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Abstract  
 

A new direction-of-arrival estimation method for uncorrelated wideband sources is 

proposed. Firstly, the covariance matrices of different frequency bins are transformed into 

higher dimensional vectors through Khatri-Rao product to produce the new models of the 

array outputs. Secondly, the higher dimensional noiseless signal subspace at each frequency 

is focused to a certain reference frequency and a single correlation matrix is constructed, 

where the focusing matrices are designed by interpolating the virtual steering matrices of the 

new model. Finally, the DOA estimates are acquired through using narrowband MUSIC 

method. The proposed method is able to increase the degrees of freedom of a uniform linear 

array and enable us to handle more sources than sensors. Numerical results demonstrate the 

performance of the proposed method. 

Keywords: direction-of-arrival estimation; wideband signal; Khatri-Rao product; 

interpolated  array 

1. Introduction 

The estimation of the direction-of-arrival (DOA) of wideband signals has been 

widely applied in radar, sonar and wireless communication. The phase difference of the 

array output depends on not only the direction of arrival, but also the frequency. 

Therefore, the time delay is not simply deduced from the phase shift. The common 

method for wideband DOA estimation is to decompose the wideband signal into 

narrowband components through FFT or filtering, and use the multiple correlation 

matrices at different frequencies to get accurate DOA estimates, such as the incoherent 

signal subspace method (ISSM) [1]. It estimates the source DOAs separately at each 

frequency and then constructs the final estimate by taking an average. This method is 

simple but suffers severely at low SNR. In order to acquire a high spatial resolution, 

various methods have been proposed. For example, the coherent signal subspace 

methods (CSSM) [2-4], the signal subspace at each frequency is focused to a certain 

reference frequency to construct a single correlation matrix, and the narrowband DOA 

estimation algorithms are applied to obtain the DOA estimates. These methods can 

work well in the condition of low SNR, but need the preliminary estimates of DOA to 

design the focusing matrices, and their performances are sensitive to the preliminary 

estimates. Recently, based on the fact that the positions of signal sources are sparse in 

whole space, the sparse representation algorithms are proposed to estimate the spatial 

spectrum by using sparse representation [5-7]. Although these algorithms possess some 

salient characteristics, such as high resolution and improved robustness to noise, they 

have a degree of difficulties to obtain the optimal solutions.  
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Because the spatial resolution is limited to the aperture of array, in order to improve 

the spatial resolution and even resolve more sources than sensors case, the virtual array 

structure should be constructed to increase the degrees of freedom of array. Lately, a 

Khatri-Rao (KR) product was proposed to expand the array structure [8]. The extended 

array is similar to the virtual array established by the higher order cumulant method [9-

10]. After excluding the overlapping elements in the virtual array structure, the number 

of virtual sensors can reach 2 1N  , approximately 2 times of the actual array elements 

N . Based on CSSM and KR product, a new DOA estimation method for uncorrelated 

wideband sources named FKR-RSS was proposed [11]. Compared with the 

conventional CSSM, FKR-RSS transforms the covariance matrices into the high 

dimensional matrices, and achieves a high resolution and smaller root mean square 

error even if the number of sensors is about half of the number of sensors. However, the 

performance of this method also depends on the preliminary estimates.  In our opinion, 

it seems more reasonable that the focusing matrices will be constructed according to the 

new steering matrices and array outputs built by KR product, rather than the original 

steering matrices and array outputs. 

In this paper, we propose a new estimation method for wideband DOA estimation 

named KR-I-F/KR-I-F-A based on the KR product and interpolated focusing 

transformation. Similar to CSSM, it consists of two primary steps: 1)KR product. The 

covariance matrices of different frequency bins are transformed and combined into 

higher dimensional vectors through KR product to produce the new array outputs and 

virtual array steering matrices. 2)Interpolated focusing transformation. We develop the 

focusing matrices in the light of the interpolation principal and focus the higher 

dimensional noiseless signal subspace at each frequency to a certain reference 

frequency and constructs a single correlation matrix, after deleting the noise terms from 

the new array output signals. Finally, we obtain the DOA estimates by MUSIC method. 

