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Abstract 

As the wheeled mobile robot is widely used in various fields, requirements of control 

accuracy for wheeled mobile robot are also increasing. Vision sensors get more and more 

attention because they are information capacity, high efficiency, non-contact 

measurement. The servo control problem of robot visual has also become a research hot 

spot. Dividing from the number of vision sensors, visual servo system can be divided into 

monocular visual servo system, binocular visual servo system and multi-purpose visual 

servo system. 

 

Keywords: nonholonomic systems, wheeled mobile robots, visual servo robust control 

 

1. Introduction 

Applications of vision sensor in the field of robotics have many years of history. 

When the target of the robot is in unstructured, dynamic case, make the robot under 

the visual sensing control through the visual sensor has obvious advantages, and 

make level of intelligence of the robot has greatly improved[1-3]. Sanderson and 

Weiss classified visual servo control system structures according to the feedback 

approach of the visual information. The structure can be mainly divided into two 

categories: location-based visual servo system and image features-based visual 

servo system [4-6].  

This paper quotes image-based visual servo control method to WMR motion 

control [7-8], proposed a rate control method that based on eliminating the error of 

image features. First, according to the pinhole model of the camera and WMR 

kinematic model the text deduces the relationship between actual velocity of WMR 

in task space and the velocity of WMR in the image space, and then do the 

transformation of the actual system and designs robust speed stabilization 

controller[9-10]. 

 

2. The Kinematics Model of Mobile Robot 
 

2.1WMR Kinematic Model within the Tasks Space  

Here we consider a typical wheeled mobile robot, shown in Figure 1.  
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Figure 1. Car Model of the Wheeled Mobile Robot 

The picture above shows a model of nonholonomic mobile robot, two wheel axles 

of the two wheels of the model coincide, the two wheels are driven by separate DC 

motors, caster only play a supportive role. In order to describe the movement of the 

robot, we establish two Cartesian coordinate system, use a point of a two-

dimensional plane as the origin of the global coordinate system X-Y, and as the 

local coordinate system xc-yc that fixed in the nonholonomic mobile robot itself and 

the horizontal axis in the positive direction is always consistent with the direction 

the robot faces. In figure 1, C is the centroid of the robot, but also the origin of the 

local coordinate system. The coordinate of C in the global coordinate system (x,y) is 

the position of the robot, the angle θ between the positive direction of X and the 

positive direction of xc is the direction the robot faces, also known as direction 

angle. 

Assume that wheels are in the case that there is only pure rolling without sliding, 

we can derive from the nonholonomic constraint relations of the speed and the 

position and orientation that[5]:  
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In the formula, xc(t), yc(t), represent the centroid position of the robot car in the 

task space ,θ represents the angle between car traveling direction and the x -axis, v  

represents the traveling speed of robot trolley in the task space and   represents the 

rotation speed of the car in the task space.  

 

2.2 Kinematic Model of WMR within the Image Space  

In the global visual case, cameras are installed on the ceiling, image plane 

parallels to tasks plane but the two planes are in two different coordinate systems 

[11-12].  

Servo error that is image-based visual servo system can be defined directly in the 

image space, that is the information characteristics the visual sensor observed can 

be directly used for feedback, it do not need to estimate the pose, concrete block 

diagram is shown in Figure 2.  
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Figure 2. Block Diagram of Visual Servo System that is Image-based 
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Assume that the kinematics model of the robot in the image space is as follows:  
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In the formula,  cx t ,  cy t , represent the centroid position of the robot car in the 

image space,   represents the angle between car traveling direction and the x -axis, 

v  represents the traveling speed of robot trolley in the image space and   

represents the rotation speed of the car in the image space. 
 

2.3 Transformation from Task Space to the Image Space  
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Figure 3. Car Model of the Soccer Robot 

Mobile robot shown in the above in figure, in the figure XYZ  is the inertial 

coordinate system.  p is the intersection of the optical center of the camera with the 
XY  plane, ' 'U OV  is a coordinate system of a two-dimensional image plane . 

