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Abstract 

Radar Cross Section (RCS) is the information available for nearly all types of radar. 

RCS is related with lots of factors, therefore the value of RCS of single batch fluctuates 

greatly, so that fails to extract the space target character. How to use RCS data of space 

target effectively has the vital significance to improve the target recognition ability of 

active narrow-band radar. The paper adopts target RCS time series to recognize the 

target. The existed track data is used to form track information base, radar track 

matching algorithm based on related functions is presented for the real-time matching of 

the current dynamic track and the previous track data for the purpose of rapidly finding 

their RCS time series under the same visual directional angle. A new kind of non-linear 

and non-stationary time frequency analysis approach Hibert-Huang Transform is then 

introduced in the paper to decompose the above RCS time series, and then the character 

index for recognition are extracted from independent intrinsic mode function obtained by 

the decomposition and the effective target recognition standards are set. The effectiveness 

and stability of the algorithm presented in the paper are verified by simulated data.   

 

Keywords: Target Recognition; RCS Time Sequence; Hibert-Huang Transform; Track 

Matching 

 

1. Introduction 

In the military field, monitoring closely the flight conditions of all aircrafts in the 

native airspace and borders is of great significance to national security. Thus, radar 

technology emerges as the times requires, in which the reflection of the target to 

electromagnetic wave (or named re-scattering) is used in detecting, tracking and 

positioning the target and also in establishing the track information of the target and 

recognizing the target's type. As is known to all, airplane flies in prescriptive flight 

segment in flight plan and every flight segment is nearly directional flight. In order to 

secure the successful accomplishment of some missions in the military field, aircrafts are 

required to approach the target in specific direction or directional interval to lower radar 

cross section (RCS) and conceal themselves, so the flight track of the target is traceable. 

The existing track data are used to construct track information bank. The real-time 

comparison of current dynamic track and previous track data can recognize rapidly the 

target type and judge its intention, enhance accuracy in commander's understanding on 

the situations in the air, giving warning or prompt messages to the target and establishing 

target reply mechanism in time. According to the target information amount offered, 

different algorithms can be utilized to calculate the relevance of dynamic track to 

historical track and match of tracks. In [1], cost-computing approach is adopted in the 

flight plan management to evaluate and program the quality of tracks. A new selection of 

factors and weights of cost function and definition of a new indicator for judgment can 

determine the consistency of tracks. The combination of genetic algorithm with ant 

colony algorithm can solve the problem of track matching in [2], but its huge amount of 
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calculation and complex construction are uneasy for project implementation. Based on 

these above methods, radar track matching algorithm based on correlation functions is 

presented in the paper. However, it is not enough to recognize the target by using track 

comparison alone. During the war, military airplane usually imitates the track of civil 

plane to conceal itself, aiming at surprise attack. RCS, embodied in radar equation, is the 

information available for nearly all character-measuring radars and indicates the target's 

property of scattering. Most of flying targets are complicated ones consisting of multiple 

independent scattering points. Every independent scattering point of the complicated 

target would produce an echo signal characterized by amplitude and phase. These echo 

signals compose a synthetic signal at radar. The variation in the relative position of each 

scattering object with observation angles or radar frequencies would be followed by the 

changes in the relative phase of echo signals from each scattering object. As Figure 

1(Figure 3.8 in [3]), it shows the relationship of full-size B-26 double-engine 

(propeller-driven) medium bomber scattering backwards on the wavelength of 10cm with 

visual directional angle. RCS can be seen as a sensitive function adapt to visual 

directional angle. The accomplishment of target recognition is impossible by using 

single-time measured value of RCS alone. The longstanding difficult problem is how to 

use effectively space target RCS to improve target recognition ability of active 

narrow-band
 [4]

