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Abstract 

This paper investigates spectrum leakage influence on the performance of discrete 

Fourier transform (DFT) based phase difference measurement and proposes a novel 

method with spectrum leakage considered. In the proposed method, spectrum is firstly 

corrected by interpolation algorithm to remove the influence of short range leakage. To 

avoid negative frequency interference caused by the long range leakage, real-time phase 

difference is calculated in succession by a recursive DFT based algorithm with negative 

frequency contribution. And then, precision of the proposed method is theoretically 

demonstrated in detail. Furthermore, the method is applied to Coriolis mass flowmeter 

(CMF). Simulation and experimental results show that the accuracy of phase difference 

measurement has largely improved, as compared with the existing method based on the 

sliding Goertzel algorithm. 
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1. Introduction 

Phase difference measurement of cosine signals with the same frequency is an 

important topic in many measurement and signal processing tasks, such as radar, sonar, 

communication, electrical technology, power systems and industrial automation. In 

domain of high-precision flow measurement, Coriolis mass flow meter (CMF) operates 

properly by measuring the time interval of two vibration signals which is depended on the 

phase difference and frequency [1]
.
 A lot of methods for phase difference measurement 

have been developed to fulfill the comprehensive applications requirements. 

In the existing methods, zero crossing detection based method [2] just requires small 

amounts of calculation, but poor in anti-interference ability and demands excessively for 

hardware. Digital correlation method [3] is good at suppressing random noise, but has 

difficult to eliminate harmonic interference. What’s more, this method need to know the 

signal frequency in advance or required to maintain full period sampling which is often 

hard to realize in practice. Methods based on DFT [4] calculate phase difference by the 

subtraction of two DFT phases at the maximum spectral line. This method has good 

resistance to harmonic interference. However, an unfeasible technique of integral period 

sampling is also particularly needed [5-6]. Otherwise spectrum leakage takes place 

inevitability which has a passive effect for precision of phase difference measurement [7].  

The Hilbert transform based method [8-9] which calculates phase difference by 

trigonometry operation between the signal and its Hilbert transform is proposed to detect 

variable phase difference. This method can figure out the phase difference at every 

sampling point in real-time and performs perfectly when the phase difference changes 

rapidly. However, it has feeble immune from interference, which limits practicalities of 
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the method. A sliding Goertzel algorithm (SGA) [10] is also introduced to measure phase 

difference. But there is a slow convergence rate and a numerical overflow.  

A sliding DFT is developed to measure the variable phase difference. To carry out the 

change of phase difference, a small number of sampled data are allowed to be taken in the 

DFT calculation. Then, spectrum leakage becomes inevitable and remarkable. However, 

the current phase difference measurement methods based on DFT spectrum analysis rarely 

consider the impact of spectrum leakage, especially the impact of negative frequency 

components [11]. This is why the results obtained either by the sliding DFT or by the 

sliding Goertzel algorithm deviate from the true values. 

To solve the aforementioned problems, a novel recursive DFT method with spectrum 

leakage considered is proposed in this paper, which is expected to improve the accuracy 

of variable phase difference measurement and shorten the convergence stage of 

calculation. 

This paper is organized into seven sections. In Section 2, principle of DFT-based phase 

difference measurement is deduced. In Section 3, how spectrum leakage reduces the 

precision of phase difference estimation is demonstrated from two aspects of short-range 

spectral leakage and long-range spectral leakage. Based on the recursive DFT, a novel 

method with spectrum leakage considered is proposed in Section 4. Precision of the 

proposed method is analyzed in Section 5. In Sections 6 and 7, results from simulations 

and experiments in CMF are given to validate the proposed method. 

 

2. Phase Difference Detection based on DFT 

The phase difference equals the subtraction of two DFT phases at the signal frequency. 

For two sine signals with the same frequency, the sampling sequences can be expressed as 

follows: 

1 1 0 1

2 2 0 2

( ) c o s [ 2 / ] ( )

( ) c o s [ 2 / ] ( )

w s

w s

s n A f n f w n

s n A f n f w n

 

 

  

  
             (1) 

                                                    

Where 0,1, , 1n N  ,
1

A and
2

A are amplitudes, 
1

 and
2

 are initial phases, 

0
( 2 )

s s
f f f is sampling frequency and

0
f is the signal frequency . ( )w n is the discrete time 

window, whose length is N . 

The DFT of
1

( )
w

s n at
0

f can be expressed as: 
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It is hard to make 
0

/
s

N m f f  ( m Z


 ) in sampling; accordingly spectrum leakage 

becomes inevitably. Mark  as frequency deviation and f as frequency resolution. We can 

get
0

( )f k f    , k  is a positive integer. Ignoring the negative frequency components, 

then: 

0 1 1
[( ) / 2 ] ( )1 1

1 0
( ) ( ) ( )

2 2

j f f N j

w

A A
S k W f f e W f e

  
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The phase of
1

( )
w

s n can be estimated as follows: 
1 1

    . 

