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Abstract 

This paper deals with the ambiguity problem of blind source separation (BSS) in the 

case where continuously received mixture signals are split in time and processed block 

by block. Due to the inherent permutation and scaling ambiguities of BSS, tying the 

separated components at each adjacent time blocks doesn’t recover the original source 

signals correctly in general. Inspired by the Permutation Method of reconstructing 

source signal blocks in time domain, a new ambiguity elimination approach is proposed 

in this paper. This method aims to concatenate the separated components in adjacent 

blocks by artificially setting contrast blocks for each adjacent time blocks. The core idea 

of this method is to utilize the associativity between components recovered from contrast 

blocks and corresponding adjacent blocks. Compared with Permutation Method, the 

main advantage of this new method consists in the fact that it is much more efficient in 

terms of separation quality and computational speed. Besides, a tradeoff can be adjusted 

between separation quality and computational speed by choosing different length of 

contrast blocks. Real-life experiments are performed to validate the performance of this 

method on the wireless communication system with two transmitting and receiving 

antennas. 
 

Keywords: Blind source separation; permutation and scaling ambiguities; adjacent 

signal blocks; contrast blocks 

 

1. Introduction 

In recent decades, blind source separation (BSS) has been applied in a wide variety of 

fields such as array processing, passive sonar, seismic exploration, speech processing, 

multi-user wireless communications, etc [1]. In the case of a linear multi-input/multi-

output (MIMO) instantaneous system, BSS corresponds to independent component 

analysis (ICA), which is now a well recognized concept [2]. 

However, for BSS one problem is inhered from the property of the following 

ambiguities as presented in [3]. The first ambiguity is the existence of the unknown 

complex scaling factor, which results in the ambiguous phase and amplitude in separated 

signals. The other ambiguity is the permutation of the separated signals. These 

ambiguities cause problems when continuously incoming measurement data is split in 

time and when they are processed block by block. Tying components at adjacent blocks 

without permutation and rescaling does not recover the original signals correctly. In order 

to solve the problem, several methods have been contrived as follows. 
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Scaling ambiguity, i.e., amplitude and phase indeterminacies can be solved using split 

spectrum introduced by Murata et. al., [4]. For the permutation problem, there have been 

tried a method using similarities between separate spectra [5], a method substituting the 

initial weights at a frequency by those learned at its adjacent frequency [6] and a method 

taking advantage of directivity of array microphones [7-8]. Above all, FastICA [6, 9] 

proposed by Hyvarinen is expected to relax the permutation problem, because it separates 

the signal in order of large non-Gaussianity. DOA type [3], [10] methods tie signal blocks 

with similar DOA and require an array manifold. Since it requires an array manifold, it 

degrade permutation accuracy by calibration error. Correlation based methods [11, 4] 

compute the correlation coefficient of all possible combination of separated signals in 

adjacent blocks. But they are not appropriately used in practical application in terms of 

computational resource. 

Recently, a new permutation method for ICA separated source signal blocks in time 

domain has been proposed in [12], which utilizes the associativity in column vectors of 

an estimated mixing matrix and a tracking filter. It has advantages of no required array 

calibration, efficient computation and real time updatability, which are highly beneficial 

for radar or communication system type applications. However, the tracking filter is 

difficult to control and complex to design, which affects the estimated accuracy. Besides, 

when the number of blocks is large, the tracking process is very time consuming. 

Inspired by the permutation method in [12], a similar ambiguity elimination method is 

proposed in this paper. We propose to set contrast blocks for each adjacent signal blocks, 

and utilize the associativity between separation signals recovered from contrast blocks 

and corresponding adjacent blocks to eliminate the permutation and scaling ambiguities. 

Compared with permutation method in [12], our method is more efficient in terms of 

separation quality and computational speed, which is significantly striking with large 

number of blocks. Besides, a tradeoff can be adjusted between separation quality and 

computational speed by choosing appropriate length of contrast blocks. Realistic 

experiments based on the wireless communication system validate the performance of 

our proposed method. 

