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Abstract 

In the paper, we present a new noise spectrum estimation algorithm which is simple 

and effective for non-stationary background noise environments. The new proposed 

algorithm continuously updates the estimated noise by weighted noisy speech with a 

constant smoothing factor, the weighting factor is adjusted by an estimated signal-to-

noise ratio (SNR), and the SNR is controlled by the local energy which be obtained by 

frequency smoothing of the noisy power spectrum in each frame. Objective experimental 

results and a subjective comparison show that the improved noise estimation algorithm 

when integrated in speech enhancement is preferred over the competitive noise 

estimation algorithms. 

 

Keywords: Speech enhancement, Noise spectrum estimation, Weighted recursive 

averaging 
 

1. Introduction 

Speech enhancement or noise reduction has been one of the main investigated 

problems in the speech community for a long time. Numerous speech processing devices 

such as telephony, speech recognition systems and digital hearing aids and so forth which 

are often used in the real world. Unfortunately, the speech intelligibility can be harmed 

due to background noise. Speech enhancement method such as minimum mean-square 

error short-time spectral amplitude estimator (MMSE) [1] can be used to increase the 

quality of these speech processing devices. Correct noise power spectrum estimation is 

essential to good quality of the enhanced speech [1][2]. In non-stationary noise 

environments, a useful noise power spectrum estimation approach, known as the 

minimum statistics (MS), is presented by Martin [3-4]. In this approach, minima values 

of a smoothed power spectrum estimate of the noisy speech are tracked, and multiplied 

by factor that compensates the estimate for possible bias. However, the variance of this 

noise estimate is about twice as large as the variance of a conventional noise estimator [3-

5]. A computationally more efficient minimum tracking method is proposed in [6], its 

main drawbacks are the very slow update rate of the noise estimation in case of a abrupt 

rise in the noise energy level, and this tendency to cancel the signal [7-8]. 

We present here a recent algorithm, developed by Cohen and Berdugo [9], namely 

minima controlled recursive averaging (MCRA) that combines the robustness of the 

minimum tracking with the simplicity of the recursive averaging. The noise estimate 

obtained by averaging past power spectrum by a smoothing parameter that is controlled 

by the speech presence probability in subbands. The speech presence probability is 

adjusted by the minima values of a smoothed periodgram.  In other words, the noise 

spectral estimation procedure comprises two iterations of smoothing and minimum 

tracking. The first iteration provides a rough voice activity in each frequency. Smoothing 

during the second iteration excludes relatively strong speech components, which makes 

the minimum tracking during speech activity more robust. The major drawback with the 

MCRA is the update of local minimum of noisy speech for increasing noise levels [8]. 
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Even in the improved version of MCRA (IMCRA) [5] some variation of minimum 

statistics rules was used for minimum tracking. Even though the delay for this method 

was slightly less than that for minimum statistics approach, this method takes slightly less 

than 1.5s to update noise estimate for increasing noise levels. 

Another popular algorithm, known as the weighted noise estimation (WN) [10], has a 

good speech quality for a wide range of SNRs and sufficient noise suppression 

simultaneously. The estimated noise is obtained as an average of the noisy speech 

weighted by an estimated SNR. The algorithm is a very simple and computationally 

efficient procedure. However, this method has a drawback that the weak speech segment 

often be regard as noise segment because of lower spectral amplitude especially in weak 

speech regions following high SNR speech segment. 

In this work, we present an improved noise power spectrum estimation algorithm 

which can more accurately distinguish noise and speech. The presented improved 

algorithm does not wait for specific window time to update the noise estimate. Hence the 

tracking delay and the overestimates are all considerably reduced compared to a 

competitive noise tracking algorithms. 

The paper is organized as follows. In Section 2, we present the improved noise 

estimator. The estimated noise is obtained as an average of the weighted noisy 

speech using a constant smoothing parameter, the weighting factor is adjusted by an 

estimated SNR, and the SNR is controlled by the local energy which be obtained by 

frequency smoothing of the noisy power spectrum in each frame. In Section 3 we 

evaluate the proposed method, and discuss experimental results, which validate its 

effectiveness. Finally, in Section 4 we summarize the paper and draw conclusions. 

