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Abstract 

Organic Light Emitting Diode (OLED) displays have matured into current 

smartphones. How to prolong the lifetime of displays while preserving the display quality 

becomes a primary issue. In this paper, we propose a low image distortion constrained 

power-saving approach for OLED displays based on gamma correction and saturation 

scaling. We first investigate the impact of gamma correction and saturation scaling on 

the power of emissive displays. The results show that changing the gamma and saturation 

value can obtain lower display power consumption when original image color maps to 

another one. Thus, we integrate the gamma correction and the saturation scaling into a 

new low-power approach for OLED displays. However, low gamma and high saturation 

lead to distortion on displaying. To guarantee user experience in this paper, the 

CIEDE2000 color difference formula and the Mean Structural Similarity Index (MSSIM) 

are used to evaluate the effectiveness of our approach. The results show that our 

approach saves up significant display power with high image quality. 

 

Keywords: Color model, gamma correction, organic light emitting diode, power 

saving, saturation scaling 

 

1. Introduction 

Modern mobile devices can be viewed as collections of heterogeneous components, 

such as CPU, Display, Graphics, Wi-Fi NIC, Cellular, Bluetooth, GPS, Audio, etc. It is 

generally acknowledged that CPU, Display and Wireless Network Interface are the most 

power hungry components [1]. The displays are commonly divided into two types: 

emissive and non-emissive. OLED display is a kind of emissive device which is first 

proposed in 1978 with the publication by Tang and VanSlyke. Now, OLED displays are 

widely applied to high resolution laptop displays, televisions, ultra-large signboards and 

mobile devices which have higher power efficiency than non-emissive devices, such as 

Liquid Crystal Displays (LCDs) [2]. Unlike LCDs, OLED displays do not use back light 

and front light, and each pixel can be driven independently. While an image is displaying, 

black OLED pixels can be turned off using Dynamic Power Management (DPM) 

technique, however, the backlights of LCDs must be fully turned on. This helps OLED 

displays to save a significant power over LCDs. Therefore, in order to reduce the power 

consumption of OLED displays, there is a chance to dim the screen luminance and scale 

down the strength of each pixel in the frame buffer. 

Each pixel on OLED displays is composed of tiny sub-pixels which themselves emit 

three basic colors: red (R), green (G) and blue (B). Therefore, the color of a pixel is 
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determined by the color directly emitted from the sub-pixels. Different color of a pixel 

results in different power consumption, as measured in [3]. Compared to traditional 

LCDs, AMOLED displays make the image look more vivid because the pixel array uses 

the PenTile Matrix structure. In our target smartphone with a 480800 Super AMOLED 

display, the blue pixel consumes more power than the green and the red pixel, and gray 

consumes more power than the other pure color with the same strength. 

Gamma correction is a flexible approach to the tone mapping, which is used in image 

processing to map one set of colors to another [4-5]. When decreasing gamma value, 

brightness of display content becomes dark. Although we reduce energy consumption by 

darkening the content, the readability of the content is seriously impacted.  

To obtain the impact of screen luminance, gamma and saturation on display power 

consumption, we adjust the three values. In Section 3, we will present this process and 

show how we exploit an image metric to obtain minimum gamma value and saturation 

level, which can be used to retain the image quality at an acceptable level. 

In this paper, we propose a power-saving policy for OLED displays based on gamma 

correction and saturation scaling, and then deeply investigate the power consumption of 

ten color images (“Dormer”, “Skifield”, “Sea”, “Lion”, “Building”, “Bird”, “Flower”, 

“Land”, “Swan” and “Fish”) on our platform. Our contributions mainly include three 

aspects: 

1) We present an approach to reducing the power consumption of OLED displays by 

integrating gamma correction and saturation scaling.  

2) The gamma correction and saturation scaling integration results in high distortion 

of display content when the gamma value or the saturation level exceeds a certain 

threshold. In this paper, CIEDE2000 and MSSIM are used to evaluate the amount 

of image distortion. 

3) We observe that a higher saturation image consumes less power without changing 

hue- and value-dimension in the Hue, Saturation, and Value (HSV) color model. 

Furthermore, when a higher gamma value is used, saturation scaling affects the 

power consumption of OLED displays much more obviously because the image 

with higher brightness starts to be washed out. 

The rest of the paper is organized as follows: In Section 2, we describe several works 

that are most related to our work. Section 3 proposes our approach that saves power for 

emissive displays while preserving image quality. Then, in Section 4, we present 

experiment results and evaluate our power-saving approach. Finally, this paper draws the 

conclusion and talks about the future work in Section 5. 

