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Abstract 

Variational Bayesian (VB) inference is the latest iterative method for prediction of 

data in machine learning. It provides the solution for intractable integration in Bayesian 

methodology. In this paper, a simple VB linear regression is applied for prediction of the 

damaged pixels in an image. Bayesian linear regression model is used for prediction of 

the pixels. For this neighbor pixels are used as training data to generate the parameters 

of the prediction function. Now using this prediction function, damaged pixels are 

predicted and incorporated into the image. Proposed method is linear while image is a 

non-linear object, generally. Hence, for linearity, a small image window size is used to 

avoid the nonlinearities in image. 
 

Keywords: Bayesian linear regression, Variational approximation, Gamma 

Distribution, Image Inpainting 

 

1. Introduction 

Image restoration is a new and very important topic of research. It is also referred as 

inverse problem in image processing [1]. Image inpainting is a part of the image 

restoration in which lost or missing pixels are restored using an algorithm. Image 

restoration helps in providing better quality images which are degraded by some means 

like during communication. 

Image inpainting removes the effects of the broken and missing portions. Image 

inpainting was first introduced by Bertalmio, Sapiro and Caselles [2]. In this method, A 

partial differential equations method is used for the image inpainting. Area of a contour is 

used to repair and filling purpose. This method was proposed to provide the continuity 

for the linear structure. If this method is applied on a nonlinear image then the image is 

blurred. Problem of this method is overcome by Alexandru [3]. Fast Marching Method 

(FMM) was proposed as an extension of the method used in [2]. This method was simple, 

practical and efficient as compared to the previous method. This method can filled small 

scratches, crack and texts but fails to deliver when applied on large cracks. Another 

diffusion based algorithm is used by Chan and Shen [4]. Here, a curvature-driven 

diffusions (CDD) based method is used for non-texture inpainting. Tauber et al., gave an 

overview of the image inpainting and defined that image inpainting could also provide a 

framework for increasing the accuracy of the depth recovery of an image [5]. Recently, 

Liangtian et al., proposed a method for wavelet frame based image inpainting [6]. In this 

inpainting, an iterative method is used which is based on support detection based split 

Bergman method. Recently, Tijana and Aleksandra used an algorithm based upon 

context-aware for patched based image inpainting [7]. In this, Markov random field 

modeling is used to use textural descriptors for improvement and guide the process of 

inpainting. 

In this paper, a latest iterative method of image inpainting is introduced which is 

known as Variational Bayesian inference. It uses an approximate analysis which is faster 
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as compared to classical methods. Chantas et al., used Variational Bayesian method in 

image restoration using product of t-distributions image prior [8]. They degraded the 

image by blur and adding noise. Now a variational methodology is applied for restoring 

the blurred image. Babacan at al., used the variational Bayesian method with total 

variation (TV) prior for blind deconvolution and parameter estimation of an image [9]. 

For this, a hierarchical Bayesian model is used to insert the noise in image and then 

restored the image solving as inverse problem. A sparse kernel based blind image 

deconvolution (BID) is proposed by Tzikas et al., using VB inference. In this 

methodology, student's-t distribution is used as prior information for image restoration 

[10]. 
 

Figure 1. Lost and Neighbor Pixels 

VB inference is a fully automatic algorithm for prediction. Prior distribution can 

change the accuracy of the algorithm. For instance, Chantas et al., used another prior with 

same variational algorithm which is used in [8], but this time, the prior is based on 

products of the spatially weighted total variations [11]. VB technique is also used in other 

applications of image processing. For example, this method is also used in ensemble 

registration of the multisensor images by Hao Zhu et. al., [12]. He used an infinite 

Gaussian mixture model (IGMM) for modeling of the joint intensity scatter plot (JISP) 

and Bayesian clustering for ensemble registration. IGMM is a combination of a Dirichlet 

process (DP) and a joint Gaussian mixture model. Recently, VB approach is applied on 

subspace optimization using TV priors by Zheng et. al., [13]. They show how the VB 

method can be efficient and converges for large computational problems. In proposed 

method, VB inference technique is used for image inpainting. This type of technique, to 

the best of authors' knowledge, is not used for image inpainting before. In image 

inpainting, only knowledge of the neighbor pixels is available to reconstruct the lost 

pixels as shown in Figure 1. With the help of neighbor pixels, a function, known as 

regression function, is generated. 

In this paper, missing terms are predicted using neighbor pixels with the help of VB 

inference. Here, Bayesian linear regression model is used for prediction. A fast marching 

method is used for comparison purpose. The remaining paper is arranged as: in Section 2, 

fast marching method is reviewed. In Section 3, the basics of Variational Bayes are 

given. In Section 4, Bayesian linear regression model, used for image inpainting, is given. 

