2015)

Copyright ⓒ 2015 SERSC 241

transition between images by removing these seams. Finally the separated R, G and B

components are combined into composite RGB in order to obtain the mosaic image.

3.2 Sliding Window Architecture

The proposed method uses 3×3 Sliding Window architecture as shown in Figure 4 and the

signals used in this module are presented in Table 2. Inside a 3×3 Sliding Window, three

numbers of First-In-First-Out (FIFO) buffers are used to reduce the memory access to one

pixel per clock cycle. In order to access all values of the window for every clock cycle, these

FIFO must be full [5]. The FIFOs are cascaded as shown in Figure 5. The contents of the

window are shifted right when the signal “start_win” is asserted and also to read the input

data “d” of width 8-bits. Thereafter, during positive edge of clock “clk”, the pixel values of

the input “din[7:0]” are sent pixel by pixel in a raster scan order into the sliding window

module. Figure 5 shows the schematic diagram of 3×3 sliding window used for row buffers

for 8-bit pixels. The output from sliding window module “w11”to “w33” of size 8 bits sent to

the next module for computing gradients when data valid for sliding window ”dvwin” is

asserted.

Figure 4 Architecture of 3x3 Sliding Window Module

Figure 5. Schematic Diagram of 3x3 Sliding Window

International Journal of Signal Processing, Image Processing and Pattern Recognition

Vol.8, No.3 (2015)

242 Copyright ⓒ 2015 SERSC

Table 2. Signal Description for the Sliding Window Module

Signals Input/Output Description

clk Input This is the global clock signal

reset_n Input Active low system reset

din[7:0] Input Input pixel component

start_win Input Valid signal for input data

w11 [7:0] to w13 [7:0] Output First row pixel values for the 3×3 sliding window

w21 [7:0] to w23 [7:0] Output Second row pixel values for the 3×3 sliding window

w31 [7:0] to w33 [7:0] Output Third row pixel values for the 3×3 sliding window

dvwin Output Data valid for sliding window

3.3 Convolution Module

The next module after Sliding window module is the Convolution Module, which is used

for convolving the gradients of each pixel.

Figure 6. Architecture of Convolution Module

Table 3. Signal Description for the Convolution Module

Signals Input/Output Description

clk Input System clock

w11[7:0] Input Pixel p0 value

w12[7:0] Input Pixel p1 value

w13[7:0] Input Pixel p2 value

w21[7:0] Input Pixel p3 value

w22[7:0] Input Pixel p4 value

w23[7:0] Input Pixel p5 value

International Journal of Signal Processing, Image Processing and Pattern Recognition

Vol.8, No.3 (2015)

Copyright ⓒ 2015 SERSC 243

w31[7:0] Input Pixel p6 value

w32[7:0] Input Pixel p7 value

w33[7:0] Input Pixel p8 value

dr Input Data ready Input signal

reset_n Input Active low system reset

gx_11[7:0]to gx_13[7:0] Output Output gradient gx for 1
st
 row

gx_21[7:0]& gx_23[7:0] Output Output gradient gx for 2
nd

 row

gx_31[7:0]to gx_33[7:0] Output Output gradient gx for 3
rd

 row

gy_11[7:0]to gy_13[7:0] Output Output gradient gy for 1
st
 row

gy_21[7:0]& gy_23[7:0] Output Output gradient gy for 2
nd

 row

gy_31[7:0]to gy_33[7:0] Output Output gradient gy for 3
rd

 row

start_win Output Output start window signal

The architecture for Convolution Module is shown in Figure 6. Signal descriptions are

presented in Table 3. The pixel values were sent to convolution module in order to compute

image derivatives [2]. The outputs from 3x3 Sliding Window “w11” to “w33”, each of 8 bit

size, are used for computing gradients for each window when read signal “dr” goes high. For

every clock cycle, this module convolves input gradients from sliding window to calculate

image gradient values “gx_11” to “gx_13”, “gx_21” to “gx_23” and “gx_31” to “gx_33”

along row and “gy_11” to “gy_13”, “gy_21” to “gy_23” and “gy_31” to “gy_33” along

column. Based on these two derivatives, the rest of the derivatives necessary for the

algorithms (Ix2, Iy2, and IxIy) were computed by simple multiplication. It works by

convolving a 3x3 window of pixels with two horizontal and vertical filters in order to find the

corner value of the center pixel in that 3x3 window. The calculation to obtain the gradients is

shown in equation 1 and equation 2.

