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Abstract 

The main drawback of the phase congruency feature employed in the feature similarity 

index (FSIM) image quality assessment (IQA) algorithm is its low computational 

efficiency. In this paper, a novel fast feature similarity index (FFSIM) for image quality 

assessment is proposed. Based on the fact that human visual system (HVS) responds to 

the brightness stimulus mainly complying with Weber's law, the proposed FFSIM only 

performs spatial filtering to quickly calculate the contrast between the current pixel and 

its background, which is used to compute Weber visual salience similarity and a 

weighting coefficient in pooling stage after applied nonlinear mapping. Weber contrast 

and the gradient magnitude play complementary roles in characterizing the image local 

quality. After obtaining the local quality map, we use Weber weighting coefficient again 

as a weighting coefficient to derive a single quality score. As such, the multi-scale 

version of the FFSIM algorithm, i.e., MS-FFSIM is also proposed, which complies with 

the spatial frequency response characteristics of the HVS system. Extensive experiments 

performed on six publicly available IQA databases demonstrate that the proposed FFSIM 

and MS-FFSIM can achieve higher consistency with the subjective evaluations than 

state-of-the-art IQA metrics and the computational efficiency is greatly improved as well. 

 

Keywords: Image Quality Assessment; Phase Congruency; Weber Law; Weighted 

Coefficient; Gradient Structural similarity; Computational Efficiency 

 

1. Introduction 

Digital images are usually distorted by a wide variety of contaminations during 

acquisition, compression, transmission or storage, decoding, and display, any of which 

generally could result in a degradation of visual quality [1-5]. Since the images are 

ultimately to be viewed by human visual system (HVS), the best method of quantifying 

visual image quality is through subjective evaluation. However, subjective evaluation is 

usually time-consuming and impractical in real world applications. Therefore, there has 

been an increasing push to develop objective measurement approaches that predict image 

quality automatically. According to the availability of a reference image, the objective 

IQA algorithms generally fall into three categories: full-reference (FR) [6], reduced-

reference (RR) and no-reference (NR) algorithms [3]. These three classes are required at 

different situations. Although NR-IQA is potentially the most useful goal, the difficulty 

of creating algorithms that accurately predict visual quality, especially without any 

information about the original image, still makes it attractive to develop FR-IQA 

algorithms in practical applications. We focus on FR-IQA in this paper. 

Commonly, many state-of-the-art FR-IQA algorithms adopted two-stage framework, 

viz. local quality measurement stage and pooling stage. The local quality measurement 

process typically results in a quality map defined either in the spatial domain or in the 

transform domain. To date, significant progress has been made in the design of the local 
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quality measurement. For example, the well-known structural similarity (SSIM) [7] is 

widely accepted due to its reasonably good evaluation accuracy, pixel-wise quality 

measurement, and simple mathematical formulation. The multi-scale extension of the 

SSIM, namely MS-SSIM [8], produces better results than its single-scale counterpart. 

The SSIM and its extensions take advantage of the features, i.e., luminance, contrast and 

structure (covariance), with a certain degrees of success. Besides, the image features 

including visual information [9], phase congruency (PC) [10-11], singular value 

decomposition [12], Harris response [13], gradient [14], etc were also employed in 

developed FR-IQA algorithms. It should be noted that, among these features, gradient 

feature that conveys important visual information was often utilized to capture local 

distortion in the image due to relatively low computational complexity. Actually, recent 

works image quality assessment applied image gradient feature for a variety of FR-IQAs 

and showed good results in the experiments. For instance, Chen [14] proposed a so-called 

gradient-based structural similarity (G-SSIM), which compared edge information 

between the distorted image and the original image. Experimental results show that the 

G-SSIM algorithm correlates with the perception of visual quality much better than the 

SSIM and MS-SSIM. In [15], Zhu et. al., presented a multi-scale visual gradient 

similarity index (VGS) incorporating HVS low-level visual properties, such as visual 

detection threshold of gradient and visual frequency sensitivity. Experimental results 

show that VGS is competitive with state-of-the-art algorithms in terms of prediction 

precision and reliability. However, the main limitations of the VGS are caused by the 

fixed visible gradient threshold and the optimal values of two main parameters, which 

need to be trained with existing IQA databases. Thus, the VGS is image-dependent and 

would be inconvenient in practical applications. In [16], Liu et. al., proposed a new IQA 

algorithm based on the concept of gradient similarity. They had demonstrated that the 

gradient similarity measure considering masking effect and visibility threshold can 

achieve a similar or better performance compared with eight other representative and 

prominent IQA algorithms. Nevertheless, the performance of the algorithm is heavily 

affected by parameter values. 