In Section 5, the experiments are performed and shown the results on images. Finally, in 

Section 5, we provide conclusions and direction for future research work. 
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2. Review of Fast Marching Method 

Fast marching method (FMM) is an algorithm in which Eikonal equation is solved for 

inpainting which is given as 

ǀ∇𝑇ǀ = 1 on Ω, with 𝑇 = 0 on 𝜕Ω                           (1) 

where Ω represents pixels and 𝜕Ω represents boundary of the pixels. T is known as 

distance map of the pixels. In this method, value of T is stored with image gray value I 

and flag f. This is done in five steps. In first step, band point for smallest T is extracted. 

In second step, marching of the boundary inward is done by the addition of new points in 

it. In third step, inpainting takes place. In the fourth step, propagation of the values from 

point (i, j) to the neighbor point (k, l) takes place which is given by the solution of (1) as 

max(𝐷−𝑥𝑇,−𝐷+𝑥𝑇, 0)2 + 𝑚𝑎𝑥(𝐷−𝑦𝑇,−𝐷𝑦𝑇, 0)2 = 1               (2) 

where 𝐷−𝑥𝑇(𝑖, 𝑗) = 𝑇(𝑖, 𝑗) − 𝑇(𝑖 − 1, 𝑗) and 𝐷+𝑥𝑇(𝑖, 𝑗) = 𝑇(𝑖 + 1, 𝑗) − 𝑇(𝑖, 𝑗) . 
Similarly for y can be calculated. In final step, value of new (k, l) are inserted with its 

new T [3]. 
 

3. Elements of Variational Bayes 

Variational Bayes method is based upon the variational approximation of the posterior 

density function which is given by the Bayes' rule 

𝑝 (𝑥 ǀ 𝑦) =  
𝑝 (𝑦,𝑥)

𝑝 (𝑦)
 =  

𝑝 (𝑦 ǀ 𝑥)𝑝 (𝑥)

𝑝 (𝑦)
                  (3) 

where 𝑥 ∈  𝜑, and 𝑦 represents the parameter vector and observed data vector, 

respectively. Numerator term in middle is known as joint distribution function. 

Denominator is known as marginal likelihood or normalizing function as it ensures that 

the posterior density function is a probability density function. First and second term in 

numerator of right side represents the likelihood function and prior distribution, 

respectively. 

Let assume an arbitrary density function q over 𝜑. Now the marginal likelihood 

satisfies the condition 𝑝 (𝑦) ≥ 𝑝(𝑦; 𝑞) where 

ℒ (𝑞) = 𝑝 (𝑦; 𝑞) ≡ 𝑒𝑥𝑝 ∫ 𝑞 (𝑥)𝑙𝑛
𝜑

 {
𝑝 (𝑦,𝑥)

𝑝 (𝑦)
} 𝑑𝑥             (4) 

is known as lower bound. Kullback-Leibler divergence is defined as the difference 

between log {𝑝 (𝑦)} and log 𝑝 (𝑦; 𝑞). When the lower bound is maximized then the KL 

divergence is minimized. KL divergence is minimized using posterior density function 

as𝑞𝑒𝑥𝑎𝑐𝑡(𝑥) = 𝑝 (𝑥 ǀ 𝑦). However, the calculation of 𝑞𝑒𝑥𝑎𝑐𝑡(𝑥) is intractable and cannot 

be calculated directly for most of the models. Some type of restrictions on q can make it 

tractable. If an appropriate choice of q is chosen which can maximized the lower bound 

then the KL divergence is reduced to minimum value. Variational Bayes uses the 

restrictions by product density restrictions: 

𝑞 (𝑥) =  ∏ 𝑞𝑖 (𝑥𝑖)
𝑀
𝑖=1                 (5) 

This approximate form is based upon the mean field theory in physics. Now we are to 

select an appropriate distribution for q which maximizes the lower bound. 
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On substituting (3) into (2) gives the solution as 

𝑙𝑛 𝑞𝑖
∗ ( 𝑥𝑖) =  𝔼−𝑥𝑖

 { 𝑙𝑛 𝑝 (𝑦, 𝑥)} + 𝑐𝑜𝑛𝑠𝑡.                (6) 

 

