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Abstract 

This paper introduces a novel solution to generate a super-resolution image from a set 

of low-resolution input based on patch information. Recent research has shown that 

super-resolved data can be reconstructed from an extremely small set of measurements 

compared to that currently required. This paper incorporates the compressive sensing 

framework to the reconstruction model. Moreover, in order to remove outliers introduced 

by image parallax, the supervised patch-adaptive matching method which uses 

photometrical similarity and geometrical distance to determine the matching patch is 

proposed to reconstruct the high resolution image. The performance of the proposed 

algorithm on both synthetic and real images is evaluated with several grayscale and 

color image sequences and found successful when compared to other algorithms. 
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1. Introduction 

A great number of applications frequently require high-resolution images such as 

biometrics identification, satellite imaging, and so on. However, in many imaging 

applications, acquiring an image of a scene with high spatial resolution is not possible 

due to a number of theoretical and practical limitations. To increase the image resolution, 

either increase the chip size of sensors or reduce the pixel size by sensor manufacturing 

techniques are severely constrained by the physical limitation of imaging systems [1]. 

Therefore, it is of great interest to reconstruct a high resolution (HR) image using only 

digital image processing techniques. Most of the image magnification processes are 

usually achieved by pixel interpolation using a linear filter which cannot recover the real 

image detail even if the pixel number of the display is increased. 

The problem of the reconstruction of a high-resolution image from a set of low-

resolution observations of the same scene, known as super resolution (SR), has been an 

active research topic in the areas of image processing and computer vision. There are 

many methods for super-resolution image reconstruction [2-6], [11-14]. Among them, the 

frequency domain method is one of the most promising solutions [2]. They use a discrete 

Fourier transform (DFT)-based algorithm to model global translational scene motion. 

How to recover the high-frequency information that was lost in the process of generating 

the low-resolution inputs is the main challenge. In terms of Nyquist-Shannon sampling 

theorem, the high-frequency information was eliminated by the band-limiting filter of the 

photographic process was due to imperfections in the optics and integration over the 

pixels of the sensor if the low resolution (LR) images were directly captured by a camera. 

More recently, Fourier-wavelet deconvolution and denoising algorithms are combined 

and extended to the multiframe SR application [3]. They use a fast Fourier-based-
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multiframe image restoration method to produce a sharp, but noisy estimate of the HR 

image and then apply a space-variant non-linear wavelet thresholding technique that 

addresses the non-stationarity inherent in resolution-enhanced fused images. 

Another notable super-resolution method which only uses a single LR image for 

estimating the HR image, known as single image super resolution [7-10], can be 

classified into two major categories. The first class of methods are reconstruction based 

super resolution algorithms which define constraints for the desired HR image to improve 

the quality of the reconstruction. Algorithms of this type reconstruct image details by 

interpolating the LR input while making edges sharper. The most well-known method is 

the back projection algorithm which gradually sharpens the edges in each iteration. 

Algorithms of the second type are learning based super resolution algorithms which 

learning correspondences between LR and HR image patches from the training database 

to invert the process of down-sampling in a reasonable manner. Chakrabarti et. al., [8] 

proposed a kernel principal component analysis based on the prior model to produce SR 

face images. They applied the prior probability based on the energy outside of the 

principal components to regularize the solution. Freeman et. al., [9] proposed an 

example-based SR resolution technique which applied the Markov Random Field to 

framework and solved through belief propagation. This technique requires the nearest 

neighbor-based estimation of high-frequency patches based on the corresponding patches 

of a recorded low frequency image. T. Goto et. al., [10] proposed a learning-based 

superresolution method that utilizes total variation (TV) regularization. Zhou et. al., [7] 

proposed a learning-based approach through sparse representation. They jointly trained 

the HR and LR dictionaries for signal sparse representation. 

For the growing requirements for super-resolution (SR) images, compressive sensing 

(CS) theory [15], which rapid progress in the past few years, provides a new solution to 

such an issue as opposed to traditional thinking of continually enlarging the sensor array. 