While significant progress has been made in the design of the local quality 

measurement stage in the literature, pooling stage still has not been well explored to 

convert quality map into a single quality score and has a long way to go before reaching 

useful levels of performance. For instance, many classical algorithms such as SSIM and 

MS-SSIM share a common deficiency that, when pooling a single quality score from the 

local quality map, all positions are considered to have the same importance. In other 

words, they treat different located distortions equally. Neither SSIM nor MS-SSIM takes 

into account factors such as the visual importance of image features. In [17], images were 

decomposed in different sub-bands and these sub-bands can have different weights at the 

pooling stage. However, within each sub-band, every position was still given the same 

importance. Such pooling strategies were not consistent with the intuition that different 

locations on an image can have very different contributions to human visual perception of 

the image.  In [18], Wang et. al., proposed a novel information content weighted SSIM 

IQA algorithm (IW-SSIM). When pooling the quality map into a quality score, instead of 

averaging, the IW-SSIM used information content as weights. The success of the IW-

SSIM algorithm contributes to an effective combination of local SSIM measurement and 

multi-scale image decomposition followed by scale-variant weighting. Although it 

achieves good correlation with the human judgment, it has higher computational 

complexity. Similarly, motivated by the idea that different image regions (edges, textures 

and smooth regions) have different perceptual significance relative to quality, Li and 

Bovik [19] presented a four-component weighted structural similarity index and 

experimental results show that this kind of region-weighted approach can improve the 

performance of SSIM, MS-SSIM, and some of their popular variants. 
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Recently, Zhang et. al., [10] proposed a so-called feature similarity (FSIM) index 

based on advance local image quality measurement and saliency-based weighting. 

Specifically, the FSIM algorithm used two kinds of features to measure local image 

quality, i.e., the phase congruency (PC) and the gradient magnitude (GM), which 

represent complementary aspects of the visual image quality. Note that PC in FSIM index 

also provides a saliency measure of image gradient feature, which is used to weight the 

contribution of each pixel to the overall quality score (We use saliency as a general term 

that represents low-level local image features that are of perceptual significance). Similar 

to IW-SSIM, its main drawback is low computational efficiency that makes FSIM not 

appropriate to real-time applications [11]. In this paper, we focus on reducing the 

computational complexity of the FSIM, and propose a novel low complexity version of 

the FSIM, called fast feature similarity index (FFSIM) incorporating gradient visual 

saliency. First, we use the gradient structural similarity [14] to measure the changes in 

structure in images. Furthermore, based on the fact that human visual system (HVS) 

responds to the brightness stimulus mainly complying with Weber's law, the proposed 

algorithm only performs one pass filtering to quickly calculate the contrast between the 

current pixel and its background, which is used as a dimensionless measure of the visual 

significance of the gradient magnitude after applying nonlinear mapping. The gradient 

magnitude combined with Weber contrast (WC) visual significance, which play similar 

role as the PC in FSIM algorithm but with significantly higher computational efficiency, 

serves basis for characterizing the local image quality. Finally, the multi-scale extension 

of the FFSIM (MS-FFSIM) is proposed, which complies with the spatial frequency 

response characteristics of the HVS system and has better prediction performance than 

single scale FFSIM. Extensive experiments conducted with six publicly available subject-

rated databases have confirmed the effectiveness, robustness, and efficiency of the 

proposed algorithm in comparison with the relevant state-of-the-art algorithms. 

The remainder of this paper is organized as follows. In Section 2, we provide a brief 

introduction of the FSIM, as the ground for the following analysis, discussion, and 

comparison. Section 3 describes the details of the Weber's law and discusses how to 

combine the Weber contrast and gradient magnitude changes. The experimental results 

with further discussion are given in Section 4. We will validate our FFSIM and MS-

FFSIM algorithms with six publicly available IQA databases for benchmarking. Finally, 

conclusions are drawn in Section 5. 

 

2. FSIM 

For the sake of brevity, this section only presents a brief overview of the FSIM 

algorithm. For detailed information, readers are referred to [10]. It is found that visually 

discernable features coincide with those points where the Fourier waves at different 

frequencies have congruent phases [11]. Highly informative phase congruency (PC) 

feature plays an important role in FSIM algorithm, thus we start from the definition of 

PC. Let 
e

n
M  and 

o

n
M  denote the even-symmetric and odd-symmetric wavelet at scale n , 

respectively, and they form a quadrature pair. The convolution results of the input image 

I  with quadrature pairs of filters at position ( , )I x y  on scale n  will form a response 

vector that is the basic components to calculate PC: 

[ ( , ) , ( , ) ] [ ( , ) , ( , ) * ]
e o

n n n n
e x y o x y I x y M I x y M                                                            (1) 

With respect to the quadrature pair of filters, i.e., 
e

n
M  and 

o

n
M , FSIM adopts log-

Gabor filters due to the following two reasons. First, log-Gabor filters allow arbitrarily 

bandwidth and maintain a reasonably small DC component in the even-symmetric filter. 