Similarly, the phase of
2

( )
w

s n can be expressed as
2 2

    . 

Then, phase difference can be obtained by the subtraction of the two phases, i.e., 

1 2 1 2
̂                           (4) 
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It seems that the spectrum leakage does not affect the phase difference estimation. But 

that is not the case; its reasons will be demonstrated in the following. 

 

3. Influence of Spectrum Leakage 

3.1. Short-range Leakage: Spectral Lines Offset 

There are two types of spectral leakage: short-range leakage and long-range leakage 

[12]. Short-range leakage takes place in the main lobe of spectrum, which impact the 

phase difference estimation by  . Under the background of the additive noise, sampling 

sequence can be represented as:  

( ) ( ) ( )x n s n z n  ， 0,1, , 1n N                         (5) 

  

Where ( )s n is signal sampling sequence, and ( )z n is white Gaussian noise sequence 

whose variance is 2

z
 . The signal-to-noise ratio expressed as 2 2

/ ( 2 )S N R A  . Short ( )x n by 

a symmetric window with N sampling point, and then the sampling sequence can be 

expressed as: 

( ) ( ) ( ) ( ) ( )
w N N

x n x n w n z n w n               (6) 

                                                   

Ignore the negative frequency components of ( )
w

x k , that to say, only consider the 

first / 2N part of spectrum, there is: 

( ) ( ) ( )
w N N

X k S k Z k  ， 0 ,1, / 2k N              (7) 

Generally, the maximum of amplitude spectrum is obtained on line number k or 1k  . 

Mark
r

k as spectral line number corresponding to the maximum. On the condition of 

universal S N R , it is satisfaction that ( ) ( )
R

w w
Z k S k  and ( ) ( )

I

w w
Z k S k in

r
k . Set ( )W f as 

continuous spectrum of the symmetric window ( )w n , and then, we can 

get ( ) ( ) / 2
w r

S k A W   . According to the formula (7), the phase spectrum equals to: 
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                (8) 

According to the second-order Taylor formula and ignore the higher order 

dimensionless, formula (8) can be approximately rewrote as:  
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Mark P w as average power of the window. As a result of the real and imaginary part of 

discrete spectrum distribution of white Gaussian noise sequence are subject 

to  
2

0 , / 2N P w N  and arbitrary two spectral lines of real part and imaginary part are 

independence with each other, it’s not difficult to know: 

2
( ( ) ) ( ( ) ) 0 , v a r( ( )) v a r( ( )) / 2

R I R I

w w r w w r
E Z k E Z k Z k Z k P w N           (10) 

Thus, taking the S N R definition and symmetric window spectrum into consideration, we 

can get: 
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Using
1

( )
R

w r
S k and

2
( )

R

w r
S k as denotations of the two signal phase spectrum respectively, 

we can obtain the variance of phase difference estimation, as follows: 

1 1 2

2
ˆva r va r ( ) va r ( )

( )

P P

w r w r

P w
S k S k

N S N R W



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 
        (12)   

 

Obviously, the precision of DFT-based phase difference estimation relates to S N R , 

shape and length of the symmetric window and frequency deviation. 

 

3.2. Long-Range Leakage: Negative Frequency Interference 

Long-range spectrum leakage refers to the side-lobe spectrum leakage, which may 

cause lines interference. For dense multi-frequency signals, it is necessary to zoom in 

spectrum before phase difference estimation. For single frequency signal, long range 

spectrum leakage will cause negative spectrum peak superposition to positive spectrum, 

namely the negative frequency interference, when the signal frequency is very low or 

close to the Nyquist frequency. This phenomenon also takes place when sampling point 

only a little while. Here the method described by formula (2-4) possesses a larger 

estimation error thanks to the overlooking of negative frequency components. 

Denote
k

 and
1k




as the phases located the maximum and the sub-maximum spectrum line 

respectively, and then, we commonly deem that there is interference spectrum when: 
 

1k k
   


                  (13) 

 

where  is a little positive number.  

 

The phenomenon of negative spectrum interference is shown in Figure 1. The real 

frequency is included in the range of (0 , ) , named positive frequency range. Range 

( , 0 ) and range ( , 2 )  are symmetrical spectrum image, called negative frequency range. 

When the signal frequency is low or close to the Nyquist frequency, spectrum 

peak A closes to the ends of range (0 , ) and side-lobe interference increases rapidly, as 

shown in (b). When position of spectral peak A is very close to 0   or   , 

A and A  will overlap and result in main lobe interference, as shown in (c). 