This paper is organized as follows. System model and assumptions are shown in 

Section 2. Our proposed new ambiguity elimination method is introduced in Section 3. 

Experimental results are illustrated in Section 4. Section 5 concludes this paper. 

 

2. System Model and Assumptions 
 

2.1. System Model 

In this paper, we consider a N-dimensional complex-valued source signal denoted by 

1 1 1
( ) [ ( ) , , ( )] [ ( ) ( ) , , ( ) ( )]

T T

N r i N r N i
t s t s t s t is t s t is t   s , where T means the 

transpose. A M-dimensional observation signal results from the linear mixture of sources, 

denoted by 
1 1 1

( ) [ ( ) , , ( )] [ ( ) ( ) , , ( ) ( )]
T T

M r i M r M i
t x t x t x t ix t x t ix t   x . The input-

output relationship can be described as: 

   t tx A s                                                                (1) 

where A is the mixture matrix of M N , representing the linear mixing system, 

which is composed of M  row complex-valued vectors, i.e., 
1 2

[ , , , ]
T

M
Α a a a .  

Similarly, we consider a N-dimensional recovered signal to estimate the sources, 

which is denoted by      1 1 1
t [ t , , t ] [ ( ) ( ), , ( ) ( )]

T T

N r i N r N i
y y y t iy t y t iy t   y . 

The separator can be described as: 

   t t
H

y W x                                                                        (2) 
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where W is the separation matrix of M N , representing the linear separating system, 

which contains N  column complex-valued vectors, i.e., 
1 2

[ , , , ]
N

W w w w . 
H

W  

stands for the Hermitian of W , that is W  is transposed and conjugated. Without loss of 

generality and for simplicity, we assume the number of sources equal to that of observed 

signals, i.e., N M  in this paper. 

 

2.2. Assumptions on the Model 

In order to recover the source signals blindly and successfully, we make two 

assumptions on the BSS system. 

A1. The source signals are stationary and statistically independent, and they have zero-

mean and unit variance and uncorrelated real and imaginary parts of equal variances. 

A2. The mixing channel is linear and instantaneous without frequency selective fading 

and environmental noise. 

 

3. New Ambiguity Elimination Method 
 

3.1. Permutation and scaling ambiguities 

In order to introduce our new approach more generally, we consider P sources and Q 

estimations and assume P=Q=N for simplicity in this section. We choose 
H

G W A  as 

the mixture/separation matrix, in which the elements are: 

1 1 1 2 1

2 1 2 2 2

1 2

N

N

N N N N

g g g

g g g

g g g

 

 

 
 

 

 

G                                                                 (4) 

The recovered signals are the estimations of sources up to permutation and scaling 

ambiguities, i.e., y G s   

1 1 1 1 2 1 1

2 2 1 2 2 2 2

1 2

N

N

N N N N N N

y g g g s

y g g g s

y g g g s

     

     

     
     

     

     

                                                     (5) 

where , , 1, 2 , ,
g ij

i i j j i j j
y g s g e s i j N



   . The permutation ambiguity exists 

when i j  and the scaling ambiguity, amplitude and phase indeterminacies, exist when  

1
i j

g   or 0
ij

g
  . The ambiguities are common to all BSS methods; fortunately, they 

are insignificant in most applications.  

However, when the mixing data is split in time and processed block by block, tying the 

separated signals in each time block may not recover the original sources correctly. More 

precisely, the separated signals of each adjacent block may differ in permutation, 

amplitude and phase, which may lead to indeterminacy when they are tied together. As 

shown in Figure 1, it can be seen obviously that the ambiguity problem exists between 

source signals and recovered signals when tying recovered components block by block. 
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Source 

signals

Separated signals
Time

 

