
International Journal of Signal Processing, Image Processing and Pattern Recognition 

Vol.8, No.12 (2015), pp.223-236 

http://dx.doi.org/10.14257/ijsip.2015.8.12.22 

 

 

ISSN: 2005-4254 IJSIP 

Copyright ⓒ 2015 SERSC 

Hyperspectral Image Unmixing for Classification and Recognition: 

An Overview 
 

 

Mingyu Nie
1
, Zhi Liu

1*
, Hui Xu

1
, Xiaoyan Xiao

2
, Fangqi Su

1
,  

Jun Chang
1
 and Xiaomei Li

3
 

1
School of Information Science and Engineering, Shandong University 
2
Department of Nephropathy, Qilu Hospital of Shandong University 

3 
Department of oncology, the Second Hospital of Shandong University 

*liuzhi@sdu.edu.cn 

Abstract 

The limited resolution of image sensors and the complex diversity of nature, cause 

mixed pixel problems in hyperspectral technology. Such problems are common, and 

increase the complexity of hyperspectral image processing.  Hyperspectral unmixing is 

crucial for hyperspectral image classification and recognition. In unmixing, the image 

signatures are represented as a linear combination of the basic materials. Unmixing is 

the process of decomposing a mixed pixel into constituent materials, and calculating the 

corresponding fractional abundance. If pure materials (end members) are present in an 

image, unmixing can be divided into two steps, namely, end member extraction and 

abundance decomposition. On the other hand, if there is no pure material, researchers 

have devised and investigated unsupervised and semi-supervised spectral unmixing 

technology. This article presents an overview of the state-of-the-art methods of 

hyperspectral unmixing and their extensions. 

 

Keywords: hyperspectral; unmixing; end member extraction; unsupervised; NMF; 

semi-supervised 

 

1. Introduction 

Hyperspectral imaging [1] was discovered in the early 1980s. It employs an imaging 

spectrometer that can detect narrow and continuous spectra of image data, in the 

electromagnetic spectrum of ultraviolet, visible light and near-infrared and infrared areas 

(wavelength between 400 and 2400 nm). A hyperspectral image reflects the radiation and 

space information of targets. 
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Figure 1. Graphical Illustration of a Hyperspectral Image and Unmixing 

The spectrum obtained in one pixel may have mixed spectra of different materials because 

of the limited resolution of image sensors and the complex diversity of nature. Thus, 

unmixing [2] is a crucial step in hyperspectral technology that must be performed before 

material classification and recognition. Unmixing is implemented to decompose mixed 

pixel into basic components (end members), and obtain the abundance fractions.  Figure 

1 illustrates the process of unmixing. A pixel is a linear combination of basic materials, 

decomposed into material A, B, C, etc., via unmixing. 

The remainder of this paper is organized as follows. Section 2 describes the linear 

mixing mode [3] of a hyperspectral image. Section 3 introduces the traditional methods of 

end member extraction and abundance decomposition. Section 4 describes unsupervised 

spectral unmixing technology and its extensions. Section 5 introduces other trends in 

hyperspectral unmixing, semi-supervised unmixing, and contains sparse regression and its 

extensions. Section 6 presents the conclusions and future work. 

 

2. Mixing Model for Hyperspectral Image 

Hyperspectral unmixing methods can be divided into two forms, linear mixing model 

(LMM) and nonlinear mixing model (NMM) [4], according to the mixed materials and 

physical distribution space. LMM assumes that the pixels are a linear combination of end 

members and ignores the magnitude of the multiple scattering between different types of 

materials. By contrast, small mixed materials cause the input photon to have multiple 

scattering with more than one type of material, such as water and bread crumbs, and result 

in the formation of a nonlinear mixing model. A common feature of NMMs is that they all 

include a supplementary additive term to the standard LMM [5]. Compared with NMM, 

LMM has the advantages of simple modeling, definite physical meanings, and good 

scientific theory. Therefore, LMM was employed in this study. 