gx = ((p2 − p0) + (p5 − p3) + (p8 − p6)) (1)

gy = ((p0 − p6) + (p1 − p7) + (p2 − p8)) (2)

3.4 Corner Module

The architecture of the Corner Module is shown in Figure 7 and signal descriptions are

presented in Table 4. This module computes corner values for the images in a pipelined

manner using 3 stages [2]. The convolved gradients were computed from previous module are

the inputs to the corner module. The corner module takes 9 pixel values in order to calculate

18 convolved derivatives per 3x3 pixels window, 9 in the x-direction (“gx_11” to “gx_33”)

and 9 in the y-direction (“gy_11” to “gy_33”). After calculating gx and gy, the module

computes the magnitude of these gradients. The output is truncated to 8 bits. In order to

truncate it to 8 bits, the bits 10, 9 and 8 are ORed together. If the result is 1, then it outputs

8’hFF, otherwise it outputs the actual value. After calculating gx and gy from equation 1 and

equation 2, the module takes the magnitude of these gradients. The Harris corner detector

uses both x and y gradients in order to find the value of pixel are a corner or edge. To be

corner, there has to be significant changes in both directions. However, the corner algorithm

calculates the likelihood that a pixel is a corner from summing all the surrounding gradients

around a pixel and performing some calculations to determine its likelihood of being a corner.

In order to extract the corners, the corner detector needs a 3x3 window to compute a score for

the pixel at location (2, 2). The values of each of these derivatives were computed for every

point in the image as shown in equation 3.

International Journal of Signal Processing, Image Processing and Pattern Recognition

Vol.8, No.3 (2015)

244 Copyright ⓒ 2015 SERSC

R__out = ∑ Ix2 × ∑ Iy2 − (∑ Ix ∑ Iyn
j=1)2 − k(∑ Ix2 × ∑ Iy2) n

j=1
m
i=1

2m
i=1

n
j=1

m
i=1 (3)

The sum of gradient values “xx_sum”, “yy_sum” and “xy_sum”, each of size 12 bits, are

computed using convolved gradients as shown in equation 4 to equation 6. These values are

fed synchronously to the corner module to calculate the corner value “R_out” every clock

cycle. The gradients are used to measure the change in the intensity of the pixel in the

window. This corner value is compared with a threshold to determine the good corner

response. This corner module computes the determinant and trace of the corner matrix and

outputs the determinant – k * trace^2. k is a constant value of 1/8 needed for this calculation.

Also, because this is the most computationally intensive calculation owing to the width of

each bus, the module carries out the calculation in a pipelined manner using 3 stages. The

calculation of R_out is shown in equation 3.

Figure 7. Architecture of Corner Module

xx_sum=gx_11*gx_11+gx_12*gx_12+gx_13*gx_13+gx_21*gx_21+gx_23*gx_23+ gx_31*gx_31+gx_32*gx_32+gx_33*gx_33 (4)

yy_sum=gy_11*gy_11+gy_12*gy_12+gy_13*gy_13+gy_21*gy_21+gy_23*gy_23+ gy_31*gy_31+gy_32*gy_32+gy_33*gy_33 (5)

 xy_sum=gx_11*gy_11+gx_12*gy_12+gx_13*gy_13+gx_21*gy_21+gx_23*gy_23+ gx_31*gy_31+gx_32*gy_32+gx_33*gy_33 (6)

Table 4. Signal Description for the Corner Module

Signals Input/Outp

ut

Description

clk Input System clock

xx_sum [11:0] Input Sum of gradient value xx

yy_sum [11:0] Input Sum of gradient value yy

xy_sum [11:0] Input Sum of gradient value xy

reset_n Input Active low system reset

R_out Output Corner Response

3.5 Image Transformation Module

The next module after Corner module is the Image Transformation Module, which is used

for mosaicing the images. The architecture for Convolution Module is shown in Figure 8.