 

 

 

(a) 

 

(b) 

Figure 1. Example of Noise Power Estimation Obtained by the Proposed 
Method, MCRA and WN. Original Speech is Degraded by Car Noise Type at 

5dB Input SNR and a Single Frequency Bin k = 13. (a) is Noisy Speech 
Power and Actual Noise Power; (b) is the Noise Power Estimation for a 

Speech Signal 
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2. Proposed Noise Power Spectrum Estimator 

Let x(t) and d(t) denote speech and uncorrelated additive noise signals respectively, the 

observed noisy speech y(t) is given by 

( t) x ( t) d ( t)y                                                                 (1) 

where t is the time index. Using a short-time Fourier transform, in the time-frequency 

domain we have 

     , , ,Y n k X n k D n k                                                                                                      (2) 

where n represents the frame index and k represents the frequency bin index. 

In this section we present the noise power spectrum estimator and also analyze its 

performance. In contrast to the IMCRA and MS methods [3-5] which take into account 

the strong correlation speech presence in neighboring frequency bins of consecutive 

frames, the averaging of the noisy power spectrum is carried out in both time and 

frequency. In accordance with the IMCRA method [5], let b denote a normalized window 

function of length 2w+1, the local energy ( , )S n k  can be obtained by frequency 

smoothing of the noisy power spectrum in each frame, 

2
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                                     (3) 

Subsequently, we discuss the SNR calculation. First of all, because weighted noisy 

speech has a good speech quality for a wide range of SNRs and sufficient noise 

suppression simultaneously [10], and according to weighting factor ( , )W n k  calculation 

of the weighted noise estimation [10], ( , )W n k   is obtained by 
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where 
0

̂ , 
1

̂  and 
2

̂  are thresholds. ˆ ( , )n k  is an estimated SNR, in order to obtain a 

more accurate estimate of the SNR  ˆ ( , )n k , we proposed a scheme as follows: 
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                                                            (5) 

In accordance with the MCRA and WN methods [5, 10], we proposed the new noise 

power spectrum estimator, the estimated noise is obtained as an average of the weighted 

noisy speech using a constant smoothing parameter during periods of speech absence, 

and holds the estimation during speech presence, specifically 

2
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           (6) 

where (0 1)
d d

     is the constant smoothing parameter, the speech is presence 

when the estimated SNR ˆ ( , )n k  is lower than a threshold 
0

̂ . The weighting factor 
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( , )W n k  is adjusted by the estimated SNR. The noise estimate ˆ ( , )
D

n k  is initialized 

through average the first frames by 

2

1

1
ˆ ( , ) | ( , ) | ,

n

D in it

i

n k Y i k n T
n





                                               (7) 

where in it
T

 is the first frames. 

 

3. Evaluation 

To evaluate the proposed noise estimation algorithm, we compare the algorithm with 

MCRA and WN methods. First, we measure the segmental relative estimation error for 

three noise types and four levels. Second, we integrate the noise estimation methods into 

a MMSE speech enhancement system, and determine the improvement in the segmental 

SNR. Three noise types in our evaluation are taken from the Noisex-92 database. They 

include Gaussian noise, car noise and F16 cockpit noise. The speech signal is constructed 

from six different utterances, half from male speakers and half from female speakers are 

taken from the NOIZEUS database. The speech signal is sampled at 8 kHz and degraded 

by the three noise types with segmental SNR in the range [0, 15] dB. The spectral 

analysis is implemented with hanning windows of 256 samples length and 128 samples 

overlap. 