In LMM, a hyperspectral image can be represented as m n  matrix X , where m  

is the number of spectrum and n  is the number of pixels. Each row of X  corresponds 

to a 2D image in a wavelength, and each column of X corresponds to the spectral 

signature of a pixel. LMM is illustrated in Figure 2. The model in practical application 

can be represented as 

X A S E                           (1) 

where A is an m r  matrix that represents the signatures end-members in different 

wavelengths, r  is the number of end-members, and S is an r n  matrix that represents 
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abundances, and E represents additive noise. However, abundance is non-negative (ANC), 

and each column element has a sum of 1 (ASC). 

 

 

Figure 2. Linear Mixing Model 

With LMM, hyperspectral unmixing can be divided into two steps (Section 3): end 

member extraction and abundance decomposition. Unmixing can be performed with 

different methods depending on the different mixed degrees of materials and whether the 

hypothesis (pure pixels) is established. In the presence of pure pixels, the traditional 

methods utilized to extract end members include pixel purity index (PPI) [6], N-FINDR 

[9], and vertex component analysis (VCA) [10]. When the materials are mixed thoroughly 

and pure pixels are not present, the traditional methods of end member extraction cannot 

obtain accurate results. In this case, blind source separation must be conducted through 

independent component analysis (ICA) [20], complexity pursuit [25], non-negative matrix 

factorization (NMF) [26], and their extensions. In addition to the above methods, sparse 

regression [34] can be utilized for hyperspectral unmixing when the spectral library has 

been obtained in advance. 

 

3. Traditional Methods of End Member Extraction and Abundance 

Decomposition 
 

3.1. End Member Extraction 

When a hyperspectral image has high resolution, end members are assumed to be 

present in the image. Identifying pure signatures (contain only one material) in a 

hyperspectral image is important in hyperspectral data unmixing. PPI, N-FINDR, VCA, 

iterative error analysis (IEA) [11], and so on are the traditional methods of end member 

extraction. 

 

3.1.1. PPI: PPI, developed by Boardman et. al., [7], is a popular end member extraction 

algorithm. In PPI, a maximum noise fraction transform of the data is applied to reduce 

dimensionality. Then, a large number of random test vectors are generated through the 

data set called “skewers”. All data vectors are projected onto
j

s k e w e r , j is the serial 

number of “skewers”; if pixel r is projected to the extreme positions of
j

s k e w e r , 

  1
j

s
I r  . The PPI score of a sample vector r can then be defined as 

   
1 j

P P I sj
N r I r


                                 (2) 

Threshold value t must be defined for the PPI score. If sample vector r has 

 P P I
N r t , then r is an end member of the image. 
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Figure 3. Simple Explanation of PPI 

In PPI, a large  P P I
N r  value means high probability that r is a pure pixel. As shown 

in Figure 3, u1 and u2 are random test vectors, pixel A is projected to the extreme 

positions of u1 and u2, pixel B is projected to the extreme position of u2, and pixel C is 

projected to the extreme position of u1. As a result, A has a higher probability of being a 

pure pixel than B and C. 

PPI has several drawbacks. This algorithm is not an iterative process and thus 

complicates the calculation process. Moreover, skewers are randomly generated in PPI 

and may produce different end members. 

Chein-I Chang and Antonio Plaza developed fast iterative PPI (FIPPI) [8] to optimize 

PPI. In FIPPI, the number of end members is estimated by virtual dimensionality. 

Appropriate skewers are produced instead of using random vectors. 

 

3.1.2. N-FINDR: In 1999, Michael E. Winter proposed N-FINDR, a method in which the 

image data are considered to form a convex set in high-dimensional space. The end 

members in this method are the vertices of the convex. Two bands and their end members 

as Figure 4 to illustrate the relationships of the geometric. 

 

 

Figure 4. Simple Explanation of N-FINDR 

As shown in Figure 4, the simplex formed by end members is larger than that formed 

by other pixel combinations. The algorithm identifies the largest volume by inflating the 

simplex. A random set of pixels is selected as the end members, and the volume is defined 

as follows: E is the augmented matrix of the end members by adding a ones row, 
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Where 
i

e  is an m-dimension column vector of temporary end member i  and l  is 

the number of end-members. The volume (V) of the simplex is defined as 

1
( ) ( )

( 1) !
V E a b s E

l



                               (3) 

For each pixel in the image and each end member, the spectrum of the pixel replaces 

the temporary end member and the volume is recalculated. If it increases, the spectrum of 

the pixel replaces the temporary end member. This procedure is repeated until all pixels 

are calculated. 

