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Abstract 

Transmissibility function (TF) was used in structural state detection which examined 

the change of the response-only vibration characteristics. The technology of signal 

correlation was utilized to obtain the TF between two testing points. Multiple TFs under 

different states were calculated as basic TFs and formed a state matrix. Subsequently, 

non-negative matrix factorization (NMF) was performed for the state matrix. Then both 

the basic and testing TFs were projected to the feature subspace derived from NMF so as 

to obtain the state feature index vectors, respectively. Finally, the Euclidean distance 

between state feature index vectors was defined as the state indicator. The experimental 

results indicated that this method can achieve better detection accuracy than that using 

magnitude indicator. Actually, a result with 100 percent correct detection was achieved 

when proper rule of dimensionality reduction was selected. This method is essentially a 

multivariate statistical process monitoring (MSPM) method. It is feasible in vibration-

based structural state detection in the situation where the excitation signals are 

unavailable or inaccessible. 

 

Keywords: Transmissibility function, State detection, Response-only, Negative matrix 

factorization 

 

1. Introduction 

Structural state change will cause changes of structural physical properties such as 

mass, damping and stiffness. The changes in these physical properties will be reflected by 

the vibration characteristics. This has led to the development of vibration-based structural 

state detection methods, which examine the changes in the vibration characteristics of 

structures as the indicators of state [1].
 
Among the existing vibration-based method, to 

detect the structural state based on response-only data is more attractive for engineering 

structures, especially in the situations where the excitation force are unavailable or 

inaccessible. 

The TF is a well-known linear system concept reflecting the intrinsic characteristics of 

structure. It does not depend on the excitation forces and needs neither modal 

identification nor analytic or numerical model of the structure. Thus, the TF was widely 

applied in the state detection in various engineering structure. For example, Zhang et al. 

used both translational and curvature transmissibility to detect damage on a composite 

beam, and also proposed magnitude and phase damage indicators [2]. Mao and Todd 

http://dict.youdao.com/w/correct/
http://dict.youdao.com/w/dimensionality/
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investigated two features computed from transmissibility measurement changes to 

quantify connection stiffness loss: root-mean-square error and dot-product difference [3]. 

Nuno et al., proposed a transmissibility damage indicator based on the response vector 

assurance criterion (RVAC) [4]. Beyond the experimental validation of using TF for state 

detection, the sensitivity of TF against structural mass and stiffness change was 

analytically derived and validated by numerical examples [5]. 

In real practice, noise always contaminates the measurements, which may lead to 

reduced sensitivity in the transmissibility as a state-sensitive feature. At this point, the 

statistics-based method should be more robust in dealing with a real implementation that 

is subject to background noise, measurement error, and other systematic uncertainties. 

Actually, the TFs are nonnegative multivariate vectors. Thus, the MSPM method should 

be more reasonable method such as principal component analysis (PCA), partial least 

squares (PLS) and Non-negative Matrix Factorization (NMF). Being different from PCA 

and PLS, the NMF proposed by Lee and Seung makes all of the decomposed components 

to be not negative in process of nonlinear dimensionality reduction [6]. This non-negative 

constraint reflects the essential characteristic of the data better. Wang et al. used NMF to 

reduce the dimensionality of time-frequency images data to diagnose fault for diesel valve 

trains [7]. Li et al. presented a fault detection method based on NMF for non-Gaussian 

processes, and the result of the simulation experiment indicated that the detection 

efficiency and accuracy of the NMF method is better that PCA method [8]. 

In this work, a structural state detection method using TF in conjunction with 

NMF was described. The structural state matrix was constructed by TFs served as 

the column vectors. Then NMF was employed to extract the state feature index 

vectors, and the Euclidean distance between the state feature index vectors was 

defined as the state indicator. The validity of this method was demonstrated by an 

actual experiment on the test platform of ballastless track. 