For the a priori SNR estimator [1],   =0.98, 
m in

 = -25dB. For the MCRA method [9], 

d
 =0.95, 

s
 =0.8, 

p
 =0.2,   =1,  =5, L =125, b is hanning window. For the WN 

 

(a) 

 

(b) 

Figure 2. Example of Noise Power Estimation Obtained by the Proposed 
Method, MCRA and WN. Original Speech is Degraded by f16 Noise Type at 

5dB Input SNR and a Single Frequency Bin k = 22. (a) is Noisy Speech 
Power and Actual Noise Power; (b) is the Noise Power Estimation for a 

Speech Signal 
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method [10], 
in it

T =4, L z =20, 
1

̂ =0dB, 
2

̂ =10dB, 
z

 =7dB. For the proposed method, 

in it
T  =4, 

d
 =0.95, 

0
̂  =10dB, 

1
̂ =3dB, 

2
̂ =18dB, b is hanning window,   =1. 

Example of noise power estimation obtained by the proposed method, MCRA and WN, 

degraded by car noise type at 5dB input SNR and a single frequency bin k = 13, as 

illustrated in Figure 1, Figure 1 (a) is noisy speech power and actual noise power; Figure 

1 (b) is the noise power estimation for a speech signal. 

Another example of noise power estimation obtained by the proposed method, MCRA 

and WN, degraded by f16 noise type at 5dB input SNR and a single frequency bin k = 22, 

as illustrated in Figure 2, Figure 2 (a) is noisy speech power and actual noise power; 

Figure 2 (b) is the noise power estimation for a speech signal. 

Table 1. Segmental Relative Estimation Error Obtained Using the Proposed 
Method, MCRA and WN Estimators 

Input 

SNR 

[dB] 

White Gaussian noise Car noise F16 cockpit noise 

WN MCRA 
Proposed 

method 
WN MCRA 

Proposed 

method 
WN MCRA 

Proposed 

method 

0 0.0913 0.1249 0.0622 0.2617 0.1024 0.0645 0.1240 0.0892 0.0581 

5 0.1026 0.3124 0.0871 0.2592 0.1025 0.0645 0.1393 0.1410 0.0832 

10 0.1242 1.7065 0.0827 0.2591 0.1022 0.0644 0.1776 0.4425 0.1129 

15 0.1450 8.9268 0.1159 0.2597 0.1058 0.0642 0.1587 2.6243 0.0838 

Table 2. Segmental SNR Improvement Obtained Using the Proposed 
Method, MCRA and WN Estimators 

Input 

SNR 

[dB] 

White Gaussian noise Car noise F16 cockpit noise 

WN MCRA 
Proposed 

method 
WN MCRA 

Proposed 

method 
WN MCRA 

Proposed 

method 

0 3.8655 3.9828 4.0633 5.8922 6.9141 7.2358 3.5742 3.6806 3.8209 

5 3.2859 3.2412 3.4440 6.0393 6.8309 7.3266 2.9737 2.9309 3.1603 

10 2.5612 2.2558 2.6697 5.7194 6.2169 6.8590 2.3319 2.0924 2.4948 

15 1.6497 0.9588 1.7123 4.7385 4.8554 5.6937 1.5669 0.9983 1.6701 

 

By contrast, the noise estimate obtained by the proposed method is much closer to the 

smoothed actual noise power. The proposed method can avoids noise overestimates, 

particularly in adverse noise environments, which involve weak speech components and 

low input SNR. 

Table 1 presents the results of the segmental relative estimation error achieved by the 

proposed method, WN and MCRA estimation methods in various noise types and levels. 

It shows that the proposed method obtains significantly lower estimation error than the 

WN and the MCRA methods. Table 2 summarizes the results of the segmental SNR 

improvement for various types and levels. The proposed method yields a higher 

improvement in the segmental SNR than the WN and the MCRA methods. 

This is confirmed by a subjective evaluation of speech spectrograms and informal 

listening tests. 

 

4. Conclusions 

A noise power spectrum estimation algorithm is proposed for non-stationary noise 

environments in the paper, resulting in more accurately distinguishing noise and speech, 

the tracking delay and the overestimates are all considerably reduced compared to the 

competitive noise tracking algorithms. Experimental results show that the proposed noise 

estimation algorithm when integrated in speech enhancement is preferred over other 

noise estimation algorithms. 
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