End member extraction can be performed with other methods aside from the classic 

algorithms mentioned above. 

VCA finds the orthogonal vector repeatedly, projects pixels to the orthogonal vector, 

and then calculates the projection distance to extract end members. The point with the 

largest coordinate is selected as the initial end member, a unit vector that is orthogonal 

with the simplex and the initial end member is identified, all pixels are projected onto the 

unit vector, and the pixel point with the maximum projection distance is extracted as the 

end member. These steps are repeated until all end members are detected by circulation. 

IEA repeatedly employs linear mixed solution with constraints and selects the end 

members with the minimum error after linear mixed solution. 

Sequential maximum angle convex cone [12] changes the orthogonal projection of 

VCA to oblique projection. Extraction is conducted through iteration. Each iteration 

extracts one end member, calculates the coefficient of the end member in all pixels, and 

adjusts the proportion coefficient of previously extracted end members in all pixels. At the 

same time, projection transformation is implemented aside from the influence of the end 

member from each pixel. The iteration is continued until all end members are extracted. 

End member extraction can be performed with other methods aside from those 

mentioned above. Such methods include simplex growing algorithm [13], alternating 

volume maximization, and successive volume maximization [14]. 

 

3.2. Abundance Decomposition 

Abundance is calculated after obtaining the end members of the image. The most 

commonly used methods are least squares (LS) [15], projection pursuit, and orthogonal 

subspace projection. 

LS minimizes the sum of the squares of the error to identify the best match function. 

Unknown data can be easily obtained by LS, and the sum of the squares of the error 

between actual and calculated data is at the minimum. LS can be divided into four forms 

based on the degree of abundance constraints: unconstrained least squares, sum-to-one 

constrained least squares, no negatively constrained least squares, and fully constrained 

least squares [15]. 

The basic idea of projection pursuit [16] is to project high-dimensional data to low 

dimensions, with a projection index (PI) as a measure to determine the projection that can 

reflect the structure or characteristic of the original high-dimensional data. The projection 

data are then analyzed to determine the characteristics of the original data. Variance or 

information divergence serves as the PI. 

Other methods of abundance decomposition of mixed pixels include orthogonal 

subspace projection [17], maximum likelihood [18], spectral signature matching [19], 

spectral angle mapper, and simplex volume. 
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4. Unsupervised Spectral Unmixing 

Section 3 assumes that pure pixels (contain only one end member) exist in the image. 

However, thorough hyperspectral mixing may result in the absence of pure pixels. 

Traditional methods of end member extraction cannot obtain accurate results. In this case, 

unmixing is considered a blind source separation (BBS) [20] problem called unsupervised 

spectral unmixing. 

Unsupervised spectral unmixing technology based on the information of end members 

has not been explored yet. Unsupervised signal processing method is employed to obtain 

end members and abundance according to the spectral model of mixed pixels and end 

member information, such as constraint conditions. Unsupervised spectral unmixing has 

become a research hotspot in recent years because it can overcome the limitations of the 

traditional method and provide a new train for hyperspectral unmixing. The most common 

methods of unsupervised spectral unmixing include ICA, complexity pursuit, and NMF. 

The following sections provide a brief introduction to ICA and complexity pursuit as well 

as a detailed introduction to NMF and its variants. 

 

4.1. Hyperspectral Unmixing based on ICA 

ICA, which was introduced by Comon, approximates the mixed sources by assuming 

that the sources are statistically independent of one another. Observation 

signal X establishes the objective function in accordance with the principle of statistical 

independence. It is decomposed into several independent components through an 

optimization algorithm. In Formula (4), observation signal X  is known, and mixed 

matrix A  and sources S  are unknown. The hypothesis that sources S  are 

independent and separate as much as possible is adopted. 

X A S  .                           (4) 

The results of separation are independent of one another. Linear transformation matrix 

W  is obtained, and X  is linearly transformed. Y  is an estimate of S  as shown 

below. 

Y W X W A S     .                     (5) 

ICA involves different estimation methods of obtaining Y  and transformation matrix 

W . These methods include maximum of non-Gaussian [21], minimum of mutual 

information [22], and maximum likelihood function estimation [23]. Different estimation 

methods have different objective functions. 