The sparsity of the representation is the focus of the present study, specifically its effects 

on reconstruction speed. Recently sparse representation has been successfully applied to 

many other related inverse problems in image processing, such as denoising and 

restoration, often improving on the state-of-the-art. Therefore, SR through compressed 

sensing was attempted. 

In this paper, a novel compressive sensing based super resolution is proposed. Through 

the utilization of a systematic modeling of the desired HR image, the proposed 

framework incorporates the patch-adaptive reconstruction method and provides an 

estimated HR image with high quality and compares favorably to existing super 

resolution algorithms. 

The rest of the paper is organized as follows. Section 2 introduces the basic concept of 

compressive sensing model and the greedy algorithm. Patch adaptive SR based on 

compressive sensing framework is proposed in Section 3 and the experimental results are 

compared with a number of methods in Section 4. Finally, conclusions are drawn in 

Section 5. 
 

2. Compressive Sensing Model 

Compressive sensing is a novel and popular approach for sparse signal reconstruction. 

In image processing the main assumption is that the image has a sparse representation in 

an orthonormal basis or a tight frame. Assuming n
x   is n dimensional signal of K-

sparse representation in the orthogonal basis D, written as, 

x D                   (1) 

where coefficient   contains only K non-zero or significant elements. In CS theory, 

x  represents any one dimensional signal. However, this signal is assumed to be an m-

pixel image that has been reconstructed into an n-pixel vector. Clearly, x  and   are 
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equivalent representations of the same signal, with x  in the time domain and   in the D  

domain. One of the outstanding results in CS theory is that the signal x  can be 

reconstructed using optimization strategies aimed at finding the sparsest signal that 

matches with the m projections.  

y x
                   (2) 

where   is an observation matrix that optimized by the gradient decent method. The 

measurement process can be rewritten as 

y x D     
                 (3) 

Within the framework of CS, the desired sparsest   can be determined by solving the 

following l0-norm problem: 

0
m in     s .t .  y  

                 (4) 

The problem is known to be an nondeterministic polynomial time complete problem. 

However, recent studies indicate that l1-norm minimization can yield a result similar to 

that of l0-norm minimization as long as the number of samples   log /N O K L K  

1
m in     s .t .  .y  

                 (5) 

To apply CS in SR image reconstruction, the test image is considered the sub-sampled 

image of the HR image. However, the sparsity of a signal and the incoherence between 

measurement and representation matrices must be maintained to determine the unique 

sparse solution. 
 

2.1. Sparse Reconstruction Condition 

The measurement matrix is designed to ensure that the compressible signal is not 

damaged by dimensionality reduction. Many well-known pairs of incoherent bases exist, 

including the random Fourier sample measurement matrix with the identity matrix and 

the Gaussian measurement matrix with any other basis. Random observation is the 

original method for designing the measurement matrix, after which deterministic 

observation was proposed. y   cannot be solved for    with any arbitrary  if 

m n , even if 2m K . However, compressed sensing framework can be applied only if 

the measurement matrix   meets the Restricted Isometry Condition (RIC) [16]:  

2 2 2
(1 ) (1 )        

                (6) 

with parameters  ,z  , where  0,1  for all z-sparse vectors  . Essentially, the RIC 

states that a measurement matrix will be valid if every possible set of z columns of   

forms an approximate orthogonal set. In effect, sampling matrix S need to be as 

incoherent to the compression basis D  as possible. Examples of matrices that have been 

proven to meet RIC include Gaussian matrices (where the entries are independently 

sampled from a normal distribution), Bernoulli matrices (binary matrices drawn from a 

Bernoulli distribution), and partial Fourier matrices (randomly selected Fourier basis 

functions). 