 

2. Materials and Methods 
 

2.1. Transmissibility Function 

The TF is defined as the ratio of two response frequency spectra of like variables 

(motion response/motion input) xk and xj. Suppose a n-degree-of-freedom (n-DOF) linear 

structure is excited by external force f(t)=[ f1(t), f2(t),…, fn(t)]. If the excitation force 

contains uniform spectral density (white-noise), such as ambient excitation, the 

fourier transform of fk(t) becomes a constant C. At this point, the acceleration TF between 

output DOF i and reference-output DOF j can be calculated as: 
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where A(ω) is the frequency spectra of response acceleration signal, Hik(ω) and Hjk(ω) are 

entries of the n×n frequency response function (FRF) matrix H(ω). If the external 

excitation force is only applied to the k-th DOF, i.e., f(t)=[0, 0,…, fk(t), …0], Eq.(1) turns 

to: 
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The TF defines how vibration (amplitude and phase) is transmitted between two testing 

points on structure. It carries complete information on the dynamic behavior of the 

structure. In the above two case, the excitation force does not participate in the calculation 

of TF, but just provides vibration energy. In other words, the TF only depends on the 

location of the excitation force rather than its property. According to Eq.(1) and Eq.(2), 

http://dict.youdao.com/w/dimensionality/
http://dict.youdao.com/w/simulation/
http://dict.youdao.com/w/ambient/
http://dict.youdao.com/w/excitation/
http://dict.youdao.com/w/fourier/
http://dict.youdao.com/w/constant/


International Journal of Signal Processing, Image Processing and Pattern Recognition 

Vol.8, No.11 (2015) 

 

 

Copyright ⓒ 2015 SERSC  311 

TF is a function of the FRF which is determined by the inherent characteristic of the 

structure. Therefore, TF can be utilized to deal with state detection. 

In practice, the most common choice to estimate the TF is using an estimator given by 

Devriendt C et al. [9], which can be denoted as: 
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where Sij(ω) is the cross power spectra between the output  Ai(ω) and the reference-

output Aj(ω), and Sjj(ω) is the auto power spectra from the reference-output Aj(ω). 

 

2.2. Non-negative Matrix Factorization 

NMF is a multivariable analysis method defined as: In practical cases, the observations 

V∈R+
n×m

 
will be approximated by V≈WH, where W∈R+

n×r
 is the basis matrix and 

H∈R+
r×m

 is the coefficient matrix.  

Usually, r is chosen less than n or m, so that W and H are smaller than the original 

matrix V. The selection of r generally meets the following condition: 

                                                        
 m n r m n                                                            (4) 

The column vector in V can be regarded as the weighted sum of that in W, while the 

weight coefficients, i.e., the corresponding elements of the column vector in H, are all 

positive. At this point, the NMF is actually an optimization problem that can be calculated 

using a multiplicative iterative algorithm according to a certain cost function F. The cost 

function is used to quantify the quality of the approximation, which can be usually 

constructed by using some measure of distance between two non-negative matrices. In 

this work, the measure was selected as the square of the Euclidean distance between V 

and WH denoted as [10]: 
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The “multiplicative update rules” for NMF can be summarized as follows:  
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2.3. State Detection based on TF and NMF 

In application, multiple time-domain acceleration signals from two testing points are 

collected under different states, health or different type and degree of states. Then the 

corresponding TFs are calculated and stored as the basic TFs. Given an arbitrary pair of 

testing acceleration signals, the task is to judge what kind of state they belong to. 

According to the principle of NMF, it is actually a process of dimensionality reduction. 

The matrix W=[w1,w2,…,wr] R+
n×r

 can be considered as a low dimensional feature 

subspace spanked by the original data set V, and wi is the base vector of the subspace. 

Therefore, the NMF is widely used in application of multivariate data process, such as 

face recognition. Here, we just treated the structural state detection as a problem that was 

congeneric with face recognition. The concrete process was summarized as follows: 

Step 1: The state matrix VR
n×m

 is constructed using the modular vectors of the 

measured TFs (hereinafter referred to as TFs) under different states as column entries, 

where n is the length of TF vectors, i.e., the number of the valid spectra lines that 

participate in the operation, and m is the number of TFs. 