 

2. Related Work 

Power-saving technologies on components of mobile devices have been extensively 

studied. Some literatures [6-7] proposed reducing and conserving power consumption of 

mobile devices on aspect of CPU. Other studies [8-10] primarily focus on the wireless 

network interface. In addition, some literatures [11-17] provide the techniques to reduce 

the power consumption of display components. 

Cheng et. al., presents a chromaticity and luminance scaling algorithm for minimizing 

power consumption of backlight TFT-LCD monitors, which reduces power consumption 

by scaling the luminous intensity of the red, green and blue LED backlights 

independently according to the image histograms of each color channel [11]. Chang et. 

al., presents an approach to Dynamic backlight Luminance Scaling (DLS) with 

appropriate image compensation, which keeps the perceived intensity or contrast of the 

image as close as possible to the original while achieving significant power reduction 

[12]. Cheng et. al., propose a Concurrent Brightness and Contrast Scaling (CBCS) 
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technique for TFT-LCD display, which can conserve power by reducing the backlight 

illumination while retaining the image fidelity through preservation of the image contrast. 

They formulated and optimally solved the CBCS optimization problem with the 

objective of minimizing the fidelity and power metrics [13]. 

Dong et. al., introduce a color adaptive web browser, called Chameleon, which renders 

web pages with power optimized color schemes under user-supplied constraints [14]. 

Anand et. al., propose a dynamic adaptation technique that saves LCD display energy 

while playing fast-paced real-time 3D games, such as Quake III and Planeshift. 

Furthermore, the authors use the Mean Square Error (MSE), the Peak Signal to Noise 

Ratio (PSNR) and the MSSIM as quality metrics to evaluate their solution that exploits 

the gamma function provided by those games to dim the LCD backlight and save display 

power [15]. Lee et. al., propose a Power Constrained Contrast Enhancement (PCCE) 

algorithm for emissive displays based on histogram equalization, which can enhance 

image contrast and reduce power consumption. Specifically, the authors state the power-

constrained image enhancement as a convex optimization problem and use the convex 

optimization theory to minimizing the objective function. Thus, the proposed algorithm 

achieves contrast enhancement and power saving simultaneously [16]. Wee et. al., 

proposed a technology to save OLED displays power by gradually dimming the non-

interesting regions of the display for game players [17]. These techniques mainly devised 

for LCDs and cannot be applied to OLED displays. Although, literatures [16-17] 

proposed the power-saving schemas for emissive displays, to our knowledge, no attempt 

has been made to integrate the gamma correction and the saturation scaling into a low-

power technique for OLED displays. 

 

3. Proposed Approach 

In this section, we firstly describe the power consumption model of OLED displays. 

Then, we present the relationship of screen luminance and display power on different 

gamma values. To guarantee the display quality with low distortion, we adopt two image 

metrics to evaluate our approach. Finally, we investigate the power consumption of 

display content when our approach is applied. 

 

3.1. OLED Display Power Model 

The power consumption of OLED displays can be measured accurately by diverse 

power meters. But these measurement tools are very professional. In order to measure the 

power consumption of OLED displays without using any assistant tools, literatures [16-

18] present a pixel-level power model for display content of OLED displays as follows: 

0 1 2 3

1 1

( )

n n

i

co n ten t p ixe l i i i

i i

P P w w R w G w B
  

 

                                                           (1) 

Where n is the pixel number of display content. Ri, Gi and Bi are three color values of 

the ith pixel in the display content. The exponent  is the gamma value of display content 

in the standard RGB (sRGB) color space. Let w0 be the static power consumption, which 

is not affected by the pixel value. Meanwhile, the constants w1, w2 and w3 are the 

efficiency coefficients of red, green and blue respectively. The values of the three 

coefficients are inversely proportional to the power efficiency values of the 

corresponding color. For example, on our platform, the coefficient ratios are about w1 : 

w2 : w3  = 24 : 35 : 50. That is, the blue pixels have lower power efficiency than the red 

and green because the coefficient w3 is larger than the other two coefficients. However, 

the aging process of display component results in different color power efficiency, as 

well as different OLED displays have distinct power characteristic. Therefore, the three 

coefficients are not always constant and need to be recalibrated over the lifetime of the 

device [14-19]. 
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The power consumption of OLED displays is determined by the strength of screen 

luminance and the power consumption of display content [20], which defined as follows: 

d is p la y c o n te n t b a s e
P L P P                                                                    (2) 

Where L is the screen luminance, which can be scaled from 0 to 255. And Pbase is the 

base display power, which represents the intrinsic power consumed for keeping the 

OLED displays on. 
 