. Actually, the time series of target RCS can be utilized to recognize the 

target. When the ground radar keeps stationary, the target will fly along a definite track 

and the variations in target track and its attitude are continuous, the function in which 

target echo intensity fluctuates over time will be formed. According to radar equation, 

echo intensity sequence can be transformed into RCS sequence. The time series of space 

target RCS contains abundant target information, so its existing character index can be 

used to recognize the new target, which is the main content of the study in the paper. 
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Figure 1. The Diagram Showing the Relationship of Full-Size B-26 
Double-Engine (Propeller-Driven) Medium Bomber Scattering Backwards on 

the Wavelength of 10cm with Visual Directional Angle 

Two kinds of methods are often applied to extract the character index of RCS time 

series. One is the conventional statistical analytical method. As in [5], a power spectral 

density function is adopted to observe RCS time series. In [6], such distribution models as 


2
 distribution and lognormal distribution, as well as Kolmogorov method of testing 

goodness of fit, are used to study the statistical distribution characteristics of the RCS 

dynamically measured data. However, these algorithms need numerous samples to verify 

and it is difficult to extract recognition index, and also the effects they obtained is not 

satisfactory. ARMA model time series analytical method is adopted in [7], RCS time 

series of the moving space target is known to be non-stationary, so it is very difficult for 

the conventional time series analytical method to extract its character index and recognize 

it
[8,9]

. Thus, non-stationary signal analytical method is used by many scholars nowadays. 
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The introduction of Fractional Brownian motion model in [10] is aimed at analyzing the 

RCS time series and extracting the character. At the present the character extraction and 

recognition of space target RCS time series present research depends mainly on the 

application of wavelet transform and fuzzy classification
 [11, 12]

. However, the application 

of wavelet analysis is limited by its poor time resolution in the low frequency part and its 

poor frequency resolution in the high frequency part as well as its reliance on the 

selection of wavelet function. In order to explore accurate and good properties of 

time-frequency localization, Norden E. Huang et. al., presented a new algorithm for 

analyzing the time-frequency of nonlinear, non-stationary signal, i.e., Hilbert-Huang 

Transform (HHT) in 1996[13], modified in 1999[14]. The essence of HHT is Empirical 

Model Decomposition (EMD). HHT is proved by Huang et al to have all advantages of 

the wavelet analysis and more accurate spectral structure, eliminating the resolution 

fuzziness of the wavelet analysis. Moreover, EMD can get the results with obvious 

physical meaning directly from spatial domain. For the target recognition in active radar 

system, the paper uses the existing track data to establish track database and matches the 

current dynamic track with the previous track data in real time in order to find rapidly 

their RCS time series under the same visual directional angle and recognize the space 

target. In this paper, EMD analysis will be conducted on RCS time series to seek the 

effective method to extract the character. 

 

2. Track Matching Algorithm Preliminary Option of the Previous 

Flight Segment and Selection of Matching Points 

It is irrational to use all previous flight routes to correlate with the current dynamic 

track. The paper makes a space sphere whose center is the current dynamic track point O 

and radius is range threshold 
0 1

R  at the t (t=1, 2, 3,…) moment and sieves out the flight 

segment falling into the sphere as the preliminary selection of previous matching flight 

segment, and then conducts the correlation on the corresponding point, the point of the 

previous track curve which has the shortest distance with the current dynamic track point 

O. 

 

2.1. Selection of Correlation Factors 

Through the above processing, the current dynamic track point O matching with the 

previous track is obtained in the paper. Which one of the previous tracks matches with the 

dynamic track will be considered in the following from such factors as yawing degree, 

altitude, velocity and direction. 