Step 2: The NMF is performed for V to obtain the matrix W. Then all the measured TFs 

are projected on W so as to get a serial of projection vectors si= W
T 

· TFi, i=1, 2,…,m. 

http://dict.youdao.com/w/column/
http://dict.youdao.com/w/vector/
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Step 3: Given an arbitrary testing TFj, it is also projected on W to get a projection 

vector tj= W
T 

· TFj. The Euclidean distances between tj and si are calculated.  

Step 4: We judge the testing state being just the state that takes the minimal Euclidean 

distance between tj and si. 

 

3. Experiment and Discuss 

In this work, an experiment was carried out on the test platform of ballastless track 

with a length of 20 meters, which is built based on the design and construction standards 

of Harbin–Dalian (China) high-speed railway. Two accelerometers (PCB 353B03) were 

installed on the railhead of midspan with the interval of two groups of fasteners, as shown 

in Figure 1. A single excitation was applied on a fixed position at the left side of both the 

two sensors by a hammer with plastic hammerhead. Then the acceleration signals of 

output A and reference-output B were collected and utilized to calculate the TFs, where 

the DHDAS_5902 dynamic signal acquisition system is used. The state change of the 

track structure is obtained by loosening the fasteners between two testing points one after 

another. Thus, there were totally five states of the track structure, all fasteners tightened, 

one fastener loosened, two fasteners loosened, three fasteners loosened and four fasteners 

loosened. 

 

          
(a)                                                           (b) 

Figure 1. The Scene and Equipments of the Experiment (a) The Schematic 
Diagram, (b) The Experimental Scene and Equipments 

Under each state, the track structure was excited 20 times that resulted in a total of 20 

TFs, 15 of them were considered as the basic TFs and the remaining 5 TFs were 

considered as the testing TFs. The sampling frequency and sampling points are 10 kHz 

and 1024, respectively, which meant the frequency resolution is 9.76 Hz. All the 20 

results of the TFs under state 1, i.e., state of all fasteners tightened were illustrated in 

Figure 2., where the valid frequency range was selected from 0.3 to 1.5 kHz in order to 

reduce the influence of test-related uncertainty such as the low-frequency ambient noise. 

Thus, a state matrix VR
122×75

 was constructed. The average of the TFs under state 1 was 

also calculated and illustrated in Figure 3. Compared with Figure 2, there were visible 

differences among the average TFs under different states.  

http://dict.youdao.com/w/low-frequency/
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Figure 2. All the TFs of state 1        Figure 3. The average TF of state 1 

       
(a)                                                                   (b)  

      
(c)                                                                   (d)  

 
(e) 

Figure 4. The Euclidean Distance Results with r=10 (a) Result of State 1, (b) 
Result of State 2, (c) Result of State 3, (d) Result of State 4, (e) Result of 

State 5 

For each basic TFi (i=1, 2,…,75) and testing TFj (j=1, 2,3,4,5), the NMF was employed 

to extract the state feature index vectors by the method mentioned in Section 2.3, where 
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the value of r is selected as 10. Then the Euclidean distance between state feature index 

vectors were calculated. The results of the last testing TF for each state were summarized 

in Figure 4. 

Ideally, the former 15 results should be smaller than other ones if the testing state is 

state 1, results of 16 to 30 should be smaller than other ones if the testing state is state 2, 

and so on. However, the computed results will generate aliasing inevitably because of 

multiple factors such as computing error, tiny changes of incentive location and test-

related uncertainty. That was just the reason why multiple signals under one state were 

used, and the final decision was based on the minimal distance result. All the final 

detection results were listed in Table 1. For each testing TF, the first column recorded the 

serial number of basic TF that getting the minimal distance, and the second column 

recorded the result of state identification where symbol √ meant correct identification and 

symbol × meant misidentification. 

Table 1. The Final Detection Results with r=10 

State 
No. 

The serial number of matching basic TFs and detection results 
with r=10 

Testing 1 Testing 2 Testing 3 Testing 4 Testing 5 

1 15 √ 3 √ 3 √ 27 × 29 × 

2 30 √ 25 √ 27 √ 27 √ 29 √ 
3 44 √ 44 √ 43 √ 44 √ 44 √ 
4 54 √ 56 √ 54 √ 53 √ 56 √ 
5 63 √ 70 √ 71 √ 71 √ 64 √ 

Similarly, the same process was performed again with r=25. The results of the last 

testing TF for each state were summarized in Fig.5, and the final detection results were 

listed in Table 2. 