Second, the transfer function of the log-Gabor filter has an extended tail at the high-
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frequency end, which makes it more capable to encode natural images than ordinary 

Gabor filters. Specifically, the log-Gabor function has the following transfer function: 

22

0

2 2

( )(lo g ( / ))

2 2
( , ) ex p ( ) ex p ( )

j

r
j

L o g G a b o r

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                                                         (2) 

where n  is scale， / , {0 ,1, , 1}
j

j J j J     is the orientation angle of the 

filter, J  is the number of orientations, 


 determines the filter’s angular bandwidth, 

0
 is the filter’s center frequency, and 

r
 controls the filter’s bandwidth. 

As such, the 2D PC at position ( , )I x y  can be expressed as the summation over 

orientation 
j

  and scale n  

,

( , )
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where 
2 2

, , ,
( , ) ( , ) ( , )

j j j
n n n

A x y e x y o x y
  

  is the local amplitude on scale n  and 

orientation 
j

 , and 
2 2

( , ) ( , ) ( , )
j j j

E x y F x y H x y
  

   is local energy along 

orientation 
j

 , where 
,

( , ) ( , )
j j

nn
F x y e x y
 

  and
,

( , ) ( , )
j j

nn
H x y o x y




  . It 

should be noted that ( , )P C x y  is a real number within (0-1]. 

The FSIM local quality measurement at position ( , )I x y between reference image R  

and distorted D  is defined as: 

( , ) ( , ) ( , )
G M P C

F SIM x y S x y S x y                                                                             (4) 

where ( , )
G M

S x y , ( , )
P C

S x y  are GM similarity measure and PC similarity measure, 

respectively. The similarity measure for ( , )
R

G x y  and ( , )
D

G x y  is defined as follows: 

1

2 2

1

2 ( , ) ( , )

( , ) ( , )
( , )

R d

R R

G x y G x y T

G M G x y G x y T
S x y

 

 
                                                                                        (5) 

where 
1

T  is a positive constant depending on the dynamic range of GM values. Eq. (5) 

is a commonly used measure to define the similarity of two positive real numbers and its 

result ranges within (0-1]. Similarly, the similarity measure for ( , )
R

P C x y  and 

( , )
D

P C x y  is defined as follows: 

2

2 2

2

2 ( , ) ( , )

( , ) ( , )
( , )

R d

R R

P C x y P C x y T

P C P C x y P C x y T
S x y

 

 
                                                                                  (6) 

where 
2

T  is a positive constant to increase the stability of ( , )
P C

S x y  (such a 

consideration was also included in SSIM). The determination of 
2

T  depends on the 

dynamic range of PC values. Eq. (6) is a commonly used measure to define the similarity 

of two positive real numbers and its result ranges within (0-1]. 

Having obtained the similarity ( , )F S IM x y at each location ( , )I x y , the overall 

similarity between R  and D can be calculated. After computing the local similarity map, 

PC is utilized again as a weighting function to derive a single similarity score. As we 

know, human visual cortex is sensitive to phase congruent structures, the PC value at a 

location can reflect how likely it is a perceptibly significant structure point. Intuitively, 

for a given location ( , )I x y , if anyone of ( , )R x y  and ( , )D x y  has a significant PC 



International Journal of Signal Processing, Image Processing and Pattern Recognition 

Vol.8, No.11 (2015) 

 

 

Copyright ⓒ 2015 SERSC  183 

value, it implies that this position ( , )I x y  will have a high impact on HVS in evaluating 

the similarity between R  and D . Therefore, 

( , ) ( ( , ), ( , ))
m R D

P C x y m ax P C x y P C x y was used to weight the importance of 

( , )F S IM x y  in the overall similarity between R  and D . Accordingly, the FSIM index 

between R  and D  is defined as follows [10]: 

( , )

( , )

( , ) ( , )

( , )

mx y

mx y

F S IM x y P C x y

F S IM
P C x y











                                                                     (7) 

where   means the whole image spatial domain. 

 

3. Fast FSIM 
 

3.1. Basic Idea 

The main limitation of the PC is its low computational efficiency since *n j  filtering 

operations must be conducted when computing visual saliency for the pixel ( , )I x y . The 

novel perceptual local image quality measurement is motivated by the fact that perceptual 

image gradient degradations are not only affected by spatial distributions of pixels but 

also by background luminance, which is ignored in many IQA algorithms and should be 

also accounted for a complete and more robust IQA algorithm. In fact, the visual 

perception to image gradient magnitude is nonlinear, which can be seen from Figure 1. 