 

2.2. Yawing Factor 

The shortest distance from the current dynamic track point O to the previous track 

curve i is called yawing distance from this point to the track i, which can reflect the 

possibility in the matching of the track point with its previous flight segment. Thus, 

yawing distance can be regarded as a factor of correlating the dynamic track with the 

previous tracks, known as yawing factor. It is defined as: 

,
( , ) 1 /

t i
Y t i r                                        (1) 

Of which ,t i
r is the distance from the current dynamic track point O to the 

corresponding matching point ,t i
m at the t moment. It means that yawing factor is 

inversely proportional to the yawing distance ,t i
r from the dynamic track point to the 

flight segment i. 
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2.3.  Altitude Factor 

The flight altitude is fixed for each flight segment in the flight plan, and every aircraft 

has the lowest flight altitude [1], so that the flight altitude can be regarded as a factor of 

correlating the current dynamic track with the previous track, altitude factor. Therefore, 

altitude factor is in inverse proportion to the absolute value of altitude difference between 

the current dynamic track point O and the matching point ,t i
m . Shown as the following 

formula: 

,

( , ) 1 /
t i

t m
H t i h h                                      (2) 

 

2.4.  Velocity Factor 

The velocity of an aircraft is decided by its power system and also dependent on the 

given environment, task, and space position, so that the flight velocity can be considered 

as a factor of correlating the dynamic track with the previous tracks, i.e., velocity factor. 

Therefore, velocity factor is defined to be inversely proportional to the absolute value of 

the difference between the velocity 
t

v of the current dynamic track point O at the t 

moment and the velocity 
,t i

m
v  corresponding to the matching point

,t i
m . Shown as the 

following formula: 

,

( , ) 1 /
t i

t m
V t i v v                                                      (3) 

 

2.5.  Direction Factor 

It is well known that all flights in civil aviation system are in accordance with the flight 

segment designated in the flight plan and the flights in each flight segment are specific. In 

order to secure the successful accomplishment of some tasks in the military field, aircrafts 

are required to approach the target in a definite direction or directional interval for 

lowering maximally the target RCS and concealing themselves
[1]

. Direction factor can be 

hence deemed as an important factor of matching the current dynamic track with the 

previous tracks. Direction factor is accordingly defined to be: 

,

( , ) 1 s in ( )
t i

t m
t i    

 
                                  (4) 

of which 
t

  and 
,t i

m
 are respectively the motion directions of the current dynamic 

track points and its matching points.  

 

2.6. Correlation Index Definition and Judgment Standard  

These factors demonstrate their respective degree of deviation of the current dynamic 

track point information from the previous track. The assurance of the direction 

consistency between the dynamic track and the previous flight segment makes direction 

factor crucial in the track matching algorithm. Apart from direction factor, the other 

factors can be considered as having the equivalent effect. The correlation index ( , )C t i  of 

radar track point O and the flight segment i can be accordingly defined: 

,

, ,
,

( , ) 1 s in ( )
t i

t i t i

VY H

t m

t i t m t m

FF F
C t i

r v v h h

      
 

   

                   (5) 

In the above formula, , ,
Y V H

F F F are weighting coefficients. Considering the actual 
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situation, the paper takes one third of the measured standard deviation in the position, 

velocity and altitude of the reported data, which is the normalization of number within the 

absolute values. The precise track consistency matching makes each number of the three 

items inside the absolute value sign exceed one third, so that these three numbers should 

be taken as the upper bound of one third. The lower bound of the correlation index is set 

as T, the track point which fails to attain T is defined to be unrelated. That is to say, if the 

following expression is satisfied, they are determined to be correlated and vice versa.   

( , )C t i T                                           (6) 

K/N norm of track correlation can be accordingly used to make the final judgment of 

track matching, following the increase of the dynamic track points along with time. Fetch 

natural numbers N and K and make them meet the conditions: 2N  ， ( / 2 )N K N  . 

Any previous track i will be conducted with correlation detection for N times, of which 

the expression (6) is assumed to be true for K times and then the dynamic track is 

determined to be correlated with track i. 

 

2.7.  Correlation Monitoring 

In order to monitor effectively the track matching, the track correlation and escape 

quality are defined. At the t moment,  S t
i

 indicates the quality of correlating the 

dynamic track and the previous track i. Its calculation is expressed as: 

   

 

1 1
If  ( , )

0 0

i i

i

S t S t
C t i T

S

  
 



， t her e i s  
                         (7) 

The value of  S t
i  

represents the times of correlating the dynamic track with the 

previous track i at the t moment. The correlation quality reflects the accuracy and 

reliability of correlating two tracks. 