 

 
Figure 1. Spectrum with Negative Frequency Interference 
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4. The Proposed Method 
 

4.1. Principle 

When a small number of sampled data are taken in the DFT calculation, the negative 

frequency interference becomes remarkable, that brings about significant errors in phase 

difference estimation. Therefore, both positive and negative frequency should be taken 

into consideration when calculate the phase difference. In order to improve the accuracy 

of phase difference measurement, a method with spectrum leakage considered is proposed. 

Take the negative frequencies into account, formula (2) equals to: 
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If rectangular window been used, we can deduce the following equation: 
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where
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Similarly, for
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where
2

 is the DFT phase of )(
2

ns at
0

k . 

On the basis of (15) and (16), the formula for phase difference calculation is deduced 

as: 
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If the Hanning window is used, we can obtain another expression for phase difference 

calculation: 
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where, 0 1

4
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2 0 0
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4.2. Recursive DFT 

Recursive DFT algorithm introduced in this paper is based on the trigonometric 

function. Supposing that we have obtained a sampling sequence ( )x n at the point of m , 

then  ( ) (0 ), (1), , ( 1)x n x x x N  and its DFT is: 
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21 1
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At the point of 1m  , the sampling sequence ( )x n is updated by ( )x N with (0 )x discarded. 

Here, the DFT of the updated ( )x n are as follows: 
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Apparently, when a new point been taken into the sampling sequence, there is a 

recursive relationship between DFTs of the two sequences. 

 

4.3.  Process 

According to the principle, process of the advanced method can be summarized as 

follows: 

Step1: Sample two signals synchronously and intercept data with the same window 

length N . 

Step2: Calculate the DFTs of sampling signals 
1

( )
w

s n and
2

( )
w

s n . 

Step3: Correct the spectrums by interpolation algorithm [13] and figure out  . 

Step4: Calculate ( )
m

A k and ( )
m

B k . 

Step5: Calculate the phase difference by Eq. (17) or Eq. (18). 

 

5. Precision 

DFT of the signal defined by (5) can be express as:  
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kZ also obey Gaussian distribution, whose variance is 2
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z
Z k N  . For white noise, 

there are 0)]()([
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nzmzE when nm  . Therefore, autocorrelation of )(
1

kZ can be simplified 

as: 
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22 21 1
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Although )(
1

kZ is a linear combination of the same set of random variables, there is a 

lack of correlation in )(
1

kZ as a result of the orthogonal feature of DFT basis function. 

Thereby )(
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Then, we rewrite (23) as:  
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It is generally believed that 1/
1


k
Ab when S N R is not particularly low and N is 

sufficient large. Therefore: 
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Similarly, we can obtain:  

2 2 2f f z
                     (28) 

where 
222

/)sin(
kfzz

Ab   is the phase of )(
02

kS and obey Gaussian distribution, 

with 2 2

2 2
v a r[ ] / 2

z z k
N A  . Then the phase difference can be get by:  

][arctan

21

3

ff

f









                (29) 

where 

)tan(tan
2131

2

11 ffffff
ccc   ,

21

2

3

2

22
tantan)(

fffff
cc   , )tan(tan

12213 fffff
cc   . 

Set T

ff

T

TT ][][
2121

 T and T

ff
E ][][

21
T , then )(Tf  . At the point of 

μTT
0


TT

ff
E ][][][

2121
 , the first order Taylor series expansion of ( )f T is: 
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
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k

T
T

f
fTf 

TT
            (30) 

Then 

1 2 2 1

1 2

( tan tan )
[ ] ( ) a rc tan [ ]

f f f f
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c c
E f

 


 


  


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2
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T T

T
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E f E  

     
        

       

T μ C
T μT T TT μ T μ

       (32) 

                         

 

where 
T

C is the covariance matrix of matrix T . 
2 2 2 2

1 2 1 2 2 3 2 1

1 2 2
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Typically, Gauss white noise is unrelated with each other. Thereby 
1z

 and
2z

 is not 

relevant too. So 
2 2

1

2 2

2

/ 2 0

0 / 2

z k

T

z k
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


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Then, we can deduce that 

)(
2

]var[
2

2

2

2

2

1

2

1

2

k

f

k

fz

AA

N 



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
               (34) 

 

6. Experiment Results 

To verify the influence of spectral leakage and evaluate the performance of the 

proposed method, computer simulations are carried out, assuming that the signals are 

single-frequency real signals with white Gaussian noise. In simulations, the initialization 

of phase difference is 4 .1   .  