3.2. Gamma Correction 

The output light intensity of display devices is proportional to the input signal raised to 

a power denoted by . The following formula represents the relationship between the 

input signal and the output intensity: 

m a xd n
L L L


                                                                          (3) 

Where Lmax is the maximum luminance of pixels, Ln is the normalized pixel value and 

Ld is the resulting luminance. The gamma correction is called gamma compensation or 

tone mapping operator, which is widely investigated in graphics implementations. To 

compensate for the non-linearity of the display components, a power of the reciprocal of 

the gamma value can be used so that the overall system  is approximately 1 [15-21]. The 

mathematical definition of gamma correction is as following: 

1 /

m a xd n
L L L


                                                                       (4) 

Gamma correction directly affects the luminance of each pixel in display content via a 

Look Up Table (LUT). Scaling up the gamma value can brighten the image, which makes 

the dark area more clear. Scaling down the gamma value can darken the image, which 

makes the bright area more distinct. As shown in Figure 1, we apply five gamma values 

to two original images (“Dormer” and “Skifield”), and observe that the luminance of 

image increases along with the addition of gamma value. 

 

 

Figure 1. The Images Luminance Varies with  

A low gamma value can save significant display power. However, dark region 

becomes dark and hard to distinct and high distortion is hard to maintain user experience. 

Although the MSE and the PSNR are widely used to evaluate image quality among image 

processing community, they do not account for human perception. To measure the impact 

of power-saving approaches on image quality, CIEDE2000 and MSSIM are used as two 

quality metrics. The CIEDE2000 color different equation is able to accurately predict the 

perceived differences between two color images, which was described in [22] and 

derived based on CIELAB equation as shown in the follow generic formula: 

22 2
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Where 
'

L , 
'

C , and 
'

H  represent the CIELAB metric lightness, chroma, and hue 

difference respectively, as well as the SL, SC and SH stand for the weight functions of 

lightness, chroma, and hue, respectively. The function RT is used to improve the color 

difference in the blue region. The KL, KC, and KH are the parametric factors that affect the 

color feeling. 

As well as the CIEDE2000 formula is sophisticated and designed for measuring the 

visual difference, the MSSIM is also adopted to account for the human visual perception 

[23], which divides the original image and the output image into several windows and 

compares the luminance, the contrast and the structural similarity with the other 

windows. The average value of all windows comparative results is the MSSIM value 

between the two images. The MSSIM quality metric is expressed with the following 

equation. 

1 2

2 2 2 2

1 1 2

( 2 ) ( 2 )1
( , )

( ) ( )

i i i i

i i i i

n
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i x y x y

c c
M S S IM x y

n c c

  

   

     


    
                                             (6) 

Where n is the number of windows. , 2
 and  stand for expectation, variance and 

covariance, respectively. We let xi denote the ith window of original image and yi be the 

ith window of output image. The constants C1 and C2 are used to avoid divisor being very 

close to zero. 

The MSSIM is varies from -1 to +1. A value closed to +1 means that the extracted 

structural information of the two images is almost similarity. On the contrary, when the 

value is close to -1, it shows that the output image has high distortion compared to the 

original image. Figure 2 shows the relationship between the MSSIM and . To find the 

math representation to represent this relationship, we use a logistic function [24] to fit the 

plotted data. From Figure 2, we find the fitting results are non-linear curves with high 

coefficient of determination (R
2
). The R

2
 of the fitting curves are greater than 0.999 close 

to 1, which indicates the curve fitting is excellent. 