The quality  
i

Q t  of the dynamic track escaping from the previous track i at the t 

moment is defined as: 

   

 

1 1
( , ) ,

0 0

i i

i

Q t Q t
W h en C t i T

Q

  
 



  t her e i s
                         (8) 

The above expression means that track escape quality can indicate the times of the 

track i uncorrelated with the dynamic track at the t moment. 

In order to enhance the processing speed and simplify the correlation detection, track 

correlation quality and track escape quality are utilized to monitor the determination of 

correlation detection in real time. As for the given K and N, if the following exists at the t 

-1 moment: 

 1 1
i

Q t N K                                         (9) 

Whatever the subsequent judgment situation may be, the current dynamic track and the 

track i are inevitably determined to be uncorrelated when t=N. Consequently, the 

detection of correlating the dynamic track with the track i will be terminated at the t 

moment. Similarly, if the following exists at k-1 moment: 

 1
i

S t K                                          (10) 
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The correlation between the dynamic track and the track i would be determined at the t 

moment. 

 

3. Target Recognition Algorithm Based on RCS Time Series 

 

3.1. Acquisition of RCS time series 

After the matching track corresponding to the dynamic track is obtained, RCS time 

series of dynamic track on the track segment and the previous track are used to recognize 

the space target precisely. RCS time series can be derived by reversely deducing the radar 

equation in use of target point track data and echo energy information from a radar system. 

The Eq.(11) is the RCS   derived by the monostatic radar propagation equation given 

by Merrill [15]. 

3 4

2 2 2

( 4 )
r

t t r t r

P R

P G G F F





                                  (11) 

In the equation, 
r

P  and 
t

P  are respectively the power of the received signal (the end 

of the antenna) and the power of the transmitted signal, 
r

G and 
t

G  the power gain of the 

receiving antenna and the power gain of the transmitting antenna separately;   is the 

wavelength, 
t

F  is the propagation factor of the directional diagram from the transmitting 

antenna to the target, 
r

F  is the propagation factor of the directional diagram from the 

target to the receiving antenna, and R is the distance from the radar to the target. The RCS 

is calculated point by point by the Eq. (11) to get the RCS time series. The radar equation 

given by Merrill is known not to be comprehensive for not taking some indefinite radar 

parameters into account or the influence of weather and system errors, so that there will 

be errors in some parameters of the radar equation (Eq. (11)). Therefore, a definite error 

would exist in the RCS time series we got. The errors in the RCS calculation caused by 

these parameters can be divided into two kinds: one is a fixed value or at most a slowly 

varying function relative to RCS fluctuation; the other is the high frequency noise of 

relatively small amplitude. In the following algorithm introduction and experiment, this 

algorithm will demonstrate such advantage as decreasing the errors in RCS calculation, 

resulting from inaccurate evaluation.  

 

3.2. Selection of RCS Time Series for Recognition 

Shown as Figure 2, the angle between the directions of radar observation and airplane 

flight is recorded as visual directional angle . If the difference between the maximum 

and minimum value of  within 1min does not exceed 1°, the airplane is determined to 

in flight-switching condition. The moment at which the fight-switching is finished is the 

starting point for the effective comparison of RCS time series with intervals. If there is no 

flight-switching condition in the flight scope, the starting point for effective comparison 

with intervals is selected as the moment at which the tract starts, and end point is the 

terminal moment of the shorter one of two comparing tracks.  
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Direction of  airplane flight

Radar irradiation direction

Visual directional angle

 

Figure 2. The Diagram of Calculating the Radar Visual Directional Angle 

3.3. Empirical Mode Decomposition 

Hilbert-Huang Transform (HHT) consists of Empirical Mode Decomposition (EMD) 

and Hibert Transform. The core of HHT is EMD. In empirical mode decomposition 

(EMD) algorithm, nonlinear and non-stationary signals can be decomposed into a group 

of linear and stationary sequence sets, namely, Intrinsic Mode Function (IMF). Every rank 

of IMF should meet two conditions
 
[13, 14]: 

(1) Zero crossings of data and points of extreme value appear alternately, the 

number of the points is equal or a difference of one between them at most. 