Figure 1. Ambiguities between Source Signals and Recovered Signals 

3.2. Contrast Blocks 

In this paper, we assume that the length of each time block is T. We denote the i-th 

block of mixture signals by (1 : ) [ (1), (2 ), , ( )]
i i i i i

T T x x x x x  and the 

corresponding separated signal is (1 : ) [ (1), (2 ), , ( )]
i i i i i

T T y y y y y . According to 

above analysis, we have 
i i
y G s  as: 

11 1 1 1 2 1

22 2 1 2 2 2

1 2

i i i i

N

i i i i

N

i i i i

NN N N N N

sy g g g

sy g g g

sy g g g

     

     

     
     

        
    

                                                (6) 

In this paper, we artificially set contrast blocks for each adjacent blocks denoted by 

(1 : ) [ (1), (2 ), , ( )], 1, 2 ,
i i i i i

T T i  Φ Φ Φ Φ Φ , which is composed of last L1/T 

samples of former block and first L2/T samples of latter block. Without lose of generosity, 

we assume L1= L2=L in this paper. For instance, 
i

Φ  is the contrast block of 
i

x  and 
1i 

x , 

i.e.,  

1 1 1( 1) ( 1) 1
[ ( 1) , ( 2 ) , , ( ) , (1) , ( 2 ) , , ( ) ]

i i i i i i iL L
T T T T

L L L

   
  Φ x x x x x x       (7) 

for which the corresponding separation signals is denoted by 
i

z , and we assume T is 

divisible by L in this paper. The n-and (n+1)th mixture blocks and corresponding nth 

contrast block are shown in Figure 2 with L=2, in which the overlapping signals are 

artificially set. 

1 T(1) TT/2

… … … …
T/2

The nth block The (n+1)th block

The received mixture signals

samples
The overlapping 

signals

The nth contrast block

 

Figure 2. The n-and (n+1)th Mixture Blocks and Corresponding nth Contrast 
Block with L=2 
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3.3. Procedure of New Ambiguity Elimination Method 

As we mentioned above, the permutation and scaling of separated signals may differ 

for each signal block, which may result in ambiguity when tying them together. Based on 

the assumptions A1, all the sources are zero-mean and unit variance. Therefore, we can 

normalize the amplitude of separated signals for all time blocks so that the amplitude 

ambiguity can be eliminated. The remaining permutation and phase indeterminacies will 

be eliminated by using our proposed method, which is shown as follows. 

 

For 1, 2 ,i   

Step1: 
1 1

( ), ( ), ( )
i i i i i i

B SS B SS B SS
 

  y x y x z Φ  

Step2: 

( 1) 1
( ( 1 : ) . * ( (1 : )) ) ( )

i i i HL T
T T T

L L L


  y z

1( 1) 1
( ( 1 : ) . * ( (1 : )) ) ( )

i i i HL T
T T T

L L L


  z y  

Step3:  

for 1, 2 , ,j N  

           [ 1, 1] m a x ( ( ( , :) ) )te m p m a r k a b s j   

           [ 2 , 2 ] m a x ( ( ( 1, :) ) )te m p m a r k a b s m a r k   

           
1 1 1 1

2 2
, ,

i i i i

j j m a rk m a rk
y y y y 

   
    

if 1 1
( (1 : ) (1 : )) ( (1 : ) (1 : ))

i i i i

j j j j
n o rm y T y T n o rm y T y T

 
    

               
1 1i i

j j
y y

 
 

 
end; 

end; 

Step4:  

if 1i B   

      Go back to step1. 

end; 

End; 

 

Firstly, as shown in Step1, ( )B S S x  means to separate mixing signals using BSS 

algorithms. In this paper, we choose the fast fixed-point algorithms for complex-valued 

signals based on negentropic contrast criterion [9], which is also applied in [12]. 

