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Abstract 

Kinect is a motion-sensing device which was originally developed for the Xbox 360 

gaming console. This recently developed low-cost sensor detects the body position, 

motion, and voice; it consists of a microphone, a RGB camera, and a depth sensor. Kinect 

is PC-centric sensor which allows developers to develop real-life applications with 

human gestures and body motions. This paper presents an approach to interpret the 

indoor room objects in order to match the objects features in depth images captured from 

an RGBD video database. The dataset consists of color and depth image pairs gathered in 

real-time indoor home environment. The objects features are matched in depth image 

pairs with the feature association method to detect stable features at different time 

instances.  
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1. Introduction 

Recently, there has been great interest in 3-D imaging applications with advancement 

of low-cost Kinect sensor. Kinect has brought about a revolution with hands-free gaming 

and allow developers to build diverse applications in the field of robotics, imaging, 

education, security, and so on. Kinect offers a particularly attractive set of capabilities, 

and can simultaneously captures 3D depth images and 2D color images. Figure 1 shows 

two scenes typical of the captured dataset: first row shows the images extracted from 

color video captured with RGB camera. Second row shows the depth images captured 

with Kinect depth camera. 

 

 

Figure 1. Two Scenes Typical of the Captured Dataset with Kinect (a) Color 
Frame #18 (b) Color Frame #81 (c) Color Frame #321 with One Occluded 

Object (d) Depth Frame #18 (e) Depth Frame #81 (f) Depth Frame #321 with 
One Occluded Object 
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RGB-D depth sensing device mainly consists of RGB information along with depth 

information. Originally, Kinect is developed to recognize human gesture but its low cost 

and depth features made it available to develop 3D object reconstruction and other depth 

data based applications. Microsoft (MS) released the Kinect software developer’s kit 

(SDK) to allow developer to develop various real time applications by using depth data, 

voice information and gesture data. The SDK supports color stream, depth stream, and 

skeleton stream to recognize voice and to track object and human motion.  In addition, 3D 

objects can be tracked with the Kinect SDK which has the special depth sensing feature to 

recognize depth of object and can estimate the distance of depth pixels. Kinect has 

outstanding capability to quickly access RGB-D data in real-time, thus can be very 

advantageous for 3D object reconstruction and tracking. A wide range of 3D 

reconstruction using depth image and tracking algorithms has been proposed recently but 

less research is done on tracking with depth sensing capability of Kinect. 

This paper presented a novel approach to detect the object features in depth images 

with the improved feature matching method. The color and depth video datasets are 

captured with the color and depth cameras of Kinect. The different depth image pairs of 

the depth video are passed to the keypoint calculation step to obtain the keypoints with 

invariant viewpoints which is further passed to the neural network. The matching in 

different depth images are performed with feature reduction using neural network. 

This paper is organized as follows: Section 2 introduces some of the research related to 

Kinect and Section 3 given an overview of Kinect components. Section 4 describes the 

proposed method for matching the features in depth images. Section 5 presents the 

implementation of the proposed technique and comparison with recent research. Finally, 

conclusions are drawn in Section 6. 

 

2. Review of Related Work 

Numerous previous efforts have been detailed in the literature in collecting the object 

information and 3D reconstruction of indoor environments based on vision. The 3D 

model of an object can be reconstructed using depth image registration. The two main 

types of 3D reconstruction with the depth images consist of patch-based and voxel-based 

3D reconstruction of an object. The patch based reconstruction method is based on the 

distance metric using depth data while the image based approaches uses object visual 

features. The iterative closest point (ICP) algorithm detailed in [1-2] is the most common 

technique to register the depth images. Other variants of the ICP techniques are proposed 

in the literature with the objective of speeding the convergence rate. In [2], the authors 

proposed an approach in which distance metric is based on correspondences between 

surface points and nearby tangent planes on the other surface. The surface normal 

measurements are available which minimizes the point-to-tangent collection directly and 

does not require point-to-point matches [3-1]. 