Compared with FKR-RSS, due to the fact that the focusing process is implemented after 

the KR product transformation, the focusing error will be alleviated. The simulation 

results show that this method achieves better performance under the overdetermined or 

under-determined cases. 

 

2. Problem Formulation 

Consider an N  elements uniform linear array (ULA) with spacing d , and suppose that  

wideband signals 
1{ ( )}K

k ks t 
 impinge on the ULA from distinct directions of arrival 

1{ ( )}K

k kt 
. 

The signal received at -thp  sensor is given by 

1

( ) ( ( )) ( ),   1
K

p k p k p

k

x n s n n n p N 


                                                         (1) 

where ( )p k   is the propagation delay associated with the -thk  source and -thp  sensor, and 

( )pn n  is the additive noise at the -thp  sensor. The propagation delay ( )p k   is expressed as  

( 1) sin( )
( ) k

p k

p d

c


 


                                                                 (2) 

where c  is the propagation speed. Suppose that the frequency range is [ , ]L H  , and the total 

observation time T  can be divided into M  nonoverlapping segments and each segment has a 

duration of /J T M . We apply the -J point discrete Fourier transform (DFT) to each 

segment and combine the components from each segment at the same frequency point, write 

the output of the array as 
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( ) ( , ) ( ) ( ), 1,2, ,j j j j j J     X A θ S N                                              (3) 

where 
1 2( , ) [ ( , ), ( , ), , ( , )]j j j j K      A θ a a a  is the steering matrix with the steering vector 

of the form 
sin / ( 1) sin /

( , ) [1, , , ]j k j ki d c i N d c T

j k e e
   

 
  

a . 
1( ) [ ( ), , ( )]T

j j N jX X  X , 

1( ) [ ( ), , ( )]T

j j K jS S  S  and 1( ) [ ( ), , ( )]T

j j N jN N  N  are the DFT coefficients of 

array outputs, source signals and additive noises, respectively, ( )T  is the transpose operation. 

We assume that the signals are spatially uncorrelated and temporally white. As a 

consequence, the source covariance matrix at frequency j  is computed as 

1 2( ) E[ ( ) ( )] ( ( )) ( ( ), ( ), , ( ))H

s j j j s j s j s j sK jdiag diag           R S S   

where ( )H  is the conjugate transpose. Additionally, we assume that the noise are spatially 

uniform white and independent of each other and of the signals. Consequently, the 

observation covariance matrix is 

  2( ) E[ ( ) ( )] ( , ) ( ) ( , )H H

j j j j s j j nj N        R X X A θ R A θ I                               (4) 

where 2 2 2E[ | ( ) | ]nj n j nN    . 

The problem at hand is to infer the DOAs of the K  wideband signals from ( )jR . 

 

3. Proposed Method 

( )jR  in (4) is stacked into column vector, and can be written as 

           2( ) vec( ( )) vec( ( , ) ( ) ( , )) vec( )H

j j j s j j n N      y R A θ R A θ I     

2( ( , ) ( , )) ( ) vec( )j j s j n N    *
A A I                                                (5) 

where 
2

1 1( , ) ( , ) [ ( , ) ( , ), , ( , ) ( , )] N K

j j j j j K j K             * * *
A A a a a a   is KR 

product. Compared with model of (3), ( )jy  in (5) can be viewed as the new array 

output signals. Thus, ( , ) ( , )j j *
A A   is a new virtual array steering matrix, and 

( )s j  is the source signal vector. The virtual array dimension given by 2N  is greater 

than the physical array dimension N . Consequently, it can enhance the equivalent 

aperture of the array and provide us with the capability of processing cases where there 

are less sensors of array than sources ( N K ). In order to remove the redundancy of the 

steering matrix, a column orthogonal matrix G  [8] is introduced as 

1 1 0 1 1[vec( ), ,vec( ),vec( ),vec( ), ,vec( )]T T

N N G = J J J J J , where  

,

, ,

, 0,1, 1
N m m N m

m

m m m N m

m N
 



 
   
 

0 I
J

0 0
.  