Secondly, in Step2, the correlation matrices between contrast blocks and 

corresponding adjacent blocks are denoted by 
i

  and 
i

 , which are 
T T

L L
  matrices. It is 

well accepted that the expectation of random variable approximately equals to the mean 

value of all samples for one realization in time domain when the variable is stationary, 

i.e., 
1

( ) ( ( ))

T

i

E x x i T



  . Based on assumptions A1 and A2, we have following 

approximate estimations as: 
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1

1

2

1 1 2

1 1 1

1

1 1 1 2 1

1 1 1 1 1

( ) ( ) (

N

i

j j

j

N

i
N N N

j ji i i i

j j j j j N j j

j j j

N

i

N j j

j

N N N N N

i i i i i i

j j j j j j j j j j N j

j j j j j

g s

g s
E g s g s g s

g s

g s g s g s g s g s g s

E









  



 

    

  

  

  

  

   
       

   

  

  

  
  

  






  



    
1

2 1 2 2 2

1 1 1 1 1 1

1 2

1 1 1 1 1 1

)

( ) ( ) ( )

( ) ( ) ( )

N

j

j

N N N N N N

i i i i i i

j j j j j j j j j j N j j

j j j j j j

N N N N N N

i i i i i i

N j j j j N j j j j N j j N j j

j j j j j j

g s g s g s g s g s g s

g s g s g s g s g s g s





  

     

  

     

 

 

 

 
   

 

 

 

 
  

 
 



     

     

                   (8) 

1

1

2 1 1 1

1 1 2

1 1 1

1

1 1

1 1 1 2 1

1 1 1 1

( ) ( )

N

i

j j

j

N

i
N N N

j ji i i i

j j j j j N j j

j j j

N

i

N j j

j

N N N N

i i i i i

j j j j j j j j j j

j j j j j

g s

g s
E g s g s g s

g s

g s g s g s g s g s

E






  



  



   

   

  
  

  

  
    

     
   

  

  


  
  

  






  



   
1

1 1

1 1 1

2 1 2 2 2

1 1 1 1 1 1

1 1 1

1 2

1 1 1 1 1 1

( )

( ) ( ) ( )

( ) ( ) ( )

N N

i

N j j

j

N N N N N N

i i i i i i

j j j j j j j j j j N j j

j j j j j j

N N N N N N

i i i i i i

N j j j j N j j j j N j j N j j

j j j j j j

g s

g s g s g s g s g s g s

g s g s g s g s g s g s

 

 

     

     

     

     








  

  



 

     

     











 

 

 

 

 


        (9) 

where  

11 1 1 2 1

22 1 2 2 2

1 2

i i i

N

i i i

i N

i i i

NN N N N

sg g g

sg g g

sg g g

     

   
  

   
   

         

z                                                       (10) 

1 1 1

11 1 1 2 1

1 1 1

21 2 1 2 2 2

1 1 1

1 2

i i i

N

i i i

i N

i i i

NN N N N

sg g g

sg g g

sg g g

  

  



  

   

   

   
   

    
  

y                                                       (11) 
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According to assumption A1 and A2, we known all the sources are zero-mean and unit 

variance, and have uncorrelated real and imaginary parts of equal variances. Hence, we 

have: 

1 2 1 2

1 1

1 1 2 2

{ } { ( )( )}

{ }

N N

i j N N

i j

N N

E s s E s s s s s s

E s s s s s s N

   

 

  

      

    

 
                                      (12) 

Thirdly, in Step3, we use the Matlab functions [ 1, 1] m a x ( ( ( , :) ) )te m p m a r k a b s j   

and [ 2 , 2 ] m a x ( ( ( 1, :) ) )te m p m a r k a b s m a r k   to find the correct following component 

of the j-th separated signals in the (i+1)-th block, in which m a x  means finding the 

maximization of a row vector and returns the value and corresponding column index as 

temp and mark respectively. And abs means the absolute value or norm value when it 

corresponds to be complex-valued.  

