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Abstract 

The proposed RAITIIFNNC system is comprised of a interval type II fuzzy neural 

network identifier and a robust controller. The identifier is utilized for online estimation 

of the compound uncertainties. The robust controller is used to attenuate the effects of the 

approximation error so that the perfect tracking and synchronization of chaotic systems 

are achieved. All the parameter learning algorithms are derived based on Lyapunov 

stability theorem to ensure network convergence as well as stable synchronization 

performance. From the simulation example, to synchronize two Lorenz chaotic systems, it 

has been shown that the effectiveness of the proposed method has been verified. 
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1. Introduction 

Since the study of chaos synchronization by Pecora and Carroll [1], this topic has 

received increasing attention [2]. Chaos synchronization can be applied to many areas 

such as secure communication, chemical reactions, and biological systems and so on. 

However, it is difficult to establish an appropriate mathematical model for the design of a 

model-based synchronization system. Thus, some adaptive control methods are proposed 

for chaos synchronization. Fuzzy control methodologies have emerged in recent years as 

promising ways to approach nonlinear control problems. Fuzzy control, in particular, has 

an impact in the control community, because it can provide a simple approach to the 

control of plants that are complex, uncertain, ill-defined, and have available heuristic 

knowledge from domain experts for their controllers design [3-5]. However, neural 

network adaptive control algorithms have attracted attention due to their inherently 

parallel and highly redundant processing architecture that makes it possible to develop 

parallel weight update laws. Consequently, the use of the NNs for system identification 

and control of complex highly uncertain dynamical systems has become an active area of 

research [6-8]. 

The FNN possesses the merits of the low-level learning and computational power of 

neural network and the high-level human knowledge representation from fuzzy theory. 

Recently, the FNNs are increasingly receiving attention in solving the control problems 

[9-13].  

In general, Type-1 Fuzzy Logic Systems (FLSs) are unable to handle rule uncertainties 

directly, when the information that is used to construct the rules in a FLS is uncertain. On 

the other hand, type-2 FLSs involved in this paper whose antecedent or consequent 

membership functions are type-2 fuzzy sets can handle rule uncertainties. A type-2 FLS 

is characterized by IF–THEN rules, but its antecedent or consequent sets are type-2. 

Hence, type-2 FLSs can be used when the circumstances are too uncertain to determine 
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exact membership grades such as when training data are corrupted by noise. So the type-

2 fuzzy neural network has been successfully studied in some control territory [14-18]. 

This paper addresses the design and analysis of an intelligent control system for the 

synchronization of a class of chaotic systems with parameter uncertainty. We solve the 

problem of adaptive synchronization under the standing assumption that the state of the 

master system that generates the reference trajectories is known, however, no other 

knowledge of the master system is required. We also assume that the model of the slave 

system is known but not the exact dynamics. In order to deal with the uncertainties of 

chaotic systems, a robust adaptive interval type II fuzzy neural network control 

(RAITIIFNC) system is investigated to achieve the perfect tracking and synchronization 

of the chaotic systems. The merits of this RAITIIFNC scheme are that not only the stable 

tracking performance can be guaranteed but also that appropriate network parameters are 

found to achieve favorable approximation. The rest of this paper is organized as follows. 

Section 2 gives the problem formulation for nonlinear chaos synchronization. Section 3 

presents an interval type II fuzzy neural network. Section 4 develops the RAITIIFNC 

system and proves its stability by using Lyapunov’s direct method. The simulation results 

are given in Section 5. 

 

2. Problem Formulation 

Consider the uncertain chaotic system in the form of 

)()()( tdXfXAAX
xx


                                                                                         (1) 

Where 
n

n
RxxxX  ],,,[

21
 is the n-dimensional state vector of the system, 

nn
RA


  is the a constant matrix, 

n
Rxf )(  is an unknown smooth nonlinear vector 

function, 
nn

x
RA


 is the unknown random-varying term, and 

n

x
Rtd )(  is the 

external disturbance with unknown upper bound term. In this paper, it is assumed that 

system (1) exhibits chaotic dynamics. The response system is: 

utdYfYAAY
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Where 
n

RY   represents an n-dimensional state vector of the system, 
n

Ru  represents the control input, and generally  

)()();()( tdtdtAtA
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                                                                                              (3) 

The control objective is to force the state vector X  to follow the desired trajectory Y . 