Thus we will get *( , ) ( , ) ( , )j j j  A θ A θ GB θ  with 1( , ) ( , ), , ( , )j j j K       B θ b b  

and 
( -1) sin sin sin ( -1) sin

( , ) [ , , ,1, , , ]j k j k j k j ki N d c i d c i d c j N d c T

j k e e e e
       

 
 

b , 1 k K  . 

After KR product processing, the steering matrix is ( , )jB θ , and the array output 

signals is ( )jy . Therefore, the focusing matrix should be computed by the steering 

matrix ( , )jB θ  not by ( , )jA θ . We will discuss the design method of focusing matrix, 

and formulate it as an interpolation problem in the following section. 

Both sides of (5) are multiplied by 1 T
W G , the new array output signals is rewritten 

as  

 1 1 2 1 2( )= ( )= ( , ) ( ) vec = ( , ) ( )T T T

j j j s j n N j s j n          y W G y W G GB W G I B e      (6) 
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where 
1 1

0, ,0,1,0, ,0

T

N N 

 
  
  

e , T
W = G G . The specific form of (6) is elaborated as  

1

1

1

1

( 1) sin / ( 1) sin /

sin / sin /

2 2

sin / sin /

( 1) sin / ( 1) sin /

0

0

( ) ( , ) ( ) ( )1 1 1

0

0

j j K

j j K

j j K

j j K

i N d c i N d c

i d c i d c

j j s j n s j n

i d c i d c

i N d c i N d c

e e

e e

e e

e e

   

   

   

   

     

 

 

   

  
 
 
 
 
    
 
 
 
 
 
 

y B e   .


 
 
 
 
 
 
 
 
 
 

 

In the above expression, the noise term is emerged in the -thN  row. Accordingly, we 

delete the -thN  row from ( )jy , and obtain the noiseless array output signals ˆ ( )jy , 

as presented below 
1

1

1

1

( 1) sin / ( 1) sin /

sin / sin /

sin / sin /

( 1) sin / ( 1) sin /

ˆ ( ) ( , ) ( ) ( ) .  

j j K

j j K

j j K

j j K

i N d c i N d c

i d c i d c

j j s j s ji d c i d c

i N d c i N d c

e e

e e

e e

e e

   

   

   

   

   

 

 

   

 
 
 
 
  
 
 
 
 
 

y B                        (7) 

From the virtue steering matrix ( , )jB   in (7), we learn that the array is nonuniform 

linear structure which does not satisfy the half-wavelength constraint and prohibits us 

to correctly align the observation for DOA estimation. Thereby, we design the focusing 

matrix according to the interpolation principal [12] to meet the constraint.  

Supposed the focusing matrix (2 2) (2 1)N N

j

  T , the focusing process is expressed as 

0
ˆ ( ) ( , ) ( )H

j j j s j  = T y B                                                    (8) 

where   (2 1)

0 0 1 0( , ) ( , ), , ( , ) N K

K       B b b  is the interpolation virtue steering matrix 

at the desired reference frequency, and -thk  column is 0 0( -1) sin

0( , ) [ , ,ki N d c

k e
   b  

0 0 0 0 0 0sin sin ( -1) sin
,1, , , ]k k ki d c i d c i N d c Te e e

       . In other words, the deleted row is interpolated by 

other rows.  

The focusing matrix 
jT  is constructed by minimizing the Frobenius norm of the 

mismatches between the actual steering matrix and the desired virtue steering matrix, 

viz., 
2

0min ( , ) ( , )  .
j

H

j j F
 

T
B T B                                                     (9) 