Signal descriptions are presented in Table 5. The corner value for each window was

computed in the previous section. The number of corner value in the 3x3 window is

calculated for all the windows in an image.The extracted corners from each window are fed to

the Image transformation module. In this module, the “din_1” and “din_2” are the input

image data values for image 1 and image 2 respectively. Two sets of corner values in the

images have been detected using corner module.

xx_sum[11:0]

yy_sum[11:0]

xy_sum[11:0]

clk

reset_n

R_out Corner

Module

start_win

International Journal of Signal Processing, Image Processing and Pattern Recognition

Vol.8, No.3 (2015)

Copyright ⓒ 2015 SERSC 245

For every clock cycle, these corner pixel values of each block are aligned pixel by pixel

using Image Warping method [2]. There may be mismatch occurring between the pixels

during image mosiacing. In order to overcome this, image blending is used to obtain a smooth

transition between images by removing the intensity seam in the neighbourhood of the

boundary.

Figure 8. Architecture of Image Transformation Module

The final step is to blend the pixel in the overlapped region to avoid seams. Image blending

is the technique, which modifies the image gray levels in the overlapped area to obtain a

smooth transition between images by removing these seams. Finally the separated R, G and B

components are combined into composite RGB in order to obtain the mosaic image.

Table 5. Signal Description for the Image Transformation Module

Signals Input/Output Description

clk Input System clock

din_1 [7:0] Input Output data from Image1

din_2 [7:0] Input Output data from Image2

reset_n Input Active low system reset

dout [7:0] Output Output Image data

data_val Output Data valid signal

3.6 Architecture of Multiplier

The multiplier design presented here incorporates a high degree of parallel circuits and

pipelining of eight levels. The Verilog design of this multiplier has been presented in the

book [9] by one of the present authors. The architectures for adders and subtractors for

various bit sizes which are used in image mosaicing module has been modeled based on

Verilog code presented in one of the authors’ book [9]. The detailed architectures and

simulation results for these modules are discussed in the paper [10]. It uses lots of parallelism

and pipelining in its design as can be easily inferred.

4. Results and Discussions

The proposed Sliding Window Based Corner Detection Algorithm, whose architecture was

presented in the previous section, has been coded and tested in Matlab first in order to ensure

the accurate functioning of the algorithm. Subsequently, the complete system has been coded

in RTL compliant Verilog so that it may be implemented on a Xilinx FPGA. The simulation

din_1 [7:0]

din_2 [7:0]

 clk

 reset_n

 dout [7:0] Image

Transformat

ion module

 data_val

International Journal of Signal Processing, Image Processing and Pattern Recognition

Vol.8, No.3 (2015)

246 Copyright ⓒ 2015 SERSC

of the proposed method has been done using ModelSim and synthesized using Xilinx ISE

13.2. The algorithm has been targeted on Xilinx Spartan6 xc6slx45-3fgg676 FPGA device.

Matlab program was written in order to convert the images to be mosaiced into text format

since Modelsim simulation tool accepts only text inputs. The Verilog design for 3x3 pixels

sliding window whose architecture was presented in above section was run in Modelsim to

get the reconstructed picture in “txt” format. These reconstructed “txt” files were converted

back to image format using another Matlab program. This program displays both the original

picture as well as the mosaiced picture. The Matlab program also computes the quality of the

mosaiced image referred to as PSNR expressed in dB.