When one gradient magnitude is twice that of another, we can not perceive double 

intensity from the former. Without loss of generality, in this work the subjective (or 

perceptual) gradient intensity with raw gradient magnitude is represented by ( )f  , which 

will be detailed in the following sections. 

 

 

Figure 1. Illustration for Perceptual Intensity of Gradient Magnitude 

The back ground gray value is 128 with an 8-bit gray scale. From left to right, the gray 

values are 128 + [16, 32, 64, 127] for the rectangles in the top row and 128-[16, 32, 64, 

128] for the rectangles in the bottom row. 

 

3.2. Weber's Law 

It is well known that human vision has a nonlinear perception to different physical 

stimuli (e.g., luminance), which has been theorized and empirically proven by the 

psychologist E.H. Weber [20]. In psychophysics, let X  and Y  denote the raw magnitude 

and the perceptual intensity of physical stimuli respectively, then we roughly have: 

0

( )
X

X
Y f


                                                                                                          (8) 

where X  represents the increment threshold (just noticeable difference for 

discrimination), 
0

X  represents the initial stimulus intensity, 
0

X

X

 is the relative change in 
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luminance, i.e., Weber's contrast (WC), Y is the change in subjective brightness, and f  

is a mapping function, which should match well a human being's perception. 

 

3.3. Weber Contrast Visual Saliency 

The observer’s assessment of image quality is prejudiced by the perceived structural 

distortions in saliency regions. Therefore, a relative measure of the importance of 

different regions indicated by a saliency map plays an important role in evaluating the 

image quality. In this paper, we employ Weber's law model to detect the saliency. 

Weber's Law is computed empirically, its effectiveness had been proven for several 

application fields. We assume that Weber's law is also suitable for image gradient 

magnitude, which will be empirically verified later by testing subject-rated IQA 

databases. In the following, perception nonlinearity of image gradient magnitude is 

explored and taken into consideration. We use the intensity differences ( )
c

x  between a 

current pixel 
c

x  and its neighbors as the visual salience of the current pixel ( ( ))
c

f x . By 

this means, we hope to find the saliency variations within an image to simulate the 

gradient magnitude perception of human beings. Specifically, the Weber contrast visual 

saliency ( ( ))
c

f x  of a current pixel 
c

x  is computed as: 

1

0

( )1

0

( ( )) ( ) ( ( ) / )

N

i c

i

c

x xN

X

c i cX x

i

f x f f x x













                                                      (9) 

 

 

Figure 2. Comparison of the Arctangent Function and Some Sigmoid 
Functions 

Note that the output of arctan () is in radian measure. 

It should be noted that, if ( )
c

x  is positive, it simulates the case that the surroundings 

are lighter than the current pixel. In contrast; if ( )
c

x  is negative, it simulates the case 

that the surroundings are darker than the current pixel. As we known, logarithm function 

matches well a human being's perception. However, it can not be used here since many 

outputs of ( )
c

x  are negative. As shown in Figure 2, we use the arctangent function to 

compute ( ( ))
c

f x . We use this function since it can limit the output to prevent it from 

increasing or decreasing too quickly when the input becomes larger or smaller. By this 

means, we attempt to preserve more discriminating information in comparison to using 

the absolute value of ( )
c

x . As such, Weber contrast visual salience similarity is defined 

as: 

 3

2 2

3

2 ( , ) ( , )

( , ) ( , )
( , )
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W C f x y x y T
S x y
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It is well known that edges are crucial for visual perception and play a major role in 

the recognition of image content. Intensity edges certainly contain considerable image 

information and are perceptually significant. As shown in Figure 3, by visual 

examination, we can see that PC map and WC map of the reference image are 

substantially similar, perceptual differences only exist in the areas of clouds and shadows 

where have a slight impact on the overall image quality. Figure 3 clearly illustrates that 

WC play similar role as the PC in FSIM algorithm and is alternative to PC. More 

statistically convincing results will be presented in the following sections. 

 

 

a)                                    b)                                        c) 

Figure 3. Comparison of the PC map and WC Map 

(a) is the reference image; (b) is the PC map of (a); (c) is the Weber visual salience map 

of (a).  

 

3.4. FFSIM and its Multi-Scale Extension 

In our proposed algorithm, ( , )
W C

S x y  is used to replace the FSIM local image quality 

measurement ( , )
P C

S x y to further improve its computational efficiency, which is 

appealing for visual prediction of human beings. 

( , ) ( , ) ( , )

( , )

G M W C m

m

S x y S x y W C x y

W C x y
F F S IM









                                                                           (11) 

where ( , ) m ax ( ( , ), ( , ))
m R D

W C x y W C x y W C x y . 