If we assume it just happens that there are no permutation indeterminacy between 
i

y  

and 
1i 

y , then 
i

  and 
i

  can be simplified to:  

2

1 1 1 1 1

2

2 2 2 2 2

2

1 1 1 1

2 2 2 2

( ) 0 0

0 ( ) 0

0 0 ( )

( ) 0 0

0 ( ) 0

0 0 ( )

i i

i i

i

i i

N N N N N

i i

i i

i i

N N N N

g g s

g g s
E

g g s

g g

g g

g g













 
 

  
   

 

 


 

 

 


 
 

 
  

                         (13) 

21

1 1 1 1 1

21

2 2 2 2 2

21

1

1 1 1 1

1

2 2 2 2

1

( ) 0 0

0 ( ) 0

0 0 ( )

( ) 0 0

0 ( ) 0

0 0 ( )

i i

i i

i

i i

N N N N N

i i

i i

i i

N N N N

g g s

g g s
E

g g s

g g

g g

g g

 

 

 

 

 

 

 
 

  
   

 

 


 

 

 


 
 

 
  

                       (14) 

Note that there exists phase ambiguity in (13) and (14). In order to eliminate it, we 

reformulate the phase of the following signals by   in Step 3. More precisely, we only 

consider the case ( ) 1
i i

i i i i
g g


    and 

1
( ) 1

i i

jj jj
g g

 
   , which may not satisfy the 

practical needs absolutely. However, note that the approximate estimation is well 

acceptable and suitable, when our system model and assumptions are considered in this 

paper. More complex phase ambiguities, ( ) 1
i i

i i i i
g g


   or 

1
( ) 1

i i

jj jj
g g

 
   , will be 

addressed in our latter work. After adjusting the phase of separated signals for adjacent 

blocks, the correlation matrices become identity ones, i.e., 
i

  I  and 
i

  I .  
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Finally, in Step4, B denotes the number of blocks, which determines when the method 

ends. 
 

4. Experimental Results and Analysis 

Similar to [12], a wireless communication system with two transmitting and receiving 

antennas is constructed in this paper, which is shown in Figure 3. For simplicity, we 

assume the carrier and local frequencies are the same, i.e., 
1 2 3 4 0

        . And 

the synchronous and carrier frequency offset problems are not considered in this paper.  

PC
1I

1cos( )t

1sin( )t

PC
2I

2cos( )t

2sin( )t

3cos( )t

3sin( )t

LP

LP

4cos( )t

4sin( )t

LP

LP

PC

1I


2I 

1Q 

2Q 

1Q

2Q

 

Figure 3. Wireless Communication System Model 

The transmitted source signals are complex-valued, denoted by: 

1 1 1

2 2 2

s I Q i

s I Q i

   
    

   

s                                                                (15) 

As shown in Figure 3, the sources are modulated on carrier frequencies, which is send 

out through transmitting antennas. At the receiver, the received signals are demodulating 

through local frequencies.  

After low filtering, the mixing signals can be approximately seen as the mixture of 

sources, which are represented as: 

1 1 1 1 1 1 2 1

2 2 2 2 1 2 2 2

x I Q i a a s

x I Q i a a s

        
           

        

x x A s                             (16) 

where A denotes the wireless channel (mixing system), which is unknown. The 

separating operator is given as: 

1 1 1 1 2 1

2 2 1 2 2 2

H

H
y w w x

y w w x

     
        
     

y y W x                               (17) 

where y  is the approximate estimation of sources. 

To satisfy A1, we set the distance of two transmitters about 5 meters away and make 

sure that they transmit signals independently. In this way, the source signals are 

statistically independent, even though they are not absolutely independent. However, the 

approximate independence between sources is accepted, which is verified by our 

experimental results in the following. 

To satisfy A2, we set the distance between transmitters and receivers about 5 meters 

away, which ensures that the wireless channel is as approximately linear and 
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instantaneous as possible. Although the mixing system is not absolutely linear and 

instantaneous, it is so approximate that the experimental results prove that it works well. 

In order to satisfy the assumptions A1 and A2, we use two E4438C [13] as the 

transmitters, which can send radio signals in the form of single, AM, BPSK, speech and 

so on. At the receiver, we use the USRP with GUN Radio [14] device to receive the RF 

signals.  