In this work, wavelets are used as the compression basis D  because they are much 

better at sparsely representing images than non-localized bases such as Fourier. However, 

in super-resolution the downsampling matrix   involves point-sampled measurements, 

which could result in a measurement matrix   that does not meet the Restricted 

Isometry Condition because point-sampling measurements are not incoherent with the 
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wavelet compression basis. Intuitively, it can be seen that the better a basis is at 

representing localized features (such as wavelet), the more coherent it will be to point 

sampling because it can represent small spatial features (e.g., point samples) with only a 

few coefficients, by definition. Therefore, in order to successfully apply a wavelet basis 

to this problem, we must find a way to increase the incoherence between the bases. 
 

2.2. Greedy Reconstruction Algorithm 

Due to the simple geometric interpretation and low complexity, the iterative greedy 

algorithms, which include the Orthogonal Matching Pursuit (OMP) [17], the Regularized 

OMP (ROMP) [18], and the Stage-wise OMP (StOMP) algorithms [19], received 

significant attention. The idea behind these greedy algorithms is to find the support of the 

unknown signal sequentially.  The main idea of greedy algorithm is to find the coefficient 

of   with the largest magnitude by projecting y  onto each column of   and selecting 

the largest ,
i

y   where 
i

  is the th
i  column of  . Once the largest coefficient of    

is identified, a least-square problem is resolved assuming it is the only non-zero 

coefficient. The new estimate for   is utilized to compute the estimated original HR 

signal x  and subtract it from D . This process is iterated using the residual signal to 

find the next largest coefficient of  . By iterating K times, a K-sparse approximated 

representation is acquired. The computational complexity of the OMP algorithm depends 

on the sparsity of the original signal: reconstruction complexity of standard OMP is 

roughly  O K m N , since it is a K-sparse signal. This complexity is significantly smaller 

than that of linear programming methods, especially when the signal sparsity level K is 

small. However, for OMP techniques to operate successfully, the correlation between all 

pairs of columns of    should be at most 1 / 2 K , which by the Gershgorin Circle 

Theorem, represents a more restrictive constraint than the RIP. Although ROMP is faster 

and more robust on restricted isometry condition, its search strategy is overly restrictive. 

A modified version of it called subspace pursuit (SP) algorithm [20] was proposed that 

has superiority over both OMP and ROMP. The SP algorithm generates a list of 

candidates sequentially with back-tracing, which incorporates a method for re-evaluating 

the reliability of all candidates at each iteration of the process. 
 

3. Proposed Approach 
 

3.1. Patch Adaptive Super Resolution 

In this section, the patch based super resolution algorithm is proposed to produce 

improved SR images. The basic idea behind the proposed super resolution algorithm is 

borrowed from sequential coding theory with backtracking. The prevailing image 

registration methods assume all the feature points are coplanar and build a homography 

transform matrix to do registration. The advantage is that they have low computational 

cost and can handle planar scenes conveniently; however, with the assumption that the 

scenes are approximately planar, they are inappropriate in the registration applications 

when the images have large depth variation due to the high-rise objects, known as the 

parallax problem. Parallax is an apparent displacement of difference of orientation of an 

object viewed along two different lines of sight, and is measured by the angle or semi-

angle of inclination between those two lines. Nearby objects have a larger parallax than 

further objects when observed from different positions. Therefore, the objects close to 

camera appear to move faster than the objects in the distance as the viewpoint moves side 

to side. So these two images cannot be merged directly. 

From the first step, reference image is subdivided into patches (of size n ) that are 

traversed in raster-scan order. For each patch, the matching patch located in the input 

image, needs to be found. The matching patch should satisfy two conditions: first, the 
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patch should come from a location in the input image that has a shortest distance; second, 

the patch should has the largest similarity with the reference patch. Define 
k

P  as the 

probability of the matching patch, 

   1 2
e x p 2 , ,  1, , ,  1, ,

k k j
P S D b t k M j M   

                (7) 

where   1
,  1, , 

k
b k M  are the vectors of the blocks in the reference LR image, 

  2
,  1, ,

j
t j M  are the vectors of the blocks in the input LR image, 

1
M  and 

2
M  are 

the numbers of the patches in the reference image and input image, respectively, and 