The point correspondences require high computation to obtain the closest point in 

iterative closest point (ICP) algorithm. Thus, Blais [4] proposed a speed up projective 

algorithm for the data association. In the field of augmented reality and robotics, a wide 

range of algorithms has been proposed on simultaneous localization and mapping 

(SLAM). A patch based 3D reconstruction algorithm has been proposed in [5] for the 

RGB-D SLAM to map the large indoor environment. This algorithm reconstructs the 3D 

model using visual and shape information gathered with RGB-D camera. The scale 

invariant feature transform (SIFT) features are used as the initial point pairs for ICP 

algorithm. The aim of RGB-D is to build 3D models of objects with shape and appearance 

information; in addition also perform the task of alignment and registration. 

In [6], the researchers used the Kinect depth information in indoor environments to 

detect the people by using depth data. This method generates the output region with the 

detected people and it uses 2-D chamfer distance matching to scan the overall image data. 
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The resulted output region is then passed to the region growing algorithm to obtain the 

full contour of the detected human body.  Rougier et. al., [7] and Zhang et. al., [8] 

proposed the algorithm for person segmentation and localization with the depth images. 

These methods use the background subtraction algorithm where depth background image 

is obtained from a number of training of background images. 

A large-scale RGB-D object datasets and their annotation software have been made 

publicly available to the research community by the authors of [9-10]. In [9], the dataset 

consists of multiple views of a set of objects and the objects are organized into a 

hierarchical category structure. The dataset in [10] consists of registered RGBD images, 

detailed object labels, and annotated physical relations between objects in the scene which 

can be used to design indoor scene analysis applications. The authors proposed an 

integrated approach in [11] with the RGB and depth information of an object at the 

category and instance levels.  

In [5], a sparse feature matching approach is presented for both appearance and shape 

matching via an ICP algorithm. A graph pose optimization is incorporated by using RGB 

feature correspondences. Other algorithms have been presented in [12-13] to improve the 

performance of this algorithm.  The scale invariant feature transform (SIFT) [14] step for 

feature extraction and description in [5] is implemented with FAST feature descriptor [15] 

and SURF descriptor [16] to reduce the computation complexity of the algorithms.  

 

3. Components of Kinect Sensor 

The Kinect sensor bar contains depth sensor, color camera, a special infrared light 

source, and four microphones [14-15]. The major components of the Kinect sensor are 

shown in Figure 2. A tilt motor working as the base enables the device to be tilted in 

upward and downward direction. The list of Kinect sensor components are given below: 

 

 

Figure 2. Components of Kinect sensor 

3.1. Color Camera 

The color camera has the ability to capture and stream the color video data. The 

Kinect camera can capture color stream at frame rate of 30 frames per second (FPS) 

and can detect the red, blue, and green colors. The video stream consists of various 

image frames and has a resolution of 640 x 480 pixels. The field of view (FOV)  for 

the color camera ranges from 43 degrees vertical by 57 degrees horizontal. 
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3.2. Infrared (IR) Emitter and IR Depth Sensor 

Kinect has the ability to provide the 3D information of a scene or an object. The depth 

map of the environment in front of the camera can be obtained directly with the Kinect 

device. The processing of the depth signals is done entirely inside the sensor device and 

the generated depth map is later transmitted similar to the color image. The only 

difference is that the pixel of each depth image contains the distance information; the 

sensor transmits the distance values for each depth pixel. Figure 3 shows the depth 

sensing process to obtain the distance information of any scene or an object. 

The Kinect device contains two depth sensors: IR emitter and IR depth sensor. The IR 

emitter depth sensor is mounted as a camera on Kinect but in actual it is an IR projector 

which emits the infrared light on the objects in a "random dot pattern". The infrared light 

is projected on the objects in the dot pattern which is captured by IR depth sensor. IR 

depth sensor capture depth information from the dotted light reflected off different 

objects. This invisible dot information is used to calculate the distance between the sensor 

and the object from where the IR dot was read and is transformed into depth data. 