The “img_dval” process commences at 36448 ps as presented in Figure 9. As presented in

Figure 10, the image data are fed pixel by pixel to the sliding window module starts at 39664

ps.The mosaicing process starts at 39664 ps and ends at 819204712 ps as shown in Figure 11.

The sliding window based process, thus, takes 2.221 clock cycles per pixel data.

Figure 11. Waveforms for Sliding Based Color Image Mosaicing System:
Validity of Input Data

Figure 12. Waveforms for Sliding Based Color Image Mosaicing System: Start
of Image Data

In summary, the mosaiced image pixels start issuing at 39664 ps and ends at 819204712

ps, thus taking 819165048 ps for processing a complete image data. Since each “clk” cycle is

of duration 2 ps during simulation, it takes 409582524 “clk” cycles to mosaic both image

data. Therefore, for a picture of size 256x256 pixels such as Lena is splitted into two images

as Lena1(256x160) and Lena2 (256x160) are used in the present simulation, it takes 2.2 clock

cycles to process each pixel. Assuming an operating frequency of 100 MHz for “clk”, this

works out to 10.1 milli second per image ignoring latency, which is small. Extrapolating this

processing time for a picture of resolution 512x512 pixels, we get the processing time of

20.01 milli second per image or in other words, we have achieved a mosaiced image rate of

20 pictures per second.The simulation waveforms for the start and the end of 3x3 pixels

sliding window module are presented in Figure 14 and Figure 15 respectively. The input

International Journal of Signal Processing, Image Processing and Pattern Recognition

Vol.8, No.3 (2015)

Copyright ⓒ 2015 SERSC 247

pixels are valid at the positive edge of the clock. When the pixel is valid, the “img_dval”

signal is asserted. The Sliding Window module produces nine pixels (w11 [7:0] to w13 [7:0]

through w31 [7:0] to w33 [7:0]) in parallel once the FIFOs are full.

Figure 13. Waveforms for Sliding Based Color Image Mosaicing System: End of
Image Data

These pixels from the sliding window module are fed as inputs to the Convolution module

in order to carry out the convolution operation. The Simulation Waveforms for 3x3

Convolution Module for start and end process time are shown. The outputs from 3x3 Sliding

Window “w11” to “w33”, each of 8 bit size, are used for computing gradients for each

window. The validity of these pixels is indicated by asserting “dr” signal. For every clock

cycle, this module convolves input gradients from sliding window to calculate image gradient

values “gx_11” to “gx_13”, “gx_21”to “gx_23” and “gx_31” to “gx_33” along row and

“gy_11” to “gy_13”, “gy_21” to “gy_23” and “gy_31” to “gy_33” along column. The

convolved derivatives are input to the next module in order to compute the corner values for

each of the two images being mosaiced. The Simulation Waveforms for Corner Module is

shown in Figure 15. These values are fed synchronously to the corner module to calculate

corner value “R_out” every clock signal.

Figure 14. Simulation Results for Sliding Window Based Color Image
Mosaicing

Original Lena (left half) image (225×225 pixels) (b) Original Lena (right half) image

(225×225 pixels) (c) Mosaiced Lena Image using Matlab, PSNR: 39.3dB (d) Mosaiced Image

using Verilog, PSNR: 39.1 dB.

a b c d

International Journal of Signal Processing, Image Processing and Pattern Recognition

Vol.8, No.3 (2015)

248 Copyright ⓒ 2015 SERSC

The RTL Verilog simulation results are compared with Matlab results described earlier in

order to validate the hardware design. Elaborate experiments were conducted on various

images and consistently good results have been obtained. Lena image has been mosaiced as

shown in Figure 14, wherein (a) and (b) are the two images that needs to be mosaiced. The

final mosaiced Lena image (c) is generated by Matlab and the mosaiced image (d) by

simulation of Verilog RTL code.