 

Images are naturally multi-scale and image features possess multi-scale attributes. In 

MS-SSIM, quality assessment is accomplished over multiple scales of the reference and 

distorted image patches by iteratively low-pass filtering and down-sampling the signals. 

Similar to MS-SSIM, a multi-scale FFSIM (MS-FFSIM) algorithm is obtained by 

combining the measurement across scales via: 

1

( )
j

M
B

j
j

M S F F S IM F F S IM


                                                                        (12) 

where M is scale, the values 
j

B  are relative weights between scales that can be 

obtained through psychophysical measurement [8]. Interestingly, the measured weight 

function peaks at middle-resolution scales and drops at both low- and high-resolution 

scales, consistent with the contrast sensitivity function (CSF) extensively studied in the 

vision literature [21]. 

 

 

http://jvm.sagepub.com/content/8/4/362.short
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4. Experiments and Results 
 

4.1. Databases and Criteria for Comparison 

As summarized in Table 1, there are six publicly available human-rated image 

databases, including LIVE, TID2008, CSIQ, IVC, A57 and MICT [18], which are widely 

recognized in the IQA research community. We include all of them in our algorithm 

validation and comparisons. The performance of the proposed FFSIM and MS-FFSIM 

algorithms will be evaluated and compared with seven representative FR-IQA metrics, 

including six state-of-the-arts (SSIM, MS-SSIM, IFC, VSNR, NQM, and FSIM) and the 

classical PSNR. For FFSIM and MS-FFSIM, we implemented it by ourselves. For FSIM, 

we used the implementation provided by the author, which is available at 

http://www.comp.polyu.edu.hk/~cslzhang/IQA/FSIM/FSIM.htm. For all the other 

methods evaluated, we used the public software MeTriXMuX, which is available at 

http://foulard.ece.cornell.edu/gaubatz/metrix_mux/. 

Table 1. Benchmark Test Databases for IQA 

Database 
Source 

Images 

Distorted 

Images 

Distortion 

Types 

DMOS 

Rang 
Provider 

LIVE 29 779 5 0-100 University of Texas 

TID2008 25 1700 17 0-9 

Joint international effort 

between Finland、Italy and 

Ukraine 

CSIQ 30 866 6 0-1 Oklahoma University 

IVC 10 185 5 0-5 
Ecole Polytechnique 

University   

A57 3 54 6 0-1 Cornell University 

MICT 14 168 2 1-5 Toyama University 

 

We used three evaluation criteria to compare the performance of the FR-IQA 

algorithms, i.e., Spearman rank-order correlation coefficient (SROCC), Pearson linear 

correlation coefficient (PLCC) and Kendall rank-order correlation coefficient (KROCC) 

between the objective scores after nonlinear regression and the subject scores. Among 

these criteria, SROCC and KROCC are used to assess prediction monotonicity. They are 

independent of any monotonic nonlinear mapping and ignore the relative distance 

between data points. PLCC is adopted to evaluate prediction accuracy for a perfect match 

between the mapped objective scores and the subjective scores. A better objective FR-

IQA algorithm has a higher PLCC, SROCC, and KROCC. The mathematical definition 

of these three criteria is given as follows [18]. 

SRCC is defined as: 

2

1

2

6

( 1 )
1

N

i
i

d

N N
S R C C






                                                                                                        (13) 

where 
i

d is the difference between the i th image’s ranks in subjective and objective 

evaluations. SRCC is a non-parametric rank-based correlation metric. 

KRCC is another non-parametric rank correlation metric given by: 

0 .5 ( 1 )

c d
N N

N N
K R C C




                                                                                                           (14) 

where 
c

N  and 
d

N  are the numbers of concordant and discordant pairs in the data set, 

respectively. 

http://www.comp.polyu.edu.hk/~cslzhang/IQA/FSIM/FSIM.htm
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PLCC can then be computed as: 

2 2

( )* ( )

( ) ( )

i i
i

i i
i i

q q o o

q q o o

P L C C
 
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


 
                                                                                            (15) 

where 
i

o  is subjective score of the i th image in an image database, 
i

q  is the mapping 

score of the raw objective score 
i

r  using a nonlinear mapping function. We used the 

following logistic mapping function:  

2 3

1

1 4 51 ex p ( ( ))
( ) (0 .5 )

a r a
q r a a r a

 
                                                                              (16) 

where 
1

a  to 
5

a are model parameters found numerically using a nonlinear regression 

process to maximize the correlations between subjective and objective scores. 