 ,
k j

D b t  is the geometric distance between 
k

b  and 
j

t , 

 
2

,
k j k j

D b t b t n 
                  (8) 

where 
2

 is Euclidean distance. The prior probability, which is derived from the 

cross correlation between 
k

b  and 
j

t , is formulated below 

     

     
2 2

k k k k

i

k

k k k k

i i

b i b t i t

r

b i b t i t

   
 



     
    



 
               (9) 

where 
k

b  and 
k

t  are the means of 
k

b  and 
k

t , respectively. Then the matching patch 
k

b  

is given by 

   1 2 1 2 1
a rg m a x ,  1, ,

k k

k

c P c r c c k M  

             (10) 

where 
1

c  and 
2

c  are the regularization parameters that determine how strongly the 

geometric distance and photometrical similarity are constrained to the total probability. 

Then, the input LR image can be formulated as below 

 1 2
,  , ,  

n
y b b b

                (11) 

The constrained optimization (3) can be similarly reformulated 

y 
                (12) 
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3.2. High Resolution Image Reconstruction 

As discussed in previous section, even wavelets is good at representing sparse image 

data, we cannot use it directly in image reconstruction procedure since it does not meet 

the RIC when the image is downsampled. To fulfill RIC requirement, a blurring matrix 

  is used to filter the high resolution image y . The desired high resolution image can be 

written as 
s

 , which is then filtered by the blurring matrix  .  

s
y       

                (13) 

The Gaussian filter   is chosen as the blurring filter. Since this filter can be 

considered as a multiplication by a Gaussian in the frequency domain, it can be defined 

that 
H

G  F F . Then (13) can be written as 

H

s
y G  F F

                (14) 

where G is a Gaussian matrix with values of the Gaussian function along its diagonal 

and zeros elsewhere and F  is the Fourier transform matrix. Also, by assuming that the 

transform of 
s

 denoted by ˆ
s

  is sparse in its wavelet domain, (14) can be modified as 

ˆ
H

s
y G D  F F

               (15) 

There are many solutions to the underdetermined (15). In order to make the result 

unique, the desired 
ˆ

s


 is considered to have minimum number of nonzero coefficients. In 

Algorithm 1: Subspace Pursuit Algorithm 

Input: K,  , y 

Initialization: 

 ˆ {T K indices corresponding to the largest absolute values of *
}y  

  ˆ
re s id u e ,

r T
y y   

Iteration: 

 If 0
r

y  , quit the iteration; otherwise continue 

 ˆ {T T K   indices corresponding to the largest magnitudes of *
}

r
y  

 Let 
†

p T
x y


   where  

1
† * *

:
T T T T

   


   
  

 {T K  indices corresponding to the largest elements of }
p

x   

  re s id u e ,
r T

y y   

 If 
r r

y y , quit the iteration; otherwise, let T̂ T and r r
y y , and 

continue with a new iteration 

Output: 

The estimated signal ˆ
s

  satisfies   ˆ1 , ,
ˆ 0

N T

s




  and 
ˆ †

ˆ
ˆ

T

s T
y   
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other word between all possible answers for 
ˆ

s


, the one which gives minimum number 

of coefficients is chosen. Therefore 
ˆ

s


 can be found by solving an l1-norm optimization 

problem. Greedy algorithms introduced in section III-B, provide a solution for l1-norm 

optimization. Therefore, the l1-optimization problem is expressed as follow: 

1
ˆ ˆm in    s .t .  

H

s s
y G D   F F

              (16) 

 By having H
G D  F F , (16) would be modified to 

1
ˆ ˆm in    s .t .  

s s
y 

                (17) 

Therefore, ˆ
s

  can be found by solving (17). In this work, subspace pursuit algorithm 

has been used for solving (17). Compared with ROMP which is also a greedy algorithm, 

Subspace Pursuit algorithm has lower reconstruction complexity of matching pursuit 

techniques as long as better reconstruction capability. In SP algorithm, both the forward 

matrix   and backword    are needed 

1 1T T T H T
D D G  

  
   F F

              (18) 

The output of the subspace pursuit algorithm ( ˆ
s

 ) is in wavelet domain, by taking 

inverse of wavelet transform the desired high resolution image (
s

 ) would be recovered. 