 

 

Figure 2. The MSSIM of Images Varies with

To account for human visual perception, we assume that M0 is the perceptual 

difference threshold of MSSIM for an acceptable image quality. The image whose 

MSSIM value is not less than 0.99 cannot be considered, being noticed as distinct from 

the original image. More details about the perceptual threshold for the MSSIM metric are 

shown in [25] and [26]. When M0 is substituted into the fitting equations shown in Figure 

2, the ranges of gamma are obtained, which results in low image distortion. For example, 

M0 is set to 0.99, then, the gamma of “Dormer” ranges from 0.82 to 1.20, as well as the 

gamma of “Skifield” ranges from 0.88 to 1.13. 
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To obtain the power consumption of the two images, we show the screen with images 

applied the different gamma values, vary from 0.1 to 15, enumerating the every possible 

screen luminance from 0 to 255. The image “Skifiled” consumes much more power than 

“Dormer” because the former has more bright pixels when the same gamma value and 

screen luminance are applied. High screen luminance improves the end user experience 

especially when display content is dark. However, the high screen luminance consumes 

much more power than the low screen luminance. For example, “Dormer” consumes 

519.726mw and 305.997mw when the luminance is set to 255 and 30 respectively. On 

the other hand, low screen luminance makes end user hard to distinguish the display 

content, especially when a dark image is shown, although it reduces the display power 

consumption. 

The impact of gamma correction indicates that a dark image consumes less power than 

a bright image. Therefore, power saving can be achieved when  is less than 1. Moreover, 

the structural information of output image and original image is similar when the MSSIM 

is close to M0. The gamma correction approach (GC) is adopted to create output image 

with low distortion. The pseudo code of GC is shown in Figure 3. 

 

 

Figure 3. The Pseudo Code of GC 

In intrinsic while loop, the gamma correction selects  starts from 0 to create an output 

image (lines 5-11). Next, in extrinsic while loop, the gamma correction increases  
gradually for output image until its human visual perception is satisfied (lines 2, 4 and 

12). To retain two decimal places of , the extrinsic while loop is performed again (lines 

14-18). After the process is executed, if  is still less than 1 meaning the output image has 

high similarity with the least power consumption. 

 

3.3. Gamma Correction and Saturation Scaling Integration 

The saturation describes the dominance of hue in HSV color model. The saturation is 

defined as following: 

0 , ( , , ) 0

( , , ) ( , , )
,

( , , )

i f m a x R G B

S m a x R G B m in R G B
o th e rw ise

m a x R G B




 




                                           (7) 

dict://key.0895DFE8DB67F9409DB285590D870EDD/intrinsic%20cycle
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Where max(R, G, B) is the largest value and min(R, G, B) is the smallest value among 

R, G, or B in a color. The saturation-dimension in HSV always fits into the range [0-1]. 

When we increase the saturation level from 0 (fully desaturated) to 1 (fully saturated), the 

hue we are using to describe the color dominates more and more. Similar to the gamma 

correction, we can obtain the range of saturation, which preserves a high similarity of 

output image compared to original image. For example, the saturation of “Dormer” 

ranges from 0 to 16%, as well as the saturation of “Skifield” ranges from 0 to 8% when 

M0 is set to 0.99. 

To find the main impact of saturation on image power, we measure the power 

consumption of display content for different saturation levels when a certain gamma 

value is applied with fixed hue and value. Figure 4 shows the results of this experiment 

for various saturation levels. As shown in Figure 4 (a) and Figure 4 (b), the power 

consumption of “Dormer” and “Skifield” have similar decreasing trend while saturation 

levels are scaling up. In addition, increasing saturation level leads to decrease power 

consumption. For example, the original images “Dormer” and “Skifield” save 337w and 

634w when the saturation level increased from 20% to 60% respectively. This trend is 

more significant when a higher gamma value is applied. 

To obtain the maximum power saving, we calculate the maximum amount of 

saturation of an image that is modified by gamma correction with low distortion 

constrained. The gamma value (0.82 for “Dormer” and 0.88 for “Skifield”) can maximize 

the amount of power conserved, which maintains M0 at 0.99 compared to the original 

image. In our experiment, we obtain MSSIM and the power consumption of output 

images when applying the saturation scaling from 0 to 100%. Figure 4 shows a definite 

trend of the MSSIM and the image power for different saturation levels. We use non-

linear curve to fit the plotted data. As a result, we obtain excellent quality fits for the 

MSSIM and the power consumption with high R
2
. 

 

 

 
(a) Dormer                    (b) Skifield 

Figure 4. The Comparative Results of the MSSIM and Display Content 
Power Consumption, while Saturation Changed from 0 to 100% 
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We assume that S0 is the highest saturation level for obtaining the acceptable image 

quality. To calculate the power consumption of image, firstly, we substitute M = M0 into 

MSSIM fitting equations shown in Figure 4 (a) and Figure 4 (b). Then, we set S = S0 and 

substitute S to power fitting equations shown in Figure 4 (a) and Figure 4 (b). Finally, the 

power consumption of image, P, is obtained. For example, we set M0 = 0.90, then, the 

image “Dormer” ( = 0.82, S0 = 56%) consumes 557w, which saves 229w compared to 

the output image only applied gamma correction ( = 0.82) consumed 786w, as well as 

the image “Skifield” ( = 0.88, S0 = 21%) consumes 2001w, which saves 280w 

compared to the image only applied gamma correction ( = 0.88) consumed 2281w. 