(2) The envelope defined by local optimum value at any point requires its mean to 

be zero. 

In the following EMD will be conducted on the time sequence X (t). 

Find out all points of extreme value in X (t), and conduct the fitting on the point of 

maximum value and the point of minimum value respectively with cubic spline function 

in order to obtain the upper envelope curve u1(t) and the lower envelope curve l1(t) of X(t) 

and calculate the mean of them which is recorded as m1(t): 

1 1

1

( ) ( )
( )

2

u t l t
m t


                                         (12) 

Subtracting the mean from the initial sequence gets a new sequence removing the low 

frequency element: 

1 1
( ) ( ) ( )h t X t m t                                       (13) 

It is tested whether h1(t) meets the conditions of IMF. If it does, then make C1(t)= h1(t), 

otherwise make the upper and lower envelope curve of h1(t). Calculate their mean 

according to the Eq.(12) and record it as m11(t), then compute the following: 

1 1 1 1 1
( ) ( ) ( )h t h t m t                                     (14) 

h11(t) is tested to meet the conditions of IMF. If it does, then make W1(t)= h11(t), 

otherwise repeat (13) and (14) until h1k(t) meets the conditions of IMF and take W1(t)= 

h1k(t) as the first IMF component of signal X(t). IMF1 component represents the highest 

frequency element. Subtracting IMF1 from the initial sequence can obtain the remaining 

sequence Z1(t) removing the high frequency element, namely: 

1 1
( ) ( ) ( )Z t X t W t                                                                     (15) 

Screen Z1(t) again and get the second IMF component W2(t). Repeat above steps until 

the remaining sequence Zn(t) which cannot be decomposed any more is obtained, or until 

prearranged numbers of IMF component are got. The sum of each rank of IMF 
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component and a mean or a trend item indicates the initial sequence as follows: 

1

( ) ( ) ( )

n

j n

j

X t W t Z t



                                    (16) 

3.4. Space Target Recognition Algorithm Based on EMD 

Shown as (17), any signal can be decomposed into a sum of n intrinsic mode functions 

(IMF) and one residual item. The number mi of IMF i crossing zero can be calculated, and 

its normalized instantaneous frequency Fi is defined in the paper to be the ratio of its 

numbers of crossing zero to the length L of its time series, which is expressed as: 

/ , 1, 2 , 3, ,
i i

F m L i n 
                            (17) 

Meanwhile, the energy
i

e of IMF i is the sum of squares of each point value
,i l

w  on 

IMF i, which is express as: 

2

,

1

, 1, 2 , 3, ,

L

i i l

l

e w l L



 
                                (18) 

Ei is supposed to be the percentage of the frequency energy ei on the total sum of each 

IMF energy, it expresses as follows: 

1

1 0 0 % , 1, 2 , 3 , ,
i

i n

j

j

e
E i n

e



  


                             (19) 

The properties of the target RCS frequency can be generally divided into two parts, the 

rapidly varying part and the slow one. The latter is determined by observation angle and 

measurement errors, etc, while the former is related to the changes in the target’s form, 

construction and attitude. Taken the actual high-frequency target as an example, the 

energies of reflecting signals from the nose and the wing of a plane are very different, a 

tiny variation in the target attitude probably causes a change in irradiation area, making 

RCS change by dozens decibels. Accordingly, if two RCS time series are the same target, 

their normalized instantaneous frequencies (defined as Fi and Fi respectively) followed 

by their EMD should be greatly similar on the high frequency. Based on this 

characteristic, the paper sets frequency threshold D as the dividing line between high 

frequency and low frequency of IMFs. IMFs are arranged in descending order of the 

instantaneous frequencies and recorded as. If there is: 

, 1, 2 , 3, ,
j

F D j n                                                   (20) 

IMF j will preliminarily selected as the recognition parameter, removing the impact of 

the errors in the slowly varying relative to RCS fluctuation in RCS calculation (Eq. (11)). 