 

      
(a)                                                                      (b) 

      
(c)                                                                      (d) 
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(e) 

Figure 5. The Euclidean Distance Results with r=25 (a) Result of State 1, (b) 
Result of State 2, (c) Result of State 3, (d) Result of State 4, (e) Result of 

State 5 

Table 2. The Final Detection Results with r=25 

State 
No. 

The serial number of matching basic TFs and detection results 
with r=25 

Testing 1 Testing 2 Testing 3 Testing 4 Testing 5 

1 15 √ 3 √ 3 √ 12 √ 14 √ 

2 25 √ 25 √ 27 √ 27 √ 29 √ 
3 44 √ 44 √ 43 √ 45 √ 45 √ 
4 54 √ 56 √ 54 √ 53 √ 56 √ 
5 63 √ 70 √ 67 √ 67 √ 74 √ 

 

The experimental results showed that different r resulted in different detection 

result. As mentioned above, W=[w1,w2,…,wr]R
n×r

 is a low dimensional feature 

subspace spanked by the original data set V, and wi is the base vector of the 

subspace. Thus, the value of parameter r determines the proximity between the 

original data and the data after dimensionality reduction. If the value of r is too 

small, the data after dimensionality reduction is not sufficient to describe the 

original data. Some of useful information will be discarded inevitably after 

projection on the subspace, which will lead to fault detection. Conversely, if the 

value of r is too large, more redundant information and noise will be reserved, the 

NMF method will lost its significance. Realistically speaking, we did not have an 

appropriate rule to select the optimal value of r, so far. 

In order to further confirm the effectiveness of our method, the magnitude indicator 

proposed in Ref.[2] was also employed to deal with the state detection. For each state, the 

average of the former 15 TFs was considered as the standard TF in this state. Then the 

state indicator was calculated according to Eq.(7). 

                                       

          
0 0

/
h t h

i i
D T F T F d f T F d f

 

                                         (7) 

where TF
h 

means the standard TF in healthy state, TFi
t
 means the ith testing TF. Here, 

state 1 was treated as the healthy state. Based on the basic TFs, the standard state 

indicator for each testing state was firstly calculated and denoted as SDi, i=1, 2, 3, 4, 5. 

Then the values of Di for all the testing TFj j=1,2,…,25, were calculated and illustrated in 

Figure 6 successively. We judged the testing TFj belong to state i if SDi-1≤ Di <SDi, where 

SD0 =0. The final detection results were listed in Table 3, where the first column recorded 

the value of Di. It can be seen that more fault detection results were obtained than our 

method. 

http://dict.youdao.com/w/base/
http://dict.youdao.com/w/vector/
http://dict.youdao.com/w/dimensionality/
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Figure 6. The values of Di using Magnitude Indicator 

Table 3. The Final Detection Results using Magnitude Indicator 

 

4. Conclusions 

In this paper, a structural state detection method using techniques of TF and NMF 

was described. This method provided a solution to detect the presence of state 

change, but it can be further developed to detect both the presence and location of 

the state change by increasing the testing points and identifying the adjacent TFs 

successively. The availability of this method was demonstrated by an actual 

experiment on the test platform of ballastless track with an appropriate value of r in 

NMF. The assignment rule for parameter r is not discussed here and we need to do 

an in-depth research on it. 
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Situatio

n 

No. 

The values of state indicators and detection results  

Testing 1 Testing 2 Testing 3 Testing 4 Testing 5 

1 
0.026

3 
√  0.0291 √  0.0347 √  0.0231 × 

0.029

7 
√  

2 
0.035

0 
× 0.0459 √  0.0440 √  0.0439 √  

0.051

1 
√  

3 
0.061

9 
√  0.0580 √  0.0605 √  0.0588 √  

0.051

5 
× 

4 
0.070

7 
× 0.0793 × 0.0713 × 0.0771 × 

0.082

0 
× 

5 
0.059

3 
× 0.0621 × 0.0771 √  0.0751 √  

0.069

8 
√  
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