In hyperspectral unmixing, spectrum abundance is the source signal. End member 

extraction is broken down into three steps: preprocessing, ICA, and post-processing [24]. 

However, the abundance of the end members has sum-to-one constraint. Thus, the 

distribution does not satisfy the premise of independence and thus reduces the solution 

mixing precision of ICA. 

 

4.2. Spectral and Spatial Complexity for Hyperspectral Unmixing 

In ICA, the spectrum abundances are assumed to be independent and stationary. 

However, this assumption does not conform to the actual situation. A previous study 

proposed a complexity-based BSS algorithm [25]. Compared with ICA, the 

complexity-based BSS algorithm reduces the complexity of the extracted signal as much 

as possible. Spatial complexity accounts for the spatial autocorrelation of each abundance, 

whereas spectrum complexity accounts for spectral smoothness. Spatial complexity 

combined with spectrum complexity based on blind source separation is called SSCBSS. 

In SSCBSS, complexity can be formulated by predictability. If the value of a signal is 

easily predicted by the previous values of signals, the complexity of the signal is low. 
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Large predictability corresponds to low complexity. The definition of predictability for 

extracted signal z is 

2

1

2

1

( )
ln

( )

n

ii

C P n

i ii

z z
F

z z













,                      (6) 

1
1

(1 )i
i i

z z z 


   .                 (7) 

where z  is the mean value of z  , iz  is the short-term moving average to predict 

i
z , and   is the predictive rate. Maximizing 

C P
F  is the objective function. In SSCBSS, 

spatial complexity based on Markov random field (MRF) is combined with spectrum 

complexity to constitute the objective function. 

 

4.3. NMF and its Extensions 

Aside from the abovementioned methods of unmixing based on BSS, NMF and its 

extensions have also been studied recently. NMF, which was proposed by Lee and Seung, 

is a multiplicative update algorithm. It is often applied to solve the following problem. 

Given an m n  non-negative matrix V , the purpose is to find two non-negative 

matrices W  and H , such that 

V W H  .                             (8) 

In hyperspectral unmixing, V  represents a set of m-dimensional vectors; each 2D 

image corresponds to a wavelength as a row of V , and each column of V  corresponds 

to the spectral signature of a pixel [27]. V  is approximately factorized into an m r  

matrix W  and an r n  matrix H , where r  is the number of end members in the 

hyperspectral image,  W  represents the signatures of end members at different 

wavelengths, and H  represents the abundances. 

To solve the matrix decomposition indicated above, the Euclidean distance between 

V  and W H  is calculated to structure the cost function. 

22

( ( ) )
i j i ji j

V W H V W H   ,    such that , 0W H  .        (9) 

In this cost function, a small Euclidean distance means a good approximate effect. To 

solve the problem above, the following multiplicative update rules are implemented. 

( )

( )

T

T

W V
H H

W W H

 

   

 

 ,   
( )

( )

T

i

i i T

i

V H
W W

W H H



 



 . 

However, NMF has several drawbacks. NMF is an NP-hard nonlinear optimization 

problem with many local minimum values. The optimal solution is generally non-unique, 

and only some local minima are identified. Many algorithms based on NMF, such as 

MVC-NMF [28], PSNMFSC [29], and NMU [31], have been proposed to optimize NMF. 

 

4.3.1. Minimum Volume Constrained Non-Negative Matrix Factorization 

(MVC–NMF): Considering the drawbacks of NMF, Miao and Qi presented a novel 

method called MVC-NMF to optimize the NMF algorithm. In this method, the constraints 

of spectral data are non-negative, and the simplex volume composed of end members is 

the minimum in all possible simplexes that surround the image data. Thus, the cost 

function becomes a constrained optimization problem as follows: 
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minimize 
21

( , ) ( )
2

f W H V W H J V   , 

subject to 0 0 1 1
T T

c N
W H H   .                (10) 

where ( )J V  is the simplex volume determined by the estimated end members. 

Parameter   is utilized to control the tradeoff of the volume constraint. 