 

4.1. Performance Validity 

We choose two single signals as sources. The carrier frequency is 30 MHz, i.e., 

0
3 0 M H z  . When the sample rate is fixed, we set the number of samples of each 

block T=1000 and the number of blocks B=4. Here we set L=2. The transmitted power is 

0 dBm and the classical algorithm in [9] is chosen as the separation method. The 

experimental results are shown in Figure 4, Figure 5 and Figure 6. 
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Figure 4. Mixing Signals of Four Time Blocks in Time and Frequency 
Domain 
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Figure 5. Separated Signals of Four Time Blocks without Concatenating 
Using Our Method in Time and Frequency Domain 
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Figure 6. Separated Signals of Four Time Blocks Concatenated Using Our 
Method in Time and Frequency Domain 

It can be obviously seen from Figure 5 that the reconstructed signals doesn’t recover 

the original signals correctly when tying the separated components at each adjacent time 

blocks. Besides, the fact that the original signals are not successfully rebuilt can also be 

observed form the frequency domain in Figure 5, which is similar to that of mixing 

signals in Figure 4. Compared Figure 5 and Figure 6, we can see clearly that our 

proposed method successfully eliminate the permutation and scaling ambiguities when 

tying the signals blocks together, which is especially apparent in the frequency domain of 

Figure 6. In order to verify the performance of our method set further, the corresponding 

correlation matrices are shown as follows. 

1
0 .0 0 7 1 0 .0 0 0 9 i

0 .0 0 3 2 0 .0 0 7 6 i


  

 
 


0 .9 9 5 0 + 0 .1 0 7 3 i

0 .6 1 3 0 - 0 .8 2 9 1 i
  

1
0 .0 0 5 8 0 .0 0 10 i

0 .0 0 5 7 0 .0 0 3 5 i

 

  
  

0 .2 3 0 8 + 0 .9 4 4 5 i

0 .9 9 1 0 - 0 .1 2 7 7 i
 

2
0 .0 0 4 8 0 .0 0 5 7 i

0 .0 0 0 6 0 .0 0 6 3 i


  

 
 


0 .9 3 8 8 + 0 .3 4 1 2 i

0 .3 5 5 8 + 0 .9 5 8 7 i
 

2
0 .0 0 3 7 0 .0 0 1 9 i

0 .0 0 0 0 0 .0 1 2 0 i


 

 
 


-0 .3 0 6 1 - 0 .9 4 0 7 i

0 .7 9 7 5 - 0 .6 1 1 0 i
 

3
0 .0 0 2 2 0 .0 0 3 7 i

0 .0 0 6 6 0 .0 0 2 5 i

 

 
 

 
-0 .8 9 9 9 + 0 .4 2 2 3 i

-0 .0 9 3 4 - 1 .0 0 3 7 i
 

3
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

 

 
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
-0 .7 8 3 5 + 0 .6 1 6 4 i

-0 .6 2 3 6 + 0 .7 8 3 6 i
 

As for 
1

  and 
1

 , [ 1, 1] [1.0 0 0 7 , 2 ]te m p m a r k   and [ 2 , 2 ] [ 0 .9 9 9 2 , 2 ]te m p m a r k  , 

which means that the first separated signal in i-th block corresponds to the second one in 

the corresponding overlapping signal, which in turn corresponds to the second one in the 

(i+1)-th block. Then, we can see that the separated components can’t be recovered 

correctly when tying the i-th and (i+1)-th blocks together, which also can be clearly 

observed in the time domain in Figure 5.  
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4.2. Performance Analysis 

In this section, we perform experiments to analyze the performance of our proposed 

method and Permutation Method in [12]. We set the number of samples of each block 

T=500 and the number of blocks B varies form 10 to 50. Here we set L=2, 4, 10, 20, 50. 