There are two interesting phenomenon we make from the impact of saturation scaling 

on the output image. Firstly, a high saturation image consumes less power than a low 

saturation image. Therefore, power saving can be achieved for output image when S0 is 

larger than the saturation of original image. Secondly, the structural information of output 

image and original image is similarity when the MSSIM value is close to M0. Thus, the 

saturation scaling approach (SS) is adopted to create output image with low distortion. 

The pseudo code of SS is shown in Figure 5. 

 

 

Figure 5. The Pseudo Code of SS 

In intrinsic while loop, the saturation scaling selects s' starts from 1 to create an output 

image (lines 6-17). To change the saturation of a color image, we convert original image 

to HSV from sRGB color model and then process only the saturation-component without 

changing the hue- and value-components (lines 8 and 14). It represents that the 

saturation-component increased by s' on the basis of the original image’s saturation when 

the variable s' is larger than zero as well as the saturation-component decreased by s' 

when s' is less than zero (lines 9-13). Next, in extrinsic while loop, saturation scaling 

decreases s' gradually for output image until its MSSIM value is satisfied (lines 2, 4 and 

18). To retain two decimal places of saturation, the extrinsic while loop is performed 

again (lines 20-24). After the extrinsic while loop, if s' is larger than saturation of original 

image meaning the output image has high similarity with the least power consumption. 

dict://key.0895DFE8DB67F9409DB285590D870EDD/intrinsic%20cycle
dict://key.0895DFE8DB67F9409DB285590D870EDD/extrinsic%20cycle
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The gamma correction and saturation scaling integration approach (GS) not only 

decreases gamma value but also increases saturation-dimension. GS includes two steps. 

At first, we process original image using GC and then scale saturation using SS. 

However, we observe that the three approaches, i.e., GC, SS, and GS, have high time 

complexity that is O (N) multiplication and addition operations because of the iterative 

way. The N represents the pixel numbers of OLED on smartphone. These algorithms, 

creating the low-power image from original image, consume much time and battery 

power when they are running on mobile devices. Fortunately, we can optimize the three 

processes by the following approaches: 

1) If we compare two images (480800) pixel by pixel, the while-loop in MSSIM 

function will run 384000 times. To obtain the MSSIM rapidly, sampled pixels are 

compared. In this paper, the number of sampled pixels is set to 500.  

2) The ARGB (Alpha, Red, Green and Blue) values of each pixel in the frame buffer 

are written into a byte buffer. Then, multi-thread is used to process the tone 

mapping of each pixel in GC, SS and GS techniques with the parallel pattern. 

3) To reduce the query time of gamma and saturation threshold, a binary search 

algorithm is used instead of sequential search. 

The executing time of the three saving-power techniques running on our target 

smartphone is shown in Table 1. 

Table 1. The Comparative Results of Execution Time on Samsung Galaxy 
Mobile Phone 

Images 
Before Optimization (ms) After Optimization (ms) 

GC SS GS GC SS GS 

dormer 10,078 21,128 25,568 139 1,164 1,576 
skifield 3,818 18,514 25,995 125 482 673 

 

The experiment results show that the execution time of the three saving-power policies 

on the “Dormer” image under the optimization method is 97.68%, 94.49% and 93.84% 

shorter than that before optimization, respectively. It gets obvious optimization effect. 

Furthermore, there are some other effective solutions to solve this problem: 

1) The image processing can be executed on a proxy server and the mobile device 

only shows the output image [27]. 

2) The power-saving approach we proposed can be realized using specialized 

hardware or firmware, such as ASIC or FPGA [28]. 

 

4. Results 

In this section, we evaluate our power-saving approach using the other eight color 

images. As shown in Figure 6, these test images are “Sea”, “Lion”, “Building”, “Bird”, 

“Flower”, “Land”, “Swan” and “Fish”. Except that the images “Sea”, “Land” and “Swan” 

are taken by our target smartphone, the rest images shown in Figure 1 and Figure 6 are 

from Baidu Image Library (image.baidu.com). 