Assume that there are M high frequencies meeting the above expression and set the 

energy threshold G for excluding the impact of high-frequency noises of the smaller 

amplitude. If there is: 

, 1, 2 , 3, ,
j

E G j M 
                          `        (21) 

IMF j will be selected as the recognition parameter, otherwise it will be rejected. 

Suppose if P IMFs meet the requirements and take their instantaneous frequencies as the 

character frequencies for recognition, then P recognition indexes will be defined as 

follows： 
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'

'

1 0 0 % , , 1, 2 , 3, .
j j

j

j

F F
R j P

F



                                        (22) 

  is recognition index threshold, which should generally be the positive number less 

than 0.5. Meet the above expression, there is 1
i

S  , otherwise 0
i

S  . The total 

recognition coefficient S is accordingly as follows: 

1

/ 2

K

k

i

S S P



                                                          (23) 

If S is greater than or equal to a half in the numbers of recognition index, they will be 

identified to be the same target, otherwise the different targets. If they are identified to be 

the same target, the system will reset the yawing testing threshold
0 2

R , 
, 0 2p i

r R
 

is used 

to test the distance of airplane deviating from the expected track. The early warning is 

given when the distance is greater than preset value, aiming at monitoring the conditions 

of target flight plan in real time. Figure 3 is the flowchart of the algorithm presented in 

this paper.  

Input  information 

about current 

track point as 

position, velocity, 

altitude, azimuth 

and echo energy.

Track matching 

algorithm

Acquisition and 

selection of RCS 

time series s for 

recognition

Empirical mode 

decomposition

Recognition 

algorithm
Yawing test

Correlation 

monitoring

Figure 3. The Flowchart of the Algorithm Presented in the Paper 

4. Simulation Results and Its Analysis 

 

4.1. Simulation Database Establishment 

The simulation data is composed of ten previous tracks and two current dynamic tracks 

obtained by some phased array radar simulation platform. Simulation radar reports the 

target every 2 seconds and gets back such data as longitude, latitude, altitude, velocity and 

flight direction of the target at that moment. The RCS value corresponding to each track 

point of the target is obtained by accessing the RCS values of the following two different 

types of airplanes. Figure 1 (Figure 3.8 in [3]) demonstrates the relationship of full-size 

B-26 double-engine (propeller-driven) medium bomber scattering backwards on the 

wavelength of 10cm with visual directional angle. Figure 4 is provided by the data in [16], 

RCS is measured in the paper in accordance with Boeing 737-type commercial jet model 

designed in the ratio of 1:15 on the conditions of vertical polarization on the frequency of 

10GHz. The frequency of measuring the full-size target is one fifteenth of the frequency 

of 10GHz, i.e., 667MHz. RCS in full size is greater than it in simulation by 23.5dB. The 

revised data is shown as Figure 4. The visual directional angle   of radar irradiating on 

the target is reckoned with the azimuth between target flight direction and radar 

observation (shown as Figure 2). The RCS values corresponding to the visual directional 

angles are found out in Figure 1 or Figure 4 for evaluation, producing RCS time series. 

Ten independent previous tracks obtained by the phased array radar simulation platform 

and two current dynamic tracks and their corresponding RCS time series will not be in 

full supply, due to the limited pages of the paper. 
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Figure 4. The Relationship between Visual Directional Angle and RCS of 

Boeing 737-Type Commercial Jet Model on the Condition of Vertical 

Polarization on the Frequency of 667MHz 

4.2. Track Matching Results Analysis 

Set range threshold 0 1
3 0r km ,weight coefficient 0 .0 8 k m , 3 3m /s , 0 .0 1k m

Y V H
F F F   , 

K=30, N=50, and set the lower bound value T of correlation degree as 0.6, the degree of 

correlating each points of target track with the previous tracks is reckoned with Eq.(5), 

the point is determined to be correlation point for exceeding T. 