Figure 2. Graphical Presentation of Proposed Bayesian Linear Regression 
Model [17] 

where 𝔼−𝑥𝑖
 represents the expectation for the density related to  ∏ 𝑞𝑗 (𝑥𝑗)𝑗 ≠𝑖 . (4) 

defines the condition which maximizes the lower bound with respect to (3). In variational 

method the lower bound is calculated and then it is updated by iteration. In each iteration 

the lower bound is maximized as a result the KL distance is minimized [14-16].  
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Algorithm: VB Inference based Image Inpainting 

1. Initialize algorithm with initial parameter values of 𝑎0, 𝑏0, 𝑐0, 𝑑0,  𝑚𝑅 and 𝜆𝑅 

2. Update the values of 𝑎0, 𝑏0, 𝑐0 and 𝑑0 using following expressions 

𝑎𝑅 = 𝑎0 +
𝐶

2
,    

𝑏𝑅 = 𝑏0 +
1

2
{𝑚𝑅𝑚𝑅

𝑇 + 𝑡𝑟(𝜆𝑅
−1)}, 

𝑐𝑅 = 𝑐0 +
𝑅

2
,  

𝑑𝑅 = 𝑑0 +
1

2
[(𝐘 − 𝐗 ∗ 𝑚𝑅)′ ∗ (𝐘 − 𝐗 ∗ 𝑚𝑅) + 𝑡𝑟 {

𝑋′𝑋

𝜆𝑅

}] 

3. Update the values of  𝑚𝑅 and 𝜆𝑅  using following expression  

𝑚𝑅 =
𝑐𝑅

𝑑𝑅
{
𝐗′𝐘

𝜆𝑅
},        

𝜆𝑅 =
𝑎𝑅

𝑏𝑅
+

𝑐𝑅

𝑑𝑅
(𝐗′ ∗ 𝐗), 

4. Use the updated parameter values in prediction of missing or lost pixels. 

𝑌𝑛𝑒𝑤 =
1

𝑑𝑅
𝑐𝑅

+𝑑𝑖𝑎𝑔{
𝜆𝑅

𝑋𝑛𝑒𝑤
∗𝑋𝑛𝑒𝑤

′ }
       

 

4. Bayesian Linear Regression Model 

In proposed method, a multiple linear regression model with two independent 

variables is used. The predictor values, 𝑥𝑖 and 𝑥𝑗, are two independent variables while 𝑦𝑖,𝑗 

is the response variable, thus the regression model is 

𝑦𝑖,𝑗 = 𝛽0 + 𝛽1𝑥𝑖 + 𝛽2𝑥𝑗 + 𝜀𝑖,𝑗                     (7) 

where 𝛽0, 𝛽1 and 𝛽2 are the parameters and 𝜀𝑖,𝑗 is independent additive noise. The 

values of i and j are varies as 1 ≤ 𝑖 ≤ 𝑅 and 1 ≤ 𝑗 ≤ 𝐶, respectively. Here 𝑅 × 𝐶 is the 

size of the window used for prediction. 

Let us assume a prior distribution function 𝛼 over the parameter 𝛽 for Bayesian 

approach. Now defining the matrices as 

𝐗 =  

[
 
 
 
 
 
1 𝑥1 𝑥1

⋮
1
1
⋮

⋮
𝑥1
𝑥2

⋮

⋮
𝑥𝐶
𝑥1

⋮
1 𝑥𝑅 𝑥𝐶]

 
 
 
 
 

' 𝐘 = 

[
 
 
 
 
 
𝑦1,1

⋮
𝑦1,𝐶

𝑦2,1

⋮
𝑦𝑅,𝐶]

 
 
 
 
 

, 𝛽 =  [

𝛽0

𝛽1

𝛽2

]  

and the model as 
𝑦𝑖,𝑗ǀ𝑥𝑖 , 𝑥𝑗 , 𝛽, 𝜆−1 ~ 𝑁((𝐗𝛽)𝑖,𝑗, 𝜆

−1) 

𝛽 ǀ𝛼 ~ 𝑁(0, 𝛼−1𝐼𝐶×𝐶),  

𝜀 ~ 𝑁(0, 𝜆−1), 

    𝛼 ~ 𝐺𝑎(𝑎0, 𝑏0),   

𝜆 ~ 𝐺𝑎 (𝑐0, 𝑑0).                      (8) 
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Original Image           Degraded Image        Inpainted Image 

Figure 3. Original, Degraded and Inpainted Image 

where 𝑁(∙∙,∙∙) and 𝐺𝑎 (∙∙,∙∙) represents the normal distribution and gamma distribution 

respectively. 𝛼 and 𝜆 are known as precision of parameters and noise precision 

respectively. Now the joint distribution is given by the expression 

𝑝 (𝑦, 𝛽, 𝛼) = 𝑝 (𝑦ǀ 𝛽) 𝑝 (𝛽ǀ 𝛼) 𝑝 (𝛼)                    (9) 