 

4.3.2. PSNMFSC and 
1 2

L  Sparsity Constrained Non-Negative Matrix Factorization: 

To achieve better estimates, Sen Jia and Yuntao Qian presented constrained non-negative 

matrix factorization for hyperspectral unmixing in 2009. They added two features of 

hyperspectral data, namely, the piecewise smoothness of spectral data and the sparseness 

of abundances, to NMF. 

The smoothness constraint can be described by discontinuity adaptive MRF model, 

which can be expressed as 

2

( ) 1

x

g x e




   .                          (11) 

Examination of any row w of end member matrix W and its neighborhood  
N

w  

shows that the function ( )
N

g w w  represents the piecewise smoothness of end member 

w. Likewise, the piecewise smoothness of abundances can be calculated by ( )
N

g h h , 

where h is one column of H. Then, the objective function can be expressed as 

21
( , ) ( ) ( )

2
N N

D W H V W H g h h g w w           .       (12) 

By adding sparseness constraint to the abundances and NMF with sparseness 

constraints (NMFSC), the sparseness criteria can be calculated as 

2
( )

( )

1

i i
n x x

s p a r s e n e s s x

n






 
.                (13) 

where n is the dimensionality of x. 

In addition to PSNMFSC,   
1 2

L  sparsity-constrained NMF was established by Sen 

Jia and Yuntao Qian in 2011 by modifying NMF and incorporating the  
1 2

L  sparsity 

constraint to NMF [30]. The researchers analyzed 
q

L (0<q<1) regularizer and found that 

is a better choice. 

 

4.3.3. NMU: Non-negative matrix factorization based on underapproximations (NMU) 

[32] is another technique based on NMF. NMU allows for unmixing in a recursive 

manner, such as PCA, but preserves non-negativity, such as NMF. Sparse NMU adds a 

sparse constraint of the abundance matrix. Thus, unmixing with sparse NMU [33] is more 

efficient than that with NMU. 
In sparse NMU, NMU is solved at each step of the recursion as 

2

0 , 0

m in ,
T T

w h

V w h su c h th a t w h V
 

  .              (14) 

In the formula (14), w represents the signatures of the first extracted end member at 

different wavelengths while h represents its abundances in the image. Non-negative 
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residual matrix 0
T

R V w h   is obtained, and in R, the signatures of the first 

extracted end member are identically zero. Then, the same procedure can be applied to 

R and extract the second end member. The recursion will stop until all end members be 

extracted. 

The sparse constraint is then added into the NMU model. The abundance matrix is 

sparse, each end member is typically present in a relatively small number of pixels, and 

each pixel contains only a small number of materials. Thus, h  should be sparse. The 

recursion can be changed as 

2

00 , 0

m in , .
T T

w h

V w h h su c h th a t w h V 
 

                          (15) 

To obtain approximate solutions to the problem, Lagrangian dual variable   is 

introduced. The Lagrangian dual function is expressed as 

2

00 , 0

( ) m in 2 ,
T T

w h

L V w h h V w h  
 

         .         (16) 

The Lagrangian dual function is a non-smooth convex optimization problem that can 

be solved using the sub-gradient scheme. Then, w  and h  can be update as: 

2

2

0 , 1 1
a rg m in ( )

T

h h
F

h V w h h 
 

     ,            (17) 

2

0
arg m in ( )

T

w
F

w V w h


    .            (18) 

Our experimental result contains real hyperspectral data set. The HYDICE Urban 

hyperspectral image contains 210 spectral bands, and the data have a dimension of 

307×307×210.The data contain six types of materials, namely, road, dirt, trees, roofs, 

grass, and metal.  Figure 5 presents the Urban Dataset and the materials’ reflectance in 

different bands from [32]. The result in Figure 6 is obtained after applying sparse NMU to 

the dataset. 

 

 

Figure 5. Data set and materials’ Reflectance in Different Bands[32] 
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Figure 6. Result-based NMU for Hyperspectral Unmixing 

5. Semi-Supervised Spectral Unmixing 

Semi-supervised spectral unmixing [34-35] is different from unsupervised, unmixed 

amounts to identify the optimal subset from a large spectral library collected on the 

ground by a field spectral radiometer; the process is called sparse unmixing. This method 

is called semi-supervised spectral unmixing technology because the spectral library is 

assumed to be known priori. Sparse unmixing avoids two conventional limitations of the 

aforementioned classic unmixing approaches: the absence of pure pixels in the image data 

and the difficult task of estimating the number of end members. 