 

4.2. Validation and Comparison 

In this subsection, we first use an example to demonstrate the effectiveness of FFSIM 

in evaluating the perceptible image quality. Figure 4 (a) is the I25 reference image in the 

TID2008 database, and Figures 4(b-f) show five distorted images of I25. Distortion types 

of Figures 4 (b-f) is additive Gaussian noise, spatially correlated noise, JPEG 

compression, JPEG 2000 compression, and contrast change, respectively. We compute 

the image quality of Figures 4 (b-f) using various FR-IQA algorithms, and the results are 

summarized in Table 2. We also list the subjective scores (extracted from TID2008) of 

these five images. For each FR-IQA algorithm and the subjective evaluation, higher 

scores mean higher image quality. In order to show the correlation of each FR-IQA 

algorithm with the subjective evaluation more clearly, in Table 2, we list SRCC value at 

the last row. From Table 2, we can see that the quality scores computed by FFSIM and 

MS-FFSIM correlate with the subjective evaluation much better than the other IQA 

algorithms. Similar results can also be found in Table 3, where the I04 reference image 

and its five distorted images are employed as test data. 

 

 

a)                                          b)                                             c) 

 

d)                                         e)                                              f) 

Figure 4. Evaluation of I25 Image Contaminated by Different Distortions 

(a) Reference image; (b-f) are the distorted versions of (a) in the TID2008 database. 

Distortion types of (b-f) are additive Gaussian noise, spatially correlated noise, JPEG 

compression, JPEG 2000 compression, and contrast change, respectively. 
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a)                                          b)                                             c) 

 

d)                                          e)                                            f) 

Figure 5. Evaluation of I04 Image Contaminated by Different Distortions 

(a) Reference image; (b-f) are the distorted versions of (a) in the TID2008 database. 

Distortion types of (b-f) are additive Gaussian noise, spatially correlated noise, JPEG 

compression, JPEG 2000 compression, and contrast change, respectively. 

 

To further examine the robustness of the FR-IQA algorithms, the performance on each 

distortion type in TID2008 database is shown in Table 4, where the three best FR-IQA 

algorithms have been highlighted in boldface and underlined numbers represent the best 

algorithm for each distortion type. The TID2008 database is used since it is the largest 

database and contains the most distortion types, which are listed in the first column of 

Table 4. We include only the SROCC values since other performance criteria lead to 

similar conclusions. From Table 4, we can see that the proposed algorithms, i.e., the 

FFSIM and MS-FFSIM, perform quite well (i.e., always the best or the second best, 

especially for Gaussian noise and JPEG compression that are the most common types of 

distortions). More importantly, MS-FFSIM and FFSIM outperform FSIM, which 

suggests that they perform much better than the other IQA algorithms, such as VIF, IFC 

and NQM. We did not list their data due to the space restrictions of the paper. Results in 

Table 4 corroborate that the Weber contrast visual saliency does affect the perceptible 

quality and lead to consistent improvement. 

Table 2. Quality Evaluation of Images in Figure 4 

Figures MOS 

IQA algorithm 

FSIM SSIM MSSIM IFC VSNR NQM PSNR FFSIM 
MS-

FFSIM 

Figure 

4(a) 
4.3600 0.8931 0.7524 0.9506 5.4302 29.5359 26.6275 27.9629 0.7568 0.9562 

Figure 

4(b) 
3.6400 0.9189 0.8498 0.9373 5.1535 25.8149 23.8981 30.9293 0.8252 0.9335 

Figure 

4(c) 

4.8077 0.8937 0.9410 0.9830 6.6103 28.8883 23.6474 24.9560 0.8813 0.9770 

Figure 

4(d) 

6.0769 0.9492 0.9721 0.9964 7.4930 38.9113 30.0237 29.3434 0.9354 0.9927 

Figure 4(f) 5.0000 0.9695 0.9390 0.9691 31.8997 19.7930 13.1761 22.9439 0.9813 0.9730 

SRCC － 0.6000 0.8000 0.9000 0.9000 0.3000 0.1000 0.4000 0.8000 0.9000 
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Table 3. Quality Evaluation of Images in Figure 5 

Figures 

MOS 

IQA algorithm  

 FSIM SSIM MSSIM IFC VSNR NQM PSNR FFSIM 
MS-

FFSIM 

Figure 5(a) 4.9429 0.8765 0.6866 0.9462 2.7659 25.2771 25.7385 30.4824 0.8535 0.9745 

Figure 5(b) 4.6471 0.8444 0.7352 0.8785 1.7336 18.1678 17.4913 30.4551 0.8495 0.9283 

Figure 5(c) 5.2857 0.9202 0.8472 0.9659 2.3451 25.6631 25.1103 33.7854 0.9101 0.9803 

Figure 5(d) 2.8286 0.7484 0.7183 0.8677 0.5156 16.2331 13.7279 28.2144 0.8278 0.9190 

Figure 5(f) 5.1765 0.9824 0.9748 0.9743 13.5516 17.4520 12.5297 29.4388 0.9856 0.9801 