From (9), we can get 
2

0min ( , ) ( , ) min tr ( , ) ( , )
j j

H H H

j j j j j jF
     

T T
B T B T B B T     

0 0 0 0( , ) ( , ) ( , ) ( , ) ( , ) ( , )H H H H

j j j j      T B B B B T B B      , where tr( )  denotes the trace 

operation. The optimal estimation in the least squares (LS) sense is given as  

 
†

0( ( , ) ( , )) ( , ) ( , )H H

j j j j   T B B B B                                         (10) 
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where 
†
 is Moore-Penrose pseudoinverse. The target area will be divided into serve 

sub regions supplied for interpolated angle segments. We define a set of interpolated 

angles as (1) (1) (1) (2)[ , , 2 , , ]        θ , where   is the interpolation step, (1)  and 
(2)  determine the range of the current sector and the interpolation accuracy. The 

interpolated angle segment is subdivided so that the value of the ratio of the Frobenius 

norm of 0( , ) ( , )H

j j B T B   and 
0( , )B  , i.e., 2 2

0 0|| ( , ) ( , ) || || ( , ) ||H

j j F F  B T B B    can 

be reduced as low as possible. For example, when the value of the ratio is less than  
310 , the calculation of the focusing matrix is completed. Moreover, the condition 

0 0j jd f d f  must be attained during the computation processing, where 
0f  is the centre 

frequency, and 
0d  is the wavelength correspondingly. Coarse grid results in 

interpolation error, but fine grid and will increase the computation complexity. In order 

to reduce the interpolation error in the actual application, the focusing matrix can be 

acquired by off-line calculation.  

With the interpolated focusing matrices, we transform the steering matrices of the 

NLA (nonuniform linear array) at each frequency to a common steering matrix of the 

virtual ULA at the centre frequency, which allow us to estimate the DOAs just like that 

in the narrow-band scenario. To this end, by combining the noiseless focused array 

output signals to yield the following matrix 

 1 2 0, , , ( , ) .J   R B Ψ                                                 (11) 

We perform SVD on 
R  to obtain the noise subspace matrix, and the DOA estimates 

are calculated by MUSIC method. This method is named KR-I-F, where “I” denotes 

interpolation, and “F” indicates focusing.  

In order to further de-correlate the sources, we also estimate the covariance matrix of 

R  as  

 0 0 0 0(1/ ) ( , ) / ( , ) ( , ) ( , )H H H H

v J J       R R R B ΨΨ B B R B    .             (12) 

According to 0 0( , ) ( , ) *
B B   , where   is the (2 1) (2 1)N N    exchanging 

matrix with one on its anti-diagonal and zero elsewhere, we can calculated the spatially 

smoothed covariance matrix as  
*

0 0 0 0 0 0[ ( , ) ( ( , )) ] ( , ) ( ( , )) ( , ) ( , )H H H

v          * * * * * *
R B R B B R B B R B           . 

Consequently, the averaged covariance matrix is computed by  

         *

0 0
ˆ ( ) / 2 ( , )[( ) / 2] ( , )H

v v      *
R R R B R + R B    .                                   (13) 

We can acquire the estimation ̂  by MUSIC algorithm of which the noise subspace 

matrix is obtained by perform SVD on R̂ . We call this method KR-I-F-A, where “A” 

denotes averaging operation. 

In the follows, the steps of KR-I-F/ KR-I-F-A are summarized: 

1) Divide the sensor output into M  identical segments, and perform FFT at each 

segment to acquire ( )jX . 

2)  Estimate the covariance matrix ( )jR , and generate ( )jy . 

3)  Premultiply ( )jy  by 1 T
W G  to yield 1( ) ( )T

j j y W G y . 

4)  Remove the -thN  element from ( )jy  to get the noiseless vector ˆ ( )jy . 

5) Compute ˆ ( )H

j j j= T y  to construct the matrix  1 2, , , J R    , or calculate 

(1/ ) H

v J  R R R  to get *ˆ ( ) / 2v v R R R  . 
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6) Perform SVD on 
R  or R̂  to obtain the noise subspace matrix, and calculate the 

spatial spectrum by MUSIC algorithm, the estimation ̂  of is the local maxima in 

the spatial spectrum. 

When ( +1)[  ]T J K

J

Ψ 1  is of full column rank, this method will be used for the 

underdetermined case, and the virtual array (2 2)( , ) N K

j  B   can offer 2 2N   degrees 

of freedom, thereby being able to handle 2 3N   sources. 