 

 

Figure 7. Graphical Illustration of the Performance of the Proposed 
Collaborative Regularizer 

In Figure 7, 
1 2

[ ... ]
m

A a a a  represents a spectral library with m spectral 

materials. Sparse linear regression can be implemented to determine the optimal subset. 

The spectral abundances can be obtained by minimizing an objective function that often 

includes a quadratic data term and 
1

l  norm sparsity. The fractional abundances of the 

matrix in orange color correspond to the end members (called active members) in A with 

a large probability in the image. 

The objective function is defined as 

2

1
m in

m k

F k qX

A S X S


   .                (19) 

where 
F

X is the Frobenius norm, k
S  denotes the k-th row of S , and q  

represents the 
q

l norm of 
k

S . Equation (19) is composed of two parts. The first part 

measures the error of unmixing, and the second part measures the sparsity of the 

fractional abundances.   is the relative weight of the sparsity. The ANC and ASC 
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constraints of abundance are usually applied to the fractional abundances to optimize the 

algorithm.  

To obtain the optimal value of the equation, sparse unmixing is often employed via 

variable splitting-augmented Lagrangian (SUnSAL). The equation then becomes 

2

2 1 1

1
m in{ } ,

2

m k

kX

A S X S


     . .s t  0,1 1
k T k

S S  .        (20) 

However, the actual spectral library contains many similar signatures. Similar 

signatures have high mutual coherence, which reduces the level of unmixing via sparse 

regression. Several suitable regularization terms are applied to the unmixed solution to 

address the limitation of mutual coherence. 

Iordache et. al., proposed a total variation spatial regularizer [37] was applied to sparse 

unmixing, which represents the spatial contextual information of the image data. The 

study presented a new algorithm called SUnSAL-TV. Iordache et. al., proposed modified 

SUnSAL and introduced CLSUnSAL [38]. The article opined that only a small number of 

end members constitute the image by a linear combination in unmixing. At this point, the 

pixels share the same active set of end members. Hence, CLSUnSAL enforces joint 

sparsity among all pixels, whereas SUnSAL employs pixel-wise independent regressions. 

Iordache et. al., proposed introduced a novel algorithm called multiple signal 

classification and collaborative sparse regression[39]. Unmixing was divided into two 

steps. The first step applied the theory of multiple signal classification to unmixing to 

identify a subset of the spectral library, which contains the end member signatures. The 

second step is similar to CLSUnSAL, such that it also applies collaborative sparse 

regression. 

 

6. Conclusions and Future Work 

Hyperspectral unmixing continues to be a popular topic in remote sensing image 

processing. Basing on a linear mixed model, we summarized the traditional methods of 

end member extraction and abundance decomposition, unsupervised spectral unmixing, 

and semi-supervised spectral unmixing. Each method has its advantages and 

disadvantages. To address the disadvantages, we recommend the use of the non-negative 

and continuity for signal spectrum and distribution as well as the sparse feature of the end 

members’ distribution. 

Table 1. The Advantages and Disadvantages for Each Method 

 Methods Advantages  Disadvantages 

Traditional methods 

of  end member 

extraction 

PPI 
High precision, definite 

physical meanings, good 

scientific theory 

End members must be 

present in the image 

N-FINDR 

VCA 

IEA 

Unsupervised 

spectral unmixing 

ICA Simple modeling 
Abundance does not 

satisfy independence 

SSCBSS 
Definite physical 

meanings 

Large amount of 

calculation 

NMF 
Definite physical 

meanings 

Optimal solution is 

non-unique 

NMF’s 

extensions  

Optimize the NMF, 

optimal solution is 

stable 

Computing complex 

Semi-supervised 

spectral unmixing 

Sparse 

unmixing 

Easy to understand and 

high precision 

Spectral library must 

be known priori 
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Although hyperspectral technology has been existing for only 30 years, it has already 

garnered great achievements. Future studies should focus on exploring new solutions of 

unmixed algorithm and improving the robustness and accuracy of traditional methods. 

Moreover, hyperspectral technology should be applied to ecological systems, cities, 

resources, medical sciences, and so on. 
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