SRCC － 0.9000 0.6000 0.9000 0.7000 0.7000 0.2000 0.7000 0.9000 1.0 

Table 4. SRCC Comparisons for Individual Distortion Type on TID2008 
Database 

Distortion 

Number 

IQA algorithm  

SSIM MSSIM VSNR IFC FSIM FFSIM 
MS-

FFSIM 

1 0.7965 0.8087 0.7734 0.6166 0.8570 0.8866 0.8885 

2 0.8075 0.8045 0.7798 0.5460 0.8515 0.8697 0.8691 

3 0.8261 0.8198 0.7673 0.6000 0.9272 0.8796 0.886 

4 0.8120 0.8151 0.7348 0.6737 0.8023 0.7875 0.7856 

5 0.8438 0.8722 0.8822 0.7317 0.9093 0.9126 0.9102 

6 0.7470 0.6868 0.6438 0.5395 0.7456 0.7804 0.7806 

7 0.8016 0.8530 0.8255 0.6871 0.8555 0.8614 0.8819 

8 0.9386 0.9606 0.9323 0.8559 0.9472 0.9557 0.9471 

9 0.9272 0.9566 0.9302 0.7973 0.9604 0.9601 0.9708 

10 0.8989 0.9347 0.9181 0.8180 0.9372 0.9382 0.9406 

11 0.8875 0.9734 0.9444 0.9437 0.9775 0.9705 0.9807 

12 0.8194 0.8737 0.8079 0.7912 0.8708 0.8861 0.8796 

13 0.8461 0.8521 0.7914 0.7301 0.8542 0.8884 0.8869 

14 0.6948 0.7335 0.5723 0.8420 0.7495 0.7312 0.7592 

15 0.8851 0.7602 0.1826 0.6770 0.8488 0.9021 0.8513 

16 0.7177 0.7347 0.7475 0.4250 0.6695 0.5859 0.5718 

17 0.4873 0.6394 0.4774 0.1713 0.6480 0.6606 0.6450 

 

Note 1: Additive Gaussian noise; 2: Additive noise in color components 3: Spatially 

correlated noise 4: Masked noise 5: High frequency noise 6: Impulse noise 7: 

Quantization noise 8: Gaussian blur 9: Image denoising 10: JPEG compression 11: 

JPEG2000 compression 12: JPEG transmission errors 13: JPEG2000 transmission errors 

14: Non eccentricity pattern noise 15: Local block-wise distortions of different intensity 

16: Mean shift (intensity shift) 17: Contrast change. 

To examine the robustness and effects of FFSIM and MS-FFSIM, we carried out a 

comprehensive test on the LIVE, TID2008, CSIQ, IVC, A57, and MICT databases. The 

results are shown in Table 5 in terms of the SRCC, KRCC and PLCC metrics, 

respectively. From the experimental results summarized in Table 5, we can see that our 
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algorithms achieve the best robust results on all the databases. Specifically, it can be 

observed that FSIM, FFSIM and MS-FFSIM significantly have higher performance than 

the others for nearly all the six databases. The proposed FFSIM and MS-FFSIM are 

worse than the FSIM sometimes, however, considering the scales of the databases 

including the number of images and the number of distortion types, we think that the 

results obtained on TID2008, CSIQ and LIVE are much more convincing than those 

obtained on IVC, MICT and A57. Overall speaking, FFSIM and MS-FFSIM achieve the 

most consistent and robust performance across all the six databases. By contrast, for the 

other algorithms, they may work well on some databases but fail to provide good results 

on other databases. 