Match two current dynamic target tracks respectively with ten previous tracks of its 

database and make a judgment, getting the results shown as Table 1. In the table, 1 

represents correlation, and 0 non-correlation. 

Table 1. Track Matching Results 

 Previous 

track1 

Previous 

track2 

Previous 

track3 

Previous 

track4 

Previous 

track5 

Target track 1 1 1 0 0 0 

Target track 2 0 0 0 0 0 

 Previous 

track6 

Previous 

track7 

Previous 

track8 

Previous 

track9 

Previous 

track10 

Target track 1 0 0 0 0 0 

Target track 2 0 0 0 1 1 

Shown as Table 1, target track 1 is judged to be or not to be consistent with 10 

respective previous tracks, only resulting in correlating with previous track 1 and 

previous track 2. It is accordingly determined to match with previous track 1 and previous 

track 2. In the same way, target track 2 is determined to match with previous track 9 and 

previous track 10.  

5. Target Recognition Results Analysis 

 

5.1. Target Recognition Results of Target Track 1 and Previous Track 1  

Shown as Figure 5, the RCS time series corresponding to target track 1 and previous 
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track 1 are decomposed with EMD, target track 1 can take the whole sequence as the 

recognized RCS time series due to no flight-switching condition in flight scope of target 

track 1 and the greater sequence of previous track 1 than that of target track 1. So the RCS 

sequences in accord with target track 1 are only intercepted for EMD. The effective 

comparing RCS time series is marked in red. The results of decomposing target track 1 

with EMD are displayed in Figure 6. 
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Figure 5 The Corresponding RCS Time Series and Track Matching Results of 

Target Track 1 and Previous Track 1 
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Figure 6. EMD Results of Target Track 1 
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The bottom line in Figure 6 shows the envelope information about res, IMFs are 

arranged in descending order of their normalized instantaneous frequency. The energy 

percentage and normalized instantaneous frequency of each IMF are reckoned with Eq. 

(17) and Eq. (19), and previous track 1 can be calculated in the same way, producing the 

results shown as Table 2. 

Chose frequency threshold D to be 0.1 and energy threshold G 5%, recognition index 

threshold   10%, these above parameters apply to all of data below, so that they will not 

be presented any more in the following part. Through the computation in accordance with 

Eq.(20), 3 IMFs of sequence 2 belong to high-frequency IMF and their energies are 

greater than the energy threshold G, which is considered as recognition index, i.e., P=3. 

According to Eq.(22), relative to the recognition indexes of target track 1 

1
7 .4 9 %R  ,

2
3 .8 8 %R  ，

3
6 .3 0 %R  , the recognition indexes of previous track 1 are less 

than recognition threshold  ，so the total recognition coefficient S=3. S is greater than or 

equal to one half in the numbers of recognition index (P/2=1.5), then they can be 

determined to be the same target. The obtained data is shown as Table 3. 

Table 2. The Normalized Instantaneous Frequency and Energy Percentage of 

IMFs of Target Track 1 and Previous Track 1 

IMF  1 2 3 4 5 6 7 8 9 

F of target 1 0.5481 0.2978 0.1630 0.0796 0.0411 0.0218 0.0103 0.0077 0.0026 

F of previous 1 0.5071 0.2863 0.1528 0.0886 0.0347 0.0167 0.0077  .0039 0 

E of target 1(%) 33.28 22.53 8.26 4.40 3.72 0. 34 9.21 10.16 8.11 

E of previous 1 43.11 20.66 10.46 3.94 4.91 2.64 7.77 6.51 0 

Table 3. Parameters for Recognizing Target Track 1 and Previous Track 1 

 R1 R2 R3 S P/2 Conclusion 

target track 1 and 

previous track 1 
7.49% 3.88% 6.30% 3 1.5 

Same 

Target 

 

5.2. Target Recognition Results of Target Track 1 and Previous Track 2 

Through the data in the Table 4 and Table 5, we could see that although target track 1 

and previous track 2 is correlated. They are determined to be different targets. 