This model can be represented using a graphical model as shown in Figure 2 [17-19]. 
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Table 1. ISNR and PSNR Results 

Object PSNR of degraded 

image (dB) 

PSNR of inpainted 

image (dB) 

ISNR (dB) 

Girl 26.2386 46.1418 0.2452 

Butterfly 21.6256 33.3834 1.0966 

Tiger 17.2412 24.9861 0.5628 

Fruits 17.6752 32.5319 0.2524 

 

5. Variational Approximation and Results 

Now, Variational method is applied for inpainting of the images by predicting of the 

missing pixels. As described in Section 2, an approximate distribution, q, is chosen for 

the approximation of posterior. Now using (4), 𝛼 and β can be approximated as gamma 

distribution 𝑞∗(𝛼) = 𝐺𝑎(𝑎𝑅 , 𝑏𝑅) and Gaussian distribution 𝑞∗(𝛽) = 𝑁(𝑚𝑅 , 𝑆𝑅), 
respectively. The results are used by factorization of the variational distribution which is 

given as 

𝑞∗ (𝛽, 𝛼) = 𝑞∗(𝛽)𝑞∗(𝛼)                  (10) 

Algorithm can be initialized by initializing the parameters of 𝑞(𝛼) or 𝑞(𝛽). In 

proposed method, a small window size of 𝑅 × 𝐶 uses to generate the regression function 

using the known pixels and then predicts lost pixels of that window using this regression 

function. The algorithm is initialized with parameter values 𝑎0, 𝑏0, 𝑐0 and 𝑑0 to 3, 0.4, 25 

and 2 respectively. While, 𝑚𝑅 and 𝜆𝑅 are initialized with column matrix of C zeros and 

identity matrix of C ones respectively. Now for new values 𝑋𝑛𝑒𝑤, predicted values 𝑌𝑛𝑒𝑤 

are found using model parameters. 

Mathematical results, for inpainted images of Figure 3, are given in Table 1. All 

images are of the size of 250 x 300 pixels. Algorithm have been applied to four different 

degraded images and inpainted. Peak signal to noise ratio (PSNR) and improved signal to 

noise ratio (ISNR) parameters use for checking the improvement of images. PSNR and 

ISNR are given by the expressions 

𝑃𝑆𝑁𝑅 = 20𝑙𝑜𝑔10
255

𝑀𝑆𝐸
          

𝐼𝑆𝑁𝑅 = 10 𝑙𝑜𝑔10
‖𝑓−𝑔‖2

‖𝑓−ℎ‖2                           (11) 

where MSE is mean square error, f is original image, g is degraded image and h is 

inpainted image. ISNR value for girl is very less as compared to that of butterfly. This is 

due to the amount of recovered pixel numbers. For girl image, there is less recovery and 

hence ISNR is low. For butterfly image, recovered pixels are more and hence ISNR is 

high. When image is degraded heavily, as for tiger and fruits images, then ISNR is low. 

This is due to the lack of sufficient neighbor pixels information while for butterfly image, 

there were sufficient pixels to recover the missing pixels. Hence, ISNR depends on both 

missing and neighbor pixels. Above experimental results make motivation for the 

practical use of algorithm. Proposed methodology is also applied on two practical images 

in Figure 4 and compared with an existing method of [3]. In [3], a Fast Marching Method 

(FMM) is used for image inpainting purpose which is reviewed in Section 2. 
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Original Image                 Existed Method [3]    Proposed Method 

 

Figure 4. Comparison of Proposed Method with Existed Method 

6. Conclusion 

A latest approach of VB inference is applied for image inpainting. The images are 

restored appropriately using algorithm, termed as, VB inference based image inpainting. 

This is an iterative algorithm which gives guaranty for convergence. In Table 1, the 

PSNR and ISNR measure the performance of the restored images. Resultant images, 

given in Figure 3, shows the effectiveness of the algorithm. Proposed method shows the 

applications for practical images as shown in Figure 4. 

In this paper, gamma distribution is used as prior. For further research, another type of 

prior can be implemented to improve the accuracy and performance of the algorithm. 

However, this algorithm is implemented for small window size as it is a linear approach 

while images are nonlinear generally. 

A window of size 10x10 has been used to avoid non-linearity of image. A linear 

approach limits its applicability for non-linear windows and for other non-linear 

applications. Hence, in future, suitable modifications in algorithm can be explored for use 

in nonlinear window. 
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