The source signals are two AM signals. The transmitted power is 0 dBm and the classical 

algorithm in [9] is chosen as the separation method. The mean value of mean square error 

(MSE) between sources and separations is chosen as the performance criterion of 

separation quality. And the execution time of concatenating all separated blocks is chosen 

as the measure criterion of computational speed, for which the computer is Intel (R) Core 

™ 2 Duo CPU, E8400 @ 3.0GHz, 2.99GHz, 3.00 GB RAM. The experimental results are 

illustrated in Figure 7 and Figure 8. 
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Figure 7. MSE between Sources and Separations for Permutation Method 
and Our Proposed Method with L=2, 4, 10, 20, 50 Averaged over 100 Monte-

Carlo Runs 
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Figure 8. Execution Time of Concatenating the Recovered Sources in 
Different Number of Locks for Permutation Method and Our Proposed 
Method with L=2, 4, 10, 20, 50 Averaged over 100 Monte-Carlo Runs. 

As shown in Figure 7, it can be observed clearly that the MSE values of Permutation 

Method and our proposed method decrease with the number of blocks increasing. When 
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the block size is fixed, the MSE of our approach differs with the length of contrast blocks 

changing. More precisely, when B varies from 10 to 50, our proposed method 

outperforms Permutation Method with L=2, 4, 10, 20, and the performance of our 

approach becomes slightly better and better with L decreasing. However, when B=50, our 

method performs worse than Permutation Method, which is caused by the fact that the 

number of samples of the contrast blocks is not many enough. Hence, it can be predicted 

that, in the same condition, the performance of our method will be worse and worse when 

L is larger than 50. Since the choice of L relates to the length of signal blocks, it is 

difficult to determine the exact L such that our approach performs better or worse than 

Permutation Method.  

From Figure 8, we can see obviously that the execution time of our proposed approach 

with L=2, 4, 10, 20 and 50 is less than that of Permutation Method. The advantage of our 

method becomes more and more apparent when the number of blocks increases and the 

length of contrast blocks decreasing. For instance, when B=20, the execution time of 

Permutation Method is about 70s, while our method needs about 61s, 50s, 32s, 22s, 10s, 

respectively, for L=2, 4, 10, 20 and 50. Furthermore, when B=50, the time of the former 

is about 158s, while the latter needs about 125s, 110s, 92s, 80, 55s. The time of our 

proposed method is about one third of that of Permutation Method. And it can be 

predicted that, when L increases, the time of our method will be less, which is not 

illustrated in Figure 8. 

Combined Figure 7 and Figure 8, we can draw the conclusion that, when the block size 

and corresponding length of contrast blocks are chosen appropriately, our proposed 

method is more efficient than Permutation Method in terms of separation quality and 

computational speed. For example, when B=50 and L= 20, the performance of our 

approach is not only better than Permutation Method but also only needs half time of the 

latter. However, when B=50 and L= 50, our approach needs only one third time of 

Permutation Method but the performance of it is worse than the latter. Therefore, the 

performance of our proposed method with respect to separation quality and 

computational speed can be adjusted according to the choice of block size and 

corresponding length of contrast blocks. More analysis about the exact relationship 

between them in detail will be included in our latter work. In general, when the number 

of samples of signal blocks is about 1000, L=30 to 50 is recommended. 
 

5. Conclusion  

In this paper, a new ambiguity elimination method is proposed to solve the 

permutation and scaling indeterminacy problem when BSS mixture signals are split in 

time and processed block by block. We artificially set contrast blocks for each adjacent 

time blocks. By utilizing the dependent correlation between components recovered from 

contrast blocks and corresponding adjacent blocks, the permutation and scaling of the 

latter block is reformulated identical to the former. The performance of our method is 

confirmed through realistic experiments. Future work includes the extension of our 

method to convolution mixture and extension of our wireless communication system 

model to more transmitting and receiving antennas. 

 

Acknowledgments 

This work was supported by the Natural Science Foundation of Jiangsu Province of 

China under Grant Nos. BK2012057 and BK20130066 and by the National Natural 

Science Foundation of China under Grant Nos. 61172061, 61201242 and 51308541. 