Let us define the tracking error as XYReeee
nT

n
 ],,[

21
 . If the tracking error 

vector  trends to zero as t tends to infinity, then the chaotic systems (1) and (2) are 

synchronous. The dynamical expression of the tracking error that can be derived by 

subtracting (2) from (1) as 

utdXftAtdYfYtAAee
xxyy

 )()()()()()(
                                   (4) 

For further development, let us define the compound uncertainty as: 

)()()()()()()( tdXftAtdYfYtAZD
xxyy


                                            (5) 

Where 
12

21
],,,[],[




nT

r

T
RzzzYXZ  . Then Eq. (4) can be rewritten as: 

uZDAee  )(
                                                                                                                     (6) 
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From the viewpoint of control theory, the synchronization between systems (1) and (2) 

is equivalent to the asymptotical stability of the error system (4) at e=0. Hence, an  ideal 

controller can be designed as: 

)( ZDKeu 
                                                                                                                           (7) 

where K is a feedback matrix to be determined so that the eigen values of the matrix 

A+K lie strictly in the open left half of the complex plane. However, the compound 

uncertainty D(Z) is unknown for the random-varying parameters and external 

disturbance, the ideal controller (7) cannot be precisely obtained. Alternatively, a robust 

controller with the ability to online identify the unknown uncertainties can resolve the 

mentioned problem. Therefore, this paper will propose SAFNC system with adaptive 

algorithm to make the chaotic systems (1) and (2) synchronous despite the existence of 

the uncertainties. 

 

3. Structure Learning Algorithm of ITIIFNN 

The structure of ITIIFNN [16-17] is depicted in Figure 1; each rule in ITIIFNN is the 

first Takagi-Sugeno-Kang (TSK) type. The detailed mathematical functions of each layer 

are introduced as follows: 

Layer 1 (Input layer): This layer defines the input variables which first enter the 

ITIIFNN. 

Layer 2 (Membership layer): In this layer, each node performs an interval type-II 

fuzzy MF. The FOU of this MF can be represented as an interval bound by lower MF 
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Where ],[
j

i

j

i

j

i
   and 

j

i
  are, respectively, the mean and the standard deviation of 

the Gaussian MF of the jth partition for the ith input variable 
i

x . That is, the output of 

each node can be represented as an interval ],[
j

i

j

i
 . 

Layer 3 (Rule layer): Each node in this layer corresponds to one fuzzy rule and 

performs a fuzzy meet operation to obtain a firing strength i
F which is computed as 

follows: 

],[],[

1 1
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Layer 4 (Type-reduction layer): This layer is used to implement the type-reduction, 

and center-of-sets type-reduction method is adopted here. The centroid of type-II fuzzy 

set which can be represented by ],[
j

r

j

l
 which represents link weights should be set first 
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before the computation of
rl

yy , . The outputs 
rl

yy , can be computed using Kamik-

Mendel iterative algorithms as: 
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Layer 5 (Output layer): Each output node corresponds to one output variable and act as 

a defuzzifier. Hence, the defuzzified output shown as: 
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Remark: Initially, there are no fuzzy rules in ITIIFNN. All of the rules are generated 

online by the structure learning that not only helps automate rule generation, but also 

locates good initial rule positions for subsequent parameter learning. Furthermore, the 

structure and parameter adjustment are performed simultaneously. 
 

4. Design of the RAITIIFNN Identifier and Robust Controller 

Since the compound uncertainty D(Z) is unknown, in the following, a RAITIIFNN 

identifier is constructed to estimate the dynamics of this uncertain term D(Z). The inputs 

of the RAITIIFNN are the elements in the vector Z, and the output of the RAITIIFNN is 

the vector D(Z). For the ease of notation, define adjustable parameter vectors W, m, and ó 

collecting all parameters of the SOFNN as 
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Where njwwww
TN

jjjj
,,2,1,],,,[

21
  .Then, the outputs of the RAITIIFNN can 

be rewritten in the following vector form as: 
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Based on the powerful approximation ability, there exists an optimal RAITIIFNN to 

learn the compound uncertainty D(Z) in Eq. (5) such that 
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For chaotic attractors are bounded in the phase space. The approximation error  )( Z is 

bounded, then, Design the RAITIIFNN identifier as 

)ˆ,ˆ,ˆ(ˆˆ)ˆ,ˆ,ˆ,(ˆ  WgWWZD
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Where 


 ,,W are the optimal parameters of  ,,W , in the RAITIIFNN, 

respectively; and  ˆ,ˆ,Ŵ are the estimates of the optimal parameters. For ease of 
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where )
~