 

 

Figure 3. Kinect Depth Sensing Process to Obtain the Distance Information 
with Infrared (IR) Emitter and IR Depth Sensor 

3.2.1. Depth Data Processing: The depth stream contains a number of depth frames 

where the pixels in each frame contain the distance information in millimeters. The 

three resolutions supported by the depth stream are 640 x 480 pixels, 320 x 240 

pixels, and 80 x 60 pixels, and the depth data contains the distance information to 

the nearest object from the camera plane at a particular (x, y) coordinate. The depth 

sensor's field of view range remains the same as the field of view of color camera. 

The Kinect sensor uses an IR emitter and an IR depth sensor that is a monochrome 

CMOS (Complimentary Metal-Oxide- Semiconductor) sensor to capture the 3D 

information of an object. The steps of depth data processing are detailed in Figure 4. 
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Figure 4. Steps of the Kinect Depth Data Processing with IR Emitter and IR 
Depth Sensor 

The flow diagram steps are explained as follows: (1) The PrimeSense chip sends 

a signal to the IR emitter to turn on the infrared light to capture the depth data. (2) 

In addition, the chip also sends a signal to the IR depth sensor to initialize the depth 

sensor. (3) The IR emitter starts emitting an electromagnetic radiation to the objects 

in front of the camera. The sensor's IR lights are invisible because the wavelengths 

of the radiations are longer than the wavelength of the visible light (4) The IR depth 

sensor capture depth information and obtain the distance between the sensor and the 

object from where the IR dot was read. (5) The depth sensor returns the coded depth 

light to the PrimeSense chip. (6) The PrimeSense chip process the depth stream and 

form a frame by frame depth stream to create the output display data and form a 

depth image ready for the display. 

 

3.3. Tilt Motor 

The tilt motor connects the base and body of the sensor with a small motor which 

has a vertical field of view that ranges from -27° to +27°. The Kinect sensor can be 

shifted upwards or downwards by 27 degrees, thus increasing the range of view to 

capture the color and depth data. The motor can be controlled to adjust the elevation 

angle of the sensor in order to get the best view of the scene or an object.  

 

3.4. Microphone Array and LED 

The Kinect uses the four microphones in the sensor bar which are arranged in a linear 

fashion to locate sound. It has the ability to detect the audio sound and can displays the 

angle from the sensor to any sound source. The Kinect bidirectional microphone has the 

advantage of capturing and recognizing the audio beam effectively with enhanced noise 

suppression, echo cancellation, and beam-forming technology. An LED in the Kinect 

device is used to indicate the status that the Kinect device drivers have loaded properly. It 

shows green color when the Kinect is connected to the computer and tells that device is 

ready for use to create applications. It is placed between the projector and the camera. 
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4. Depth Image Matching with the Proposed Method 

This paper presents a new depth image feature matching method in which the stable 

matched features at different time instances are optimized with the neural network. The 

kinect captured video is passed to the matching process to obtain the stable depth feature 

which is helpful in finding path for autonomous vision applications. The depth video 

consists of multiple depth images. This proposed method presents unsupervised feature 

selection and category classification of depth features of the toy objects appear in front of 

the camera with change in time. The proposed method extracts the feature points of the 

toy vehicles in the different depth images and calculates the descriptors using scale 

invariant feature transform (SIFT). The SIFT is a high dimensional feature vector; thus to 

detect the features in multiple images, it requires very high computations. This paper 

introduces a method to reduce the depth features with neural network and obtains stable 

features at different time in the depth images. 