 

4. Experiment Results 

In this section, the performances of the proposed algorithms are evaluated and compared 

against FKR-RSS through computer simulation examples.  

The wideband Gaussian sources have the same center frequency 
0 100Hzf   and the same 

bandwidth 40Hz. The noise are white Gaussian signals with zeros means. The spacing 

between adjacent sensors is 
0/(2 )d c f  340/(2*100) 1.7m . The total time is 

0 51.2sT  , the 

sampling frequency is 80Hz. The array outputs are divided into 33 narrow band components 

and each components set has 64 snapshots. The SNR is defined as  

 
1

2 2

2 2

0

SNR = E{|| ( ) || }/( E{|| ( )|| })
K

k

k

t K t




 s v . 

In the first example, the resolution is compared between FKR-RSS and KR-I-F methods, 

where the array is a uniform linear array with 5 sensors. Two uncorrelated wideband sources 

impinge on the array from 
1 5    and 

2 5   , where   is the degree interval with a step 

of 1 . The initial angles  2 ,7 ,12    are selected for FKR-RSS algorithm. The SNR is 5dB. 

1  and 
2  are the estimation values. The two signals are achieved to be resolved if both 

1 1| |   and 
2 2| |   are less than 

2 1| | / 2  . The number of times that each method 

resolves the two sources is counted to calculate the probability of resolution per 500 times. 

100 Monte Carlo runs are performed to calculate the average result. Figure 1 shows how the 

probabilities of resolution change with separation of the two sources. When the degree is 3 , 

the probability of resolutions of the two methods are about 0.5. KR-I-F is the better than the 

FKR-RSS with 100% probability of resolution at 6   . 
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Figure 1. Probabilities of Resolution versus Separation of the Two Sources 

For the second experiment, the estimation accuracy is investigated among FKR-RSS, KR-

I-F and KR-I-F-A methods. The root mean square error is defined as    
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where 2K   and 500P  . Two uncorrelated wideband sources impinge on the array from 

1 8    and 
2 13   . The number of sensors is 8. The SNR varies from -6 to 15dB with a step 

of 1dB. The initial angles {5 ,10 ,16.5 }    are selected for FKR-RSS algorithm. The results are 

shown in Figure 2. The proposed algorithms are found to outperform FKR-RSS with 

respect to RMSE. It is also to be noted that the interpolation transformation will 

inevitably produce errors, which result in the disturbances of eigenvalue vector. These 

errors and disturbances will affect the performance of the proposed algorithms.  
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Figure 2. RMSE of the DOA Estimation versus SNR 

In the third experiment, we set up a underdetermined case where ( , ) (4,4)N k   and 

the SNR is 5dB, the true DOAs are {2 ,11 ,20 ,28 }    . The settings are as follows: the 

sampling frequency is 8000Hzsf  , the inter sensor spacing is 4.25cmd   under a sound 

propagation speed of 340m/s , the FFT window length is 64, the frame length is 200, the 

total frame number is 450. The initial angles { 2 ,10 ,15 ,22 ,35 }       are selected for FKR-

RSS algorithm, and the experiment results are plotted in Figure 3. Obviously, KR-I-F is 

better than FKR-RSS, and the former can distinguish the four sources. 
 

 

 

 

 

 

 

 

 

 
 

(a) KR-I-F                                                                                                   (b) FKR-RSS 

Figure 3. DOA Spectra of the Various Algorithms in the Wideband 
Underdetermined Case 
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5. Conclusion 

In this paper, we propose a new wideband DOA estimation algorithm based on the 

KR product and interpolated focusing transformation. We are able to increase the 

degrees of freedom of a ULA of N  physical sensors from N  to 2 2N  . Meanwhile, as 

the noise power can be efficiently eliminated, the accuracy and robustness are 

significantly enhanced. Nevertheless, the proposed method cannot tackle the coherent 

wideband sources. We will address it as our future works. 
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