Assume that p - the optical center of the camera has a projection point in the task 

plane and the coordinates of projection point is  ,x yo o . In the image coordinates, 

the pixel coordinates of the origin point o  of the task space coordinates is  1 2,o o . 

What can obtain from the pinhole model of the camera is the pose relationship 

between the pose of robot car in the image space and the pose of robot car in the 

task space. That is: 
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In the formula, the matrix H is a 2×2 constant diagonal matrix, 
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0  is the angle between the x  axis in the positive of the task space and x  axis in 

the positive of the image space. Coefficient z usually called the depth; f is the focal 
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length of the camera. 1  Represents the physical size of pixel on the x-axis and 2  

represents the physical size of pixel on the y-axis.  

In order to obtain the relationship between the line speed  v t  of robot car in the 

image space and the line speed  v t  of robot car in the task space, do the derivation 

for formula (3) on both sides we can obtain that:  
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Introduce formula (2) to formula (4) and do the transformation, we can obtain that: 
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We only consider a situation that is 1 2    , there we can obtain that:  

 

 
0

0

cos cos

sin sin

v v

v v

   

   

  


 
                                      (7) 

What we can know from formula (7) is:  
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What we can get from the arbitrariness of v、 v  is: 
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So  

0 k      ( k  is an integer)                             (8) 
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                                            (9) 
Based on this formula we can get that:   
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And then we can get that: 
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Similarly we can get that: 

 

 

2

0

2

0

cos cos cos

sin sin sin

v v

v v

    

    

  


 
                              (12) 

It can be obtained: 

 0cosv v                                      (13) 

To sum up: We get the transformation relationship of the amount of the velocity 

of the robot car from the image space to the task space, as the formula (8), (11), (12) 

show, and from the formula (11) and (12) we can know that v  and v  are determined 

between each other.  

 

3. Design of Stabilization Control Law   

 
3.1 System Transformation 

Introduce formula (12) to formula (2) we can get that:                 
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In the formula, 0 k      （ k   is an integer）. That is: 

 0cos 1     
 

First consider the case that  0cos 1     . 
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And then consider the situation  0cos 1      . 

Then  
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If we make that: 
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We can get that: 
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Without loss of generality, we assume  0cos 1     . 

 

3.2 The Design of Control Law 

Design   to make index  stable to 0. Chose the following:  

0, 0, 0k     and k                                     (21) 
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Therefore  t  index converges to zero. 

The following describe how 1z  and 2z  converges to zero.  

Introduce formula (18) to formula (16) we can get that:  
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Consider the following linear time-varying system: 

  1 2x A A t x                                                          (26) 

if 1A is steady array, and  2A t  meet the conditions as follows： 
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The linear time-varying system (26) shows that global exponential stable. 

Next we consider the design of control law. 

Case 1: is known. 

Theorem 1: Selection k 、   and  satisfy the equation (22), 1k 、 2k are constant as 

follow. 
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(2)The controller (28)can guarantees the system (25) be from any initial state index 
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By formula (28) and (29) we know:  2A t  meet the conditions of lemma (2). Is 

easy to prove 1A  is stable array. 

Note: the final control law is 
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Case 2:  is unknown, we make the following assumptions 

20 m                                                              (31)     

This assumption is not strict, because the actual distance f ，pixel scale factor 1

、 2  and depth z  are bounded. 

Because of the unknown at this time, so the control law (30) can't use, therefore, 

theorem 2 is given below.  
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 2A t  is same as theorem 1 in the form. 

By formula (21) and (32) we known  2A t  is meet the conditions of lemma (2). 

Next we prove 1A  is stable array. 