4.1 Place and Route Results

The various modules described in previous sections were coded in Verilog, simulated

using ModelSim, synthesized and place and routed using Xilinx ISE 13.2. The simulation

results of the Image mosaicing system was presented in the previous section. The target

device chosen was Xilinx Spartan6 xc6slx45-3fgg676 FPGA. The core modules of the image

mosaicing design described in earlier sections utilizes 144,858 gates and 12 numbers of block

RAMs with 25158 numbers of occupied slices. The maximum frequency of operation is 100

MHz for “clk”. This works out to a frame rate of 20 per second for a picture size of 512x512

pixels as explained earlier. With higher speed FPGA, the frame rate can be increased to 30.

The Verilog codes developed for this project is fully RTL compliant and technology

independent. As ASIC, it is likely to work for higher resolutions up to 1600x1200 pixels at 30

frames/sec. The ISE generated RTL view of the Single Window Color Image Mosaicing

architecture is shown in Figure 15. The device utilization summary for Sliding window based

image mosaicing system are presented in Table 6.

Note: U1: Red Color, U2: Green Color, U3: Blue Color Component Processors

Figure 15 . RTL View of Single Window Color Image Mosaicing System

Table 6. FPGA Resource Consumption of the RTL Verilog Design

Device Utilization Summary

Logic Utilization Used Available Utilization

No. of Slices 25158 54576 46%

No. of Slice Flip Flops 24867 49486 55%

No. of 4 input LUTs 13134 62620 20%

No. of Bounded IOB 78 358 21%

No. of Block RAM 20 104 20%

The generated timing report with maximum delay is given below:

The synthesis as well as place and route results for the various modules of the top image

mosaicing module are presented below.

International Journal of Signal Processing, Image Processing and Pattern Recognition

Vol.8, No.3 (2015)

Copyright ⓒ 2015 SERSC 249

Timing Summary: Speed Grade: -3

 Minimum period: 10.061ns (Maximum Frequency: 99.397MHz)

 Minimum input arrival time before clock: 9.584ns

 Maximum output required time after clock: 6.854ns

 Maximum combinational path delay: 6.746ns

 Timing constraint: Default period analysis for Clock 'clk'

Device utilization summary:

Selected Device : 6slx45fgg676-3

Slice Logic Utilization:

 Number of Slice Registers: 25158 out of 54576 46%

 Number of Slice LUTs: 24867 out of 49486 55%

Number of LUT Flip Flop pairs used: 62620

 Number with an unused Flip Flop: 37462 out of 62620 59%

 Number with an unused LUT: 13134 out of 62620 20%

 Number of fully used LUT-FF pairs: 12024 out of 62620 19%

 Number of unique control sets: 19

IO Utilization:

 Number of IOs: 78

 Number of bonded IOBs: 78 out of 358 21%

Specific Feature Utilization:

Number of BUFG/BUFGCTRLs: 4 out of 16 25%

5. Conclusion

A new Sliding Window Based Corner Detection Algorithm has been developed for image

mosaicing. Using this algorithm, a new architecture suitable for VLSI implementation has

also been designed. The proposed design incorporates a high degree of pipelining and

parallelism and hence offers high throughputs. The Verilog design of the proposed

architecture for image mosaicing has been targeted on Xilinx Spartan 6 xc6slx45-3fgg676

FPGA device. The design utilizes about 25158 slices and the operating frequency is about

100 MHz. The design is capable of processing high resolution color pictures of sizes of up to

1600×1200 pixels in real time.

References

[1] B. Zitova and J. Flusser, “Image registration methods: a survey”, Image andvision Computing, vol. 21,

(2003), pp. 977-1000.

[2] H. Jayalaxmi and S. Ramachandran, “Novel Algorithm for Image Mosaicing using Feature based Corner

Detection”, DOI: 03.AETS.2014.5.366© Association of Computer Electronics and Electrical Engineers,

2014.