Figure 1. An Example of HR Reconstruction from Different Super Resolution 
Methods. Results (3x Resolution Increase) by (a) Original Low Resolution 

Image Interpolated by Nearest Neighbor Interpolation, (b) Robust Method, (c) 
Total Varation Reconstruction, (d) Normalized Convolution SR, (e) Proposed 

Method 
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Figure 2. Effects of the Number of Frames on PSNR 

 

4. Experimental Results 

In this section, the performance of the proposed algorithm on both synthetic and real 

images is analyzed by comparing with different algorithms such as robust SR [5], total-

variation regularization SR [13], and normalized convolution SR [14]. Shown on Figure 

1(a) is one of the 8 synthetic LR image generated from the HR image through translating, 

rotating, blurring, and downsampling by a factor of 4. (e) shows the result of an SR 

image reconstructed by the proposed method. The variance of G  is set to 2
1 6 6 6 .7  , 

and the coeffecients are set to 
1 2

0 .7 ,  0 .3c c  . For the purpose of comparison, three 

different algorithms are also implemented on the same set of LR images and the results 

are shown in (b-d). It can be seen from the zooming area of Figure 1 that in proposed 

method the LR effect is significantly reduced and the resolution is highly enhanced. Due 

to the correction of the robust patching searching and matching, the details of the lion’s 

mane looks clearer for the proposed algorithm.  

In order to measure performance analysis, the HR image is first downsampled into LR 

images and then reconstructed using the proposed algorithm to HR image. Since the 

original HR image is available, the restoration quality is measured by peak signal-to-

noise ratio (PSNR) of the image as 

    
2

2

1 0

1 1 1 1

ˆ1 0 lo g 2 5 5 , ,

M N M N

i j i j

P S N R I i j I i j

   

 
  

 
 

   
           (19) 

where I is the original HR image and Î  is the reconstructed image. Figure 2 shows a 

plot of PSNR with the number of frames taken for super-resolution. From the figure, it is 

evident that increasing the number of frames does not have significant influence on 

PSNR but causes additional computational cost and the proposed algorithm has the 

largest PSNR compared with other algorithms. 
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The proposed method was also tested on a real video image sequence as shown in 

Figure 3. The variance of G  is set to 2
1 6 6 6 .7  , and the coeffecients are set to 

1 2
0 .7 ,  0 .3c c  . (a) shows the LR image which is of size (128×96). The image 

sequence is magnified three times by the proposed algorithm and other methods as shown 

in (b-e). Another test was conducted as is shown in Figure 4. The LR image in (a) is of 

size (48×74). As can be seen from (b-e), the proposed algorithm smooths the image 

background while preserving sharp edges. Therefore, in practical applications where 

quality of image is the priority, proposed algorithm could be a better choice than the other 

methods. 

 

5. Conclusion 

In this paper, a novel algorithm for multi-frame super-resolution using adaptive patch 

matching technique which uses photometrical similarity and geometrical distance to 

determine the matching patch is proposed to reconstruct the high resolution image. Also, 

by incorporating the ideas of compressive sensing theory and the greedy reconstruction 

algorithm, the proposed algorithm has advantages over other methods since it can reserve 

the edges in the image and yields better results. Experimental results show that the 

proposed method leads to a better preservation in both flat regions and edges of the HR 

image.  

Figure 3. An Example of HR Reconstruction from Different Super 
Resolution Methods. Results (3x Resolution Increase) by (a) Original Low 

Resolution Image Interpolated by Nearest Neighbor Interpolation, (b) 
Robust Method, (c) Total Varation Reconstruction, (d) Normalized 

Convolution SR, (e) Proposed Method 
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