The Characteristic polynomial of matrix 1A is as follow: 
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 According to the principle of stability, if we want to make 1A  stabilize array, 

then the characteristic value need have negative real part. That is:  
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                                                       (36) 

By formula (35) and (36) we can get as follow： 

                   
2 2 2

2 1

0

0

k k m

k k
k

  






   



 


                                                 (37) 

Then we can get 1A is steady array. Note: the final control law is 

                      1 1 2 2

t

v k z k z

k e    

 


  
 

Case 3: 
0

 is known, but 
1

 , 
2

 are unknown, We make the following 

assumptions: 

(1) If 1 2    , we can get that: 

0

0

cos( )

sin( )

m

m

x v

y v

  

  

 

   
   

     
   
   

                                         (38) 

Suppose to  replace 0  ,then we can get that:  

cos

sin

m

m

x v

y v

 

 

 

   
   

    
   
   

                                                (39) 

If we make 1

2

cos sin

sin cos

m

m

xz

yz

 

 

     
     
    

, Then formula（40） will be converted to  the 

form below 

1 2

2 1

z z v

z z

 



 

  



 

 

We set k   ，then (0) kte   （ (0) is the initial value of ）. Assuming that 

1 1

2
2

y z

z
y










 

Then 
2

1 2

2 1 2

y k y v

y ky ky

   


  
                                      (40) 

We can get the final control law is 

1 1 2 2

k

v k y k y

  


 
                                           (41) 
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Among them 1k and 2k are constant: From the above two formulas we can get 

formula（42） 

  
2

1 12 1 1 2 2
0 1

2 21 2

y yk y k y k y
A A t

y yky ky

       
      

     
                    (42) 

In the formula , 1 2

0

k k
A

k k

  
  

 
，  

2

1

0

0 0

k
A t

 
  
 

.         

To illustrate what kind of 1k and 2k  can make the system (42) asymptotic stability, 

the paper first introduces the following propositions. 

Lemma 1： 

If there are linear time-varying systems 

   0 1x B B t x                                                      (43) 

Among them， x is a n dimension vector， 0B  is n n Hurwitz matrix,，  1B t  

satisfy the following formula： 

   0ijb t t   , 1,2i j  … n  

Then the system (42) is asymptotic stability. 

The following content will prove the asymptotic stability of the system (41). 

Proof: the characteristic polynomial of 0A is: 

 1 2 2

0 1 2

k k
I A k k kk

k k

  
    



 
     


 

The sufficient and necessary conditions for 0A belongs to Hurwitz matrix is: 

1

2

0

0

k k

kk





 



 

We set 0 0   ,and 0k  ， 

Then we can get the sufficient and necessary conditions for 0A  belongs to Hurwitz matrix 

is: 

2

1

0

0k

k
k







 


                                                    (44) 

Because (0) kte   , then 0  , 1( ) 0A t   t  , According to lemma 1, system 

(43) is asymptotically stable. 

So the control law as follow can guarantee  , ,x y   asymptotic stability： 

1 1 2 2

k

v k y k y

  


 
 

 (2)If 1 、 2  unknown , and 1 2   

Assuming that 

0 01

0 02

cos( ) sin( )

sin( ) cos( )

m

m

xz

yz

   

   

     
    

     
 

      Put the system equation in the derivative of the above formula ,we can get next 

equation： 

 

2 2
1 1 0 22 0

1 2 0 012

cos ( ) sin ( )

sin( )cos( )

z

z

z
v

z

     


     

       
               

 

Set  0( )k      , then  

              0

kte h                                                                    (45) 
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h is the initial value of   0t   

If 
1 1

2
2

y z

z
y










,we can get  

 

 

2 2

1 0 2 0

1 2 02 2 0

0

1 2

1

cos ( ) sin ( )

sin( )cos( )

y z v

v
y ky ky

     

     
 

     



   




 
  

                              (46) 

Take control law as  

1 1 2 2v k y k y                                                        (47) 

Take the formula (46) into the formula (45) ,we can get  

 

   
  