,
~

,( ZO  is the high order residual term. Accordingly, using Eqs.(20)and 

(18), the approximation error vector )(ˆ Z can be written as: 
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Assume that the bound of the overall approximation error )( Zd
o

is given, i.e., 
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dZd )(  . Now, the NFN-based controller is designed as: 
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The parameter learning occurs concurrently with the structure-learning. For each piece 
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Where 
w

  is the learning-rate parameter for the weighting interval factors. Since the 

type-reduction nodes and the rule nodes do the type-reduction and product operation, 

respectively, only e error signals should be propagated in these two layers. In the member 

layer, the update laws for parameters in input MFs are derived as: 
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Lemma 1 

Let x and y be the real vectors of appropriate dimensions. if ‖x‖≥‖y‖, we have 

0)(  xyx
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Proof 

Since 
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and using ‖x‖≥‖y‖, we get 
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This completes the proof. 

Now we design the robust controller as: 
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Then de synthesis controller as: 
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Theorem 1 

Consider the uncertain chaotic system(1)and the expectation chaotic system(2), if the 

NFN-based controller is designed as (27) and the adaptation laws of the NFN parameters 

are designed as (23), (24) and (25), then all NFN parameters and the tracking error  are 

uniformly ultimately bounded. 
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Where P is chosen to be a real symmetric positive matrix satisfying 
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,and it is the input covariance matrix, which is a positive define 

symmetric matrix and has the following property: 
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The time derivative of the Lyapunov function V with respect to time is given by  
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Define a set as: 
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by Barbalat’s Lemma, the stability of the learning scheme is guaranteed, and 

0)(ˆlim,0)(lim 


tWte
ITIIFNNtt

. If )()(
oe

dte  ,it is possible 

that 0)(  tV ,which implies that the weight vector )(ˆ tW
ITIIFNN

may drift to infinity. 

Thus, to ensure the robustness of the learning algorithm, a dead zone can be introduced in 

the parameter equation as follows: 
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5. Computer Simulation 

In this section, we apply the proposed RAITIIFNNC system to synchronize between 

systems (1) and (2). To demonstrate the effectiveness of the proposed method, we choose 

the well-known Lorenz chaotic system as an example [12]. Consider the uncertain Lorenz 

chaotic system with random-variable parameters in the form of 
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and the controlled response system of system (33) is: 
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where ]1.0,1.0[)(],1.0,1.0[)(  tradtrad
yixi

denote the random-varying 

term, )(),( tdtd
yixi

denote the external Gaussian white noise, 
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u denotes the control 

inputs, and i=1,2,3. In general, )()( tradtrad
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objective is to drive the system state 
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  to follow the system state 

T
xxxX ],,[

321
  The RAITIIFNNC used here for approximating D(Z), and its inputs 
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are the elements in the vector Z=[x1, x2, x3, y1, y2, y3]
T
. For the optimal control scheme, 

the weighting matrices are chosen as follows: 
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The control law is shown in Eq. (27), and the update laws of network parameters are 

presented in Eqs. (22), (23) (24) and (25). The parameter values used in the adaptive 

control system are chosen as: 01.0,01.0,01.0 



w

and 1.0
o

d . As the 

RAITIIFNN starts to learn, the means of Gaussian membership functions are selected as 

the initial system states, and the output weights are randomly chosen in [−1,1]. The initial 

states of systems (33) and (34) are randomly selected as X=[6,−1,8] and Y=[−2,4,−5], 

respectively. The simulation results are shown in Figure 2, Figure 3. From Figure 2, the 

proposed controller can make the tracking errors converge to zeros as time goes; it means 

that the trajectories of the controlled chaotic system achieve synchronization 
 

6. Conclusion 

Thanks to the rule uncertainties and the training data corrupted by noise, the 

circumstances are too uncertain to determine exact membership grades. A new stable 

robust adaptive interval type II fuzzy neural controller in which linguistic fuzzy control 

rules can be directly incorporated into the controller is developed to synchronize two 

different chaotic systems. The RAITIIFNN control system consists of the type II fuzzy 

neural network identifier and the robust controller to enhance the tracking performance in 

spite of the system uncertainties. All adaptive learning laws in the RAITIIFNN control 

system are derived in the sense the Lyapunov stability theorem to ensure the convergence 

and stability of the control system. Finally, this method has been applied to control the 

Lorenz chaotic system with random-variable parameters. The computer simulation results 

show that the RAITIIFNNC can perform successful control and achieve desired 

performance. 
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