Table 4. The normalized instantaneous frequency and energy percentage of 

IMFs of target track1 and previous track 2 

IMF 1 2 3 4 5 6 7 8 9 

F of target 1 0.5470 0.2973 0.1634 0.0798 0.0412 0.0219 0.0103 0.0077 0.0026 

F of previous 2 0.6100 0.3295 0.1763 0.0888 0.0476 0.0193 0.0142 0.0051 0.0026 

E of target 1(%) 33.36 22.59 8.27 4.41 3.73 0. 34 9.23 8.78 9.30 

E of previous 2(%) 5.35 3.67 6.84 11.95 5.22 2.94 3.90 15.28 44.86 
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Table 5. Parameters for Recognizing Target Track 1 and Previous Track 2 

 R1 R2 S P/2 Conclusion 

target track 1 

and previous 

track 2 

10.34

% 
7.30% 1 1 

Different 

Targets 

 

5.3. Target Recognition Results of Target Track 2 and Previous Track 9 

Shown as Figure 7, the analysis of sequences after flight switching ending lies in the 

existence of flight-switching condition for previous track 9. Through the data in the Table 

6 and Table 7. We could see that target track 2 and previous track 9 are determined to be 

different targets. 
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Figure 7. The Corresponding RCS Time Series and Track Matching Results 

of Target Track 2 and Previous Track 9 

Table 6. The normalized Instantaneous Frequency and Energy Percentage of 

IMFs of Target Track 2 and Previous Track 9 

IMF 1 2 3 4 5 6 7 

F of target 2 0.4723 0.2681 0.1574 0.0809 0.0383 0.0255 0.0085 

F of previous 9 0.6170 0.2723 0.1277 0.0723 0.0213 0.0085 0 

E of target 2(%) 42.55 39.99 6.51 2.65 3.82 0. 12 4.35 

E of previous 9(%) 7.67 14.46 26.53 6.41 6.82 38.10 0 
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Table 7. Parameters for Recognizing Target Track 2 and Previous Track 9 

 R1 R2 R3 S P/2 Conclusion 

target track 2 and 

previous track 9 
23.45% 1.56% 18.92% 1 1.5 

Different 

Targets 

 

5.4. Target Recognition Results of Target Track 2 and Previous Track 10 

In the same way, shown as Table 8 and Table 9, target track 2 and previous track 10 are 

determined to be the same target. The above simulation results agree with the expected 

results in simulation plan, having proven the effectiveness of the algorithm. 

Table 8. The Normalized Instantaneous Frequency and Energy Percentage of 

IMFs of Target Track 2 and Previous Track 10 

IMF 1 2 3 4 5 6 7 

F of target 2 0.5059 0.2813 0.1537 0.0898 0.0426 0.0236 0.0095 

F of previous 10 0.4568 0.2459 0.1442 0.0709 0.0378 0.0165 0.0071 

E of target 2(%) 44．17 34.41 11.34 4.50 1.64 1.07 2.87 

E of previous 10(%) 47．88 14.95 9.12 8.58 4.82 7.19 7.47 

Table 9. Parameters for Recognizing Target Track 2 and Previous Track 10 

 R1 R2 R3 S P/2 Conclusion 

target track 2 and 

previous track 10 
9.71% 

12.58

% 
6.18% 2 1.5 

Same 

Target 

 

6. Conclusions 

The paper uses the existed track data to establish track information bank and matches 

the current dynamic track with the previous tracks in real time, aiming at finding rapidly 

target RCS time series under the same visual directional angle for space target recognition. 

The effectiveness and stability of the algorithm in the paper is proved by simulated data. 

Moreover, this algorithm can decrease the errors in calculating RCS due to some 

inaccurate evaluation, which is of great significance to improve the ability of the active 

narrow-band radar to recognize the target. 
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