Table 5. Performance Comparison for IQA Algorithms on Six Databases 

Database Index 
IQA Algorithm  

SSIM MSSIM VSNR IFC FSIM FFSIM MS-FFSIM 

LIVE 
PLCC 0.9593  0.9390  0.9587  0.9620  0.9463  0.9644  0.9648 

SRCC 0.9536  0.9677  0.9607  0.9474  0.9708  0.9684  0.9670 

KRCC 0.8179  0.8561  0.8335  0.8085  0.8639  0.8538  0.8554 

TID2008 

PLCC 0.8111  0.8315  0.7552  0.6819  0.8511  0.8590  0.8675 

SRCC 0.8081  0.8282  0.7477  0.6733  0.8477  0.8504  0.8491 

KRCC 0.6199  0.6447  0.5707  0.4894  0.6674  0.6743  0.6726 

CSIQ 

PLCC 0.8802  0.9002  0.9185  0.8315  0.8759  0.9102  0.9048 

SRCC 0.8875  0.9558  0.9169  0.8293  0.9496  0.9468  0.9552 

KRCC 0.7115  0.8180  0.7461  0.6705  0.8051  0.7980  0.8157 

IVC 

PLCC 0.7958  0.9264  0.8361  0.9504  0.9554  0.9468  0.9428 

SRCC 0.8007  0.9047  0.8098  0.9342  0.9365  0.9240  0.9258 

KRCC 0.6357  0.7580  0.6497  0.7948  0.8076  0.7838  0.7821 

A57 

PLCC 0.9182  0.9616  0.9630  0.8259  0.9505  0.9745  0.9647 

SRCC 0.8111  0.9139  0.9528  0.7445  0.9167  0.9056  0.8722 

KRCC 0.6759  0.8055  0.8889  0.5926  0.8148  0.8056  0.7593 

MICT 

PLCC 0.9211  0.9507  0.9302  0.8192  0.9623  0.9352  0.9423 

SRCC 0.9148  0.9470  0.9246  0.8103  0.9561  0.9278  0.9375 

KRCC 0.7506  0.8091  0.7593  0.6007  0.8189  0.7709  0.7894 

 

To provide an overall indication of the comparative performance of the different 

algorithms, Table 6 gives the average SROCC, KROCC, and PLCC results over six 

databases, where the average values are computed, different weights are assigned to the 

databases depending on the number of distorted images in each database. In Table 6, we 

can see that the proposed algorithm performs the best or close to the best on average. 

Table 6. Average Performance over Six Databases 

Index 
IQA algorithm  

SSIM MSSIM VSNR IFC FSIM FFSIM MS-FFSIM 

PLCC 0.8638  0.8805  0.8487  0.7952  0.8872  0.9010  0.9039  

SRCC 0.8530  0.8897  0.8370  0.7794  0.9006  0.8981  0.8991  

KRCC 0.7035  0.7539  0.6981  0.6205  0.7628  0.7611  0.7645  

 

Finally, to compare the computational complexity of different algorithms, we 

measured the average computation time required to assess an image of size 512*512 

(using a computer with Intel(R) Core(TM) i5-2450M processor at 2.5 GHz). Table 7 
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reports the required time in seconds per image, with all the codes being implemented 

with MATLAB. From Table 7, we can see that SSIM has the lowest computational cost, 

whereas FSIM has the highest computational cost among all compared algorithms. It can 

be seen that MS-FFSIM is slightly slower than MSSIM, but faster than FSIM 

significantly. To be more precise, the proposed method takes only about 20% of the time 

taken by FSIM. The savings over FSIM are due to the use of the Weber contrast visual 

salience rather than the phase congruency that has higher computational complexity. The 

proposed MS-FFSIM has quite high speed (less than one second per image), that is to 

say, computational complexity may not be a major concern in most real-world 

applications. 

Table 7. Execution Time (in Seconds Per Image) for Different Algorithms 

 IQA algorithm  

SSIM MSSIM VSNR IFC FSIM FFSIM MS-FFSIM 

Time (s) 0.0581 0.1530 0.0396 1.3111 2.0127 0.0651 0.3902 

 

It should be noted that only the luminance components of the images were employed 

when performing comparative experiments, although the images of the six test databases 

are color images. Similar to the FSIM, better performance can be achieved if the 

chrominance information is incorporated in FFSIM and MS-FFSIM. We did not list their 

data due to the space restrictions of the paper. 

 

5. Conclusions 

In this paper we proposed a fast and multi-scale version of feature similarity IQA 

algorithm, namely FFSIM and MS-FFSIM. The underlying principle of the FFSIM and 

MS-FFSIM is that HVS perceives an image mainly based on its saliency low-level image 

feature. Specifically, the local image quality measurement based on the perception 

nonlinearity (Weber contrast visual saliency) of image gradient magnitude is 

implemented, which can better characterize local quality and has much lower complexity 

than phase congruency-based visual salience. Our extensive tests across six publicly-

available independent image databases verified that performances of FFSIM and MS-

FFSIM are often superior otherwise similar when compared to the other representative or 

prominent IQA algorithms in terms of correlation between objective measured quality 

values and subjective observations, validating that it is a very robust IQA algorithm. We 

believe that our results support the general principle underlying our approach, i.e. some 

HVS properties on image gradient should been explored and incorporated into designing 

the new IQA algorithm. We expect that our work could give new insights to people who 

are interested in image quality assessment. 

There are a number of issues that deserve further investigation. Specifically, the low-

level image feature currently being employed to capture local characteristics of natural 

images is based upon local gradient magnitude only. Advanced models that consider both 

gradient magnitude and gradient direction may lead to more accurate local image quality 

measurement. Moreover, apart from perception nonlinearity, more HVS visual properties, 

e.g., just noticeable differences, should be considered to make local image quality 

measurement correlate well with the human perception in the future. 
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