 

6.1. Influence of Frequency Deviation | | and Windows 

In simulations, the signal frequency equals 1 9 8 H z , the sampling frequency 

equals 2 0 0 0 H z , 20dBSN R  . 1 0 2 4N  . Rectangular window, Hanning window and 

Hamming window, are used respectively in simulations. Phase differences are calculated 

200 times independently by the DFT-based method with ratio correction method as 

comparison. The root mean square error (RMSE) of phase difference estimation and the 

relationship between the results and deviation  are shown in Figure 2.  

The theoretic values of RMSE are denoted by lines while simulation results are shown 

by discrete points. As can be seen from the Figure 2, the simulation results agreed with 

the theoretical value. RMSE of the uncorrected DFT-based method deduce with the 

deviation | | closing to zero. We can also come to the conclusion that RMSE with the 

Hanning window and Hamming window are similar. When | | is small, the RMSE with a 

rectangular window is smaller compared with Hanning window or Hamming window. 

However, the conclusion reverses when | | is remarkable. After corrected, the RMSE is 
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always in a near constant value and has nothing to do with | | . The constant value 

(about 0 .2 5 3 ) is determined by SNR and N . 

 

Figure 2. Relationship between RMSE and the Deviation 

6.2. Influence of the SNR and Sampling Length 

Under the condition of 1 0 2 4N  , 
0

2 0 0k   and 0 .4  , the relationship between the 
RMSE and SNR is show in Figure 3. The phenomenon of RMSE changes with sampling 
length under the condition of

0
3 0k  , 0 .4   and 2 0 d BS N R   is also denoted in Figure 3. 

It can be seen that the simulation results and formula calculation results are consistent. 
What’s more, the higher S N R , the smaller the RMSE of phase difference estimation. 
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Figure 3. Relationship of RMSE with SNR and Sampling Length 

6.3. Precision of the Proposed Method 

In simulations, the number of sampled points equals 1024, the sampling frequency 

equals 2 0 0 0 H z and the frequency resolution is / 0 .9 7 6 6 H z
s

f f N   . The windows of 

rectangular and Hanning are used respectively. In order to visually reflect the inherent law 

of signal spectrum, signal frequency is selected with frequency resolution as a basic unit. 

Signal frequency range from 0 .5 f to 2 .5 f and 4 9 7 .5 f to 4 9 9 .5 f , step length 

equals 0 .0 5 f . The phase differences are calculated by the proposed method and the 

relative errors of calculation are shown in Figure 4. Apparently, the proposed method has 

higher precision than universal DFT-based method. The error of DFT method fell sharply 

close to the lower limit of double precision arithmetic when the relative frequency
0

/
d

f f  

is an integer. This is because side lobe of the negative frequency in positive spectrum is 

exactly zero and doesn’t have any impact on positive spectrum. 
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Figure 4. Relative Error of Phase Difference Measurement 

6.4. Application in CMF 

To experimentally validate the proposed method, a system for CMF signal processing 

has been developed, as shown in Figure 5. We select a kind of CMF(F200S) with a 1700R 

transmitter. A 4-channal dynamic signal acquisition NI 9234 which operates with 

sampling rate of 20 000Hz is used to sample the CMF’s oscillation signals. The signal 

frequency of CMF sensors equals about 198Hz. Mass flow measured by the scale is 

deemed as the actual value. 

 

DN50

 

Valve1

CMF(F200S)  CMF(TQ-884)
 

 

Water tank

 

Valve2

Valve3

scale

Pump

 

Figure 5. Block of the Experimental System 

According to CMF’s principle, the mass flow rate is calculated by the time interval t , 

which depends on the frequency and the phase difference. The SGA is taken as 

comparisons. 

Table 1. Experimental Results 

Mass flow 

(kg/min) 

Theoretic value of time 

interval(kg/min) 

The SGA 

(kg/min) 

The proposed method 

(kg/min) 

2.28 16.4143 15.6657 16.4623 

8.50 61.0783 58.2380 61.2571 

16.84 120.9653 115.2087 121.3193 

 

As shown in Table 1, the results of the proposed method are more close to the theoretic 

values compared with the SGA. Then, we come to the conclusion that the proposed 

method is effective and practical.  

 

7. Conclusion 

For phase difference measurement method based on DFT, there is a problem unable to 

slide over that spectrum leakage has a disadvantage impact on precision. In this paper, we 

demonstrate how spectrum leakage influence the performance of the DFT based method 

and put forward a novel method based on recursive DFT with short range leakage and 

long range leakage both been considered. Simulation and experimental results show that 

the accuracy of phase difference measurement has largely improved compared with the 

SGA. Precision of the proposed method can be improved father by selected appropriate 
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windows. What’s more, the proposed method can also be used to track dynamic phase 

difference. Further research is under discussion. 
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