[3] N. Shirazi, M. Athansa and A. L. Abbott, “Implementation of a 2-D Fast Fourier Trasform on FPGA based

Custom Computing Machine”, Proceedings of 12th Reconfigurable Architecture Workshop, Denver (2005).

[4] D. G. Bailey, “Design for Embedded Image Processing on FPGAs”, John Wiley and Sons Inc., (2011).

[5] O. Ranganathan and A. I. Rasheed, “Design And Development Of Camera Interface Controller With Video

Pre- Processing Modules On FPGA for Mavs”, SASTECH Journal vol. 12, no. 1, (2013) April.

[6] M. Zubiel, “Firefighter Indoor Navigation using Distributed SLAM”, Worcester Polytechnic Institute, 2012.

[7] A. Manan, “Implementation of Image Processing Algorithm on FPGA”, AKGEC JOURNAL OF

TECHNOLOGY, vol. 2, no. 1, (2006).

[8] V. S. Bind “ Robust Techniques for Feature-based Image Mosaicing”, National Institute of Technology,

Rourkela, (2013).

[9] G. R. Arce, “Nonlinear Signal Processing: A Statistical Approach”, Wiley:New Jersey, USA, (2007).

International Journal of Signal Processing, Image Processing and Pattern Recognition

Vol.8, No.3 (2015)

250 Copyright ⓒ 2015 SERSC

[10] H. Jayalaxmi and S. Ramachandran, “Design of Novel Algorithm and Architecture for Feature Based Corner

Detection for Image Mosaicing”, Journal of VLSI and Signal Processing, DOI: 10.9790/4200-04631224,

Volume 4, Issue 6, Ver. III (Nov - Dec. 2014), (2014), pp. 12-24

[11] S. Ramachandran, “Digital VLSI Systems design: A Design Manual for Implementation of Projects on

FPGAs and ASICs using Verilog”, Springer Verlag, (2008).

[12] M. Heikkila and M. Pietikainen, “An Image Mosaicing module for Wide–Area Surveillance”, VSSN’05,

November 11, 2005, Singapore, ACM 1-59593-242-9/05/0011.

[13] B. Zitova and J. Flusser, “Image registration methods: a survey”, Image and vision Computing, vol. 21,

(2003), pp. 977-1000, doi:10.1016/S0262-8856(03)00137-9.

[14] P. Azzari, L. D. Stefano and M. Stefano, “An Evaluation Methodology For Image Mosaicing Algorithms”,

Advanced Concept for Intelligent Vision Systems, Springer, vol. 52-59, (2008), pp. 89-100.

[15] D. K. Jain, G. Saxena and V. K. Singh, “Image Mosaicing Using Corner Technique”, International

Conference on Communication System and Network Technologies, (2012), pp. 79-84.

[16] Y. Li, “FPGA Implementation for Image Processing Algorithms”, EEL 6562 Course Project Report, (2006)

December.

[17] H. Joshi and Khomlalsinha, “ Novel techniques Image Mosaicing based on Image Fusion Using Harris and

Surf”, International conference on computer science and information Technology, (2013) March, Hyderabad,

ISBN:978- 93-82208-70-9.

[18] J. Lia nd J. Du, “Study on Panoramic Image Stitching Algorithm”, Second Pacific Asia Conference on

Circuits, Communications and System, vol. 1, (2010), pp. 417-420.

[19] M. C. H. Raju, “Design of Novel Algorithm and Architecture for Gaussian Based Color Image Enhancement

System for Real Time Applications”, International Journal of Computer Vision and Pattern Recognition,

10.1007/978-3-642-36321-456, (2014).

[20] A. Bovik, “Handbook of Image and Video Processing”, 2nd edition, Elsevier Academic Press, (2005).

http://arxiv.org/ct?url=http%3A%2F%2Fdx.doi.org%2F10%252E1007%2F978-3-642-36321-4_56&v=f3cb3444