International Journal of Signal Processing, Image Processing and Pattern Recognition 

Vol.8, No.11 (2015) 

 

 

Copyright ⓒ 2015 SERSC  395 

Reference 

[1] A. Yeredor, “Performance Analysis of the Strong Uncorrelating Transformation in Blind Separation of 

Complex-valued Sources”, IEEE Transactions on Signal Processing, vol 60, no. 1, (2012), pp. 478-483. 

[2] M. S. Alireza and D. R. Bhaskar, “An ICA-SCT-PHD Filter Approach for Tracking and Separation of 

Unknown Time-varying Number of Sources”, IEEE Transactions on Audio, Speech, and Language 

Processing, vol. 21, no. 4, (2013), pp. 828-841.  

[3] F. Yin, T. Mei and J. Wang, “Blind Source Separation based on Decorrelation and Nonstationarity”, 

IEEE Transactions on Circuits and Systems I, vol. 54, no. 5, (2007), pp. 1150-1158.  

[4] N. Murata, S. Ikeda and A. Ziehe, “An Approach to Blind Source Separation based on Temporal 

Structure of Speech Signals”, Neurocomputing, vol. 41, no. 1-4, (2001), pp. 1-24.  

[5] S. Ding, M. Otsuka, N. Ashizawa, T. Niitsuma and K. Sugai, “Blind Source Separation of Real world 

Acoustic Signals based on ICA in Time-frequency Domain”, Technical Report of IElCE, EA2001-1, 

(2001), pp. 1-8.  

[6] A. Hyvarinen and E. Oja, “Independent Component Analysis: Algorithms and Applications, Neural 

Networks”, vol. 13, no. 4-5, (2000), pp. 411-430.  

[7] H. Saruwatari, T. Takatani, H. Yamajo, T.Nishikawa and K. Shikano, “Blind Separation and 

Deconvolution for Real Convolutive Mixture of Temporally Correlated Acoustic Signals using SIMO 

Model-based ICA”, Proceedings of the 4th International Symposium on Independent Component 

Analysis and Blind Signal Separation, (2003), pp. 549-554.  

[8] H. Sawada, R. Mukai, S. Araki and S. Makino, “A Robust and Precise Method for Solving the 

Permutation Problem of Frequency-domain Blind Source Separation”, Proceedings of the 4th 

International Symposium on Independent Component Analysis and Blind Signal Separation, (2003), pp. 

505-510. 

[9] E. Bingham and A. Hyvarinen, “A Fast Fixed-point Algorithm for Independent Component Analysis 

for Complex valued Signals”, Int. J. of Neural Systems, vol. 10, no. 1, , (2000), pp. 1-8. 

[10] M. Z. Ikram and D. R. Morgan, “A Beamforming Approach to Permutation Alignment for Multichannel 

Frequency-domain Blind Speech Separation”, Proceedings of the the 3th International Symposium on 

Independent Component Analysis and Blind Signal Separation, Florida, USA, (2002), pp. 881-884. 

[11] J. Anem¨uller and B. Kollmeier, “Amplitude Modulation Decorrelation for Convolutive Blind Source 

Separation”, Proceedings of the ICA, Hong Kong, (2000), pp. 215-220.  

[12] T. Amishima, A. Okamura, S. Morita and T. Kirimoto, “Permutation Method for ICA Separated Source 

Signal Blocks in Time Domain”, IEEE Transaction on Aerospace and Electronic Systems, vol. 46, no. 

1, (2010), pp. 899-904.  

[13] http://www.home.agilent.com. 

[14] http://gnuradio.org/redmine/projects/gnuradio/wiki/USRP. 

http://www.home.agilent.com/


International Journal of Signal Processing, Image Processing and Pattern Recognition 

Vol.8, No.11 (2015) 

 

 

396   Copyright ⓒ 2015 SERSC 

 