The initial step in this proposed algorithm is to pass each depth image with the 

difference-of-Gaussian function to obtain the interest points that are invariant to scale and 

orientation. For each depth image, the SIFT replaces the images by a set of scale and 

orientation-invariant feature descriptors using gradient orientation histograms. The SIFT 

method divides the depth image into 4 × 4 sub-regions, and sums the gradient strength in 

each sub-region. SIFT uses eight directions in each sub-region to generate an eight-

dimensional vector. The local image gradients are transformed into 128 dimensional 

representations resulting into a keypoint descriptor. A SIFT descriptor is a 3-D spatial 

histogram of the image gradients and each pixel gradient is formed by the pixel location 

and the gradient orientation. These descriptor vectors are passed to proposed neuro image 

matching step to calculate the similar keypoints in different depth images. The keypoint 

vector in the depth images passed to the feature reduction step. The optimization and 

reduction of depth features is done with the winning pixels estimation in the depth images 

with the unsupervised self-organizing map (SOM). For each depth image pair, the SIFT 

descriptors and histograms of selected SIFT descriptors are reduced and matched using 

SOMs. Thus, the proposed method enables an unsupervised feature matching where there 

is no requirement for parameter setting for the number of category classification. The 

features in depth image pairs are clustered with the SOM where the distance between the 

input depth feature vector x(t) and the weight vector w(t) is computed by: 

)()()( twtxtd
kk


 where k = 1….n                                                                            (1) 

where d denotes the distance vector usually the Euclidean distance. The best matched 

neuron (bmn) is obtained by the calculation of minimum distance with the input feature 

vector and is calculated as in (2): 
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k

k
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                                                                                                       (2) 

 The output reduced depth feature vector values are mapped onto low dimension 

hexagonal gridmap. The feature matching is performed between different image pairs and 

the depth pixels in the images are represented in terms of the winning neurons in the SOM 

network. The winner neuron is obtained in the images and invariant depth pixels are 

associated in the various image pairs. The same process is performed for all the image 

pairs in the video frames of the depth video captured with the Kinect. The optimization is 

done in the step 1 in Eq. (1) in terms of computational time. If the computation in Eq. (1) 

is done only on the nonzero values; the overall computations are highly reduced. The 128 

dimension descriptor vector is passed to the Eq. (1) in order to pass for optimization and 

only the winner depth pixels are passed to the matching step. The resulted descriptor set 

consists of low dimension winning feature vector in the dataset of different depth image 

pairs. The Eq. 1 can be recomputed by following notation: 
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The computations are highly reduced by taking into consideration only the nonzero 

depth feature values. The complexity is reduced from O (N
2
 * n) to O (N

2
 * fnon zero * n) 

and computation is done over the nonzero depth image feature vectors. The running time 

is reduced to nonzero values and only 2 * xi(t) * )(tw
ki

computation is required in each 

iteration; thus the overall complexity is reduced to O (N
2 
* fnon zero * n).  

In addition, the computational overhead is further reduced in the neighborhood 

function calculation step, by considering only the first three neurons having the smallest 

distance from the input depth feature vector. The contribution of the third neuron 

neighborhood feature element is less than 1/9, which reduces the overall computation and 

thus the update neighborhood phase is decreased to O(N
2
) with a constant of six since 

three weight vector columns and its squared components need to be updated. 
 

5. Results & Discussion 

A number of experiments have been conducted to investigate the performance of the 

proposed system. In the proposed system, the stable features are detected in the depth 

images and 3D model is reconstructed with the stable object features. Figure 5 shows an 

example frame observed with the RGB-D camera and depth image along with the 3D 

model information. Table 1 show the different experimental parameters used in the 

proposed system. The results of the feature matching in the different frames at different 

time intervals are shown in Figure 6. 