Figure 6 (a) shows the original images. Figure 6 (b) shows the output images only 

applied the gamma correction approach (GC). Pixel luminance of original images is 

transformed with the gamma function. We observe that the overall image luminance 

becomes dark compared to original images. Figure 6 (c) shows the output images when 

only the saturation scaling approach (SS) is applied. Pixel saturation of the whole images 

is scaled up, which results in an increasing color dominating. The images shown in 

Figure 6 (d) are applied the gamma correction and saturation scaling integration approach 
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(GS). Therefore, the overall images shown in Figure 6 (d) are dark and saturated 

compared to the original images. 

 

 

Figure 6. Low Image Distortion Constrained Power-Saving Results on the 
Color Images 

Table 2 provides the parameters of output images shown in Figure 6. As shown in the 

table, MSSIM of output images are close to 0.99 and the CIEDE2000 color difference is 

less than 20, which indicates that these output images are close to the original images. 
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Table 2. The Properties of Eight Images Applied Three Different 
Approaches, i.e., GC, SS and GS 

Images MSSIM   Saturation Power (w) 

Sea (Original) 1 0 - - 1566 
Sea (GC) 0.99 9.25 0.78 - 1242 

Sea (SS) 0.99 1.86 - 0.13 1489 
Sea (GS) 0.97 10.14 0.78 0.13 1188 

Lion (Original) 1 0 - - 1305 

Lion (GC) 0.99 3.49 0.82 - 1042 
Lion (SS) 0.99 2.98 - 0.14 1223 

Lion (GS) 0.97 9.77 0.82 0.14 986 
Building (Original) 1 0 - - 634 

Building (GC) 0.99 15.41 0.73 - 493 

Building (SS) 0.99 2.71 - 0.23 566 
Building (GS) 0.99 17.67 0.73 0.23 448 

Bird (Original) 1 0 - - 445 
Bird (GC) 0.99 6.45 0.78 - 332 

Bird (SS) 0.99 0.19 - 0.19 433 

Bird (GS) 0.98 6.45 0.78 0.19 325 

Flower (Original) 1 0 - - 914 

Flower (GC) 0.99 3.77 0.85 - 780 
Flower (SS) 0.99 3.83 - 0.26 846 

Flower (GS) 0.99 6.80 0.85 0.26 737 

Land (Original) 1 0 - - 1427 
Land (GC) 0.99 5.87 0.76 - 1058 

Land (SS) 0.99 4.13 - 0.14 1342 
Land (GS) 0.98 7.97 0.76 0.14 1003 

Swan (Original) 1 0 - - 1471 

Swan (GC) 0.99 3.64 0.82 - 1165 
Swan (SS) 0.99 5.81 - 0.09 1343 

Swan (GS) 0.98 7.30 0.82 0.09 1066 
Fish (Original) 1 0 - - 1221 

Fish (GC) 0.99 3.62 0.82 - 1000 

Fish (SS) 0.99 0.74 - 0.09 1163 
Fish (GS) 0.98 3.91 0.82 0.09 955 

 

Figure 7 shows the power consumption of all the images in Figure 6. Although, all of 

the GC, SS, and GS can reduce power consumption for each image, the GS has better 

energy efficiency than GC and SS. For example, the color image “Swan” applied GS 

approach saves 108w and 716w compared to the output images applied GC and SS, 

respectively. From the figure, we also find that the blue color dominant images (“Sea”, 

“Swan”, “Land” and “Lion”) consumed more power than the red color dominant images 

(“Flower”, “Building”, “Bird” and “Fish”) because the blue color is less efficient than the 

red color on our OLED-based smartphone. 

 

 

Figure 7. The Comparative Results of Images Power Consumption 
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5. Conclusion and Future Work 

A gamma correction and saturation scaling integration approach is proposed, which 

reduces the power consumption of OLED displays with low distortion constrained. We 

present a power model for emissive displays and suggest two image quality metrics to 

evaluate our power-saving approach. Specifically, we investigate the impact of the 

gamma correction and the saturation scaling on the power consumption of OLED 

displays. Furthermore, we have applied three power-saving methodologies to ten color 

images and find the gamma saturation integration can save much more power than the 

other two approaches because the gamma saturation integration not only decreases the 

brightness but also increases the saturation. The experiment results indicate that our 

approach achieves significant power saving while losing an acceptable amount of image 

quality. As future work, we plan to improve user experience by enhancing image contrast 

and apply our power-saving approach to video sequences on the OLED-based mobile 

devices. 
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