 

   

Figure 5. (left) RGB Image, (Middle) Depth Information Captured by an RGB-
D Camera and (Right) 3D Model of an Object 

Table 1. Experimental Parameters Set for the Proposed System 

Parameters Values 

Data Stream Color 

 

Depth 

Resolution Color Image: 640 x 480 pixels Depth Image: 640 x 480 pixels 

components Color 

camera 

Infrared 

(IR) 

emitter 

IR 

depth 

sensor 

Tilt 

motor 

Microphone 

array 

LED 

 

LED If LED turns GREEN, the Kinect device drivers are installed 

properly 

Tilt motor

  

The motor can be tilted vertically upwards or downwards by 27 

degrees 
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Figure 6. The Results of the Feature Matching in the Different Depth Frames 
at Different Time Intervals are shown. The Results showing that the 
Proposed Method can detect the Features in the Depth Image under 

Different Viewpoint Changing Conditions. The Points and Lines in the Depth 
Images Show the Features Points that are matched in the Depth Image 

 

Figure 7. Demonstration of the 3D Model of the Objects for the Different 
Time Instances. The Colored Points in the Middle are Representatives of the 

Stable Depth Feature in Different Time Interval 

During experiments, the camera was moved to capture the depth image dataset at 

different viewpoint changes such as rotation, scaling, occlusion, etc. The performance of 

the experiments is evaluated by comparing the results with the recent techniques. As 

shown in Figure 6, the systems resulted into efficient matched and stable depth features 

with very less computations as compared to the matching with SIFT method. The 

computations on the depth images are reduced as compared to the computations on depth 

images with the SIFT method. The 3D model of the object can be reconstructed with the 

proposed method using the stable depth features. The 3D models of the objects for the 

different time instances with stable features are shown in Figure 7 with the use to colored 



International Journal of Signal Processing, Image Processing and Pattern Recognition 

Vol.8, No.12 (2015) 

 

 

Copyright ⓒ 2015 SERSC  245 

points. The effectiveness of the system is proved with the feature matching time and the 

number of feature detection. The results of the experiments are given in Table 2. 

Table 2. Results of Pixel Matching in Depth Image Pairs at Different Time 
Instances with the SIFT Method and the Proposed Method 

Depth Image Pairs Computational time 

SIFT Proposed Method 

T F T F 

Depth pair (1, 2) 0.9150 134 0.0177 131 

Depth pair (8, 9) 1.2980 95 0.0147 129 

Depth pair (19,20) 1.1606 134 0.0148 131 

Depth pair (34,35) 1.1098 134 0.0160 131 

Depth pair (85,86) 1.1670 134 0.0156 131 

Depth pair (132,133) 1.1721 134 0.0178 131 

Depth pair (146,147) 1.1773 134 0.0149 131 

Depth pair (180,181) 1.0646 0 0.0067 44 

Depth pair (207,208) 0.9994 0 0.0064 38 

Depth pair (227,228) 1.0325 82 0.0073 51 

Depth pair (247,248) 1.1592 118 0.0096 52 

Depth pair (269,270) 1.2133 118 0.0070 52 

Depth pair (293,294) 1.0957 118 0.0074 52 

Depth pair (360, 361) 1.2129 111 0.0144 125 

Depth pair (369,370) 1.2036 112 0.0121 105 

Depth pair (383,384) 1.2272 103 0.0131 110 

Depth pair (397,398) 1.2141 118 0.0075 52 

Depth pair (416,417) 1.2427 130 0.0075 36 

Depth pair (427,428) 1.2801 10 0.0064 49 

Depth pair (449,450) 1.3660 133 0.0076 59 

 

6. Conclusion 

In this paper, a feature matching technique in Kinect depth image pairs is proposed 

using Kinect captured depth videos. At first, an improved matching with feature reduction 

is proposed with self-organizing map. Next the features are optimized and compared with 

the recent matching techniques to obtain the stable depth features in the depth videos. The 

experimental results show out its good performance with higher stable matched features 

matched in fewer computations. The proposed method generates optimized matched 

features in the depth images. This method will be helpful for the design of various real-

time applications such as autonomous path finding, traffic surveillance, and simultaneous 

localization and mapping (SLAM). In the future work, the tracking of objects by using 

depth features will be implemented to develop autonomous vision based path finding 

system. 
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