2

1 0 2 1 0

0 0
1 2 1

2

2

1 1

20 2

2 21 2 2

0

) sin ( )

sin( )cos( )
1

(v k y v
y y

A A t
y yky ky v v

     

   
  




 

  
    

       
     

  

  
    

 




 

Among them 
   1

1 1 2 2

2

221 1 2

0

k k
A

k k k k 

 

 

 
  

   
 

 

   

   

2 2

1 2

2

2 1 0 0 2 1 0

0 0 0 0
1 2 1 2

0

2

1

0

2

sin ( ) ) sin ( )

sin( )cos

(

( ) sin( )cos( )
1 1

k k k

A t
k k

        

       
   

   

   

      
      

    

  
 

  
 
 

The characteristic polynomial of 

20A is 

   
   

1 1 2 2 2

20 1 1 2 1 2 2 1 2 2

1 1 2 2 1 2

k k
I A k k k k k k k

k k k k

  
      

    

 
        

    
 

The sufficient and necessary conditions for 0A belongs to Hurwitz matrix is: 

 
1 1 2 1 2 2

1 2 2

0

0

k k k k

k k k

  



   


 
                                               (48) 

 

4. Results and Analysis  

 
4.1. Simulate by α known 

When the initial state is (1，0.5，1), we can get the state of the time trajectory 

and the robot motion geometric path by obtained (23) under the control law (28), as 

shown in figure 4, 5. In the simulation process the value of β, σ and κ can be 

determined first, and then the value of κ2 and κ1 can be determined by formula (27). 

 Control parameters are 2  , 1  , 1  , 1 6k 
, 2 2k  

, 3k  . 

 

 

Figure 4. The Time Curve in Each State of System (23) by   Known 
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Figure 5. Geometrical Locus of Robot Movement by   Known 

4.2 Simulate by α Unknown 

When the initial state is (1，0.5，1), we can get the state of the time trajectory 

and the robot motion geometric path by obtained (23) under the control law (33), as 

shown in figure 6, 7. In the simulation process the value of β, σ and κ can be 

determined first, and then the value of κ2 and κ1 can be determined by formula (32). 

Control parameters are 2 4m  , 1  , 1  , 1 3k  , 2 1k   , 3k  . 

 

 

Figure 6. The Time Curve in Each State of System (23) by α Unknown 

 

Figure 7. Geometrical Locus of Robot Movement by α is Unknown 

4.3 Simulate by α1and α2 are Unknown 

Case1: 1 2    , and α is unknown 

When the initial state is (1，0.5，1), we can get the state of the time trajectory 

and the robot motion geometric path by obtained (40) under the control law (41), as 

shown in figure 8, 9. In the simulation process the value of β, σ and κ can be 

determined first, and then the value of κ2 and κ1 can be determined by formula (44). 

Control parameters are 3  , 2k  , 1 2k   , 2 1k  . 

http://dict.youdao.com/w/formula/
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Figure 8. The Time Curve in Each State of System (40) by 1 2     

 

Figure 9. Geometrical Locus of Robot ovement by 1 2     

Case2: 1 2  ,α1 and α2 are unknown 

When the initial state is (1，0.5，1), we can get the state of the time trajectory 

and the robot motion geometric path by obtained (46) under the control law (47), as 

shown in figure 10, 11. In the simulation process the value of β, σ and κ can be 

determined first, then the value of κ2 and κ1 can be determined by formula (48). 

Control parameters are 1 2  , 2 1  ,  1 3k   , 2 4k  , 2k  .  

 

Figure 10. The Time Curve in Each State of System (46) by 1 2   
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Figure 11. Geometrical Locus of Robot Movement by 1 2   

By simulation α is known and unknown it can be seen that the control law 

designed in this paper can make the system achieve exponential convergence 

quickly.  

Now we found in the simulation process, the control under the condition of α 

unknown quantity is bigger than in the case of α known, this shows that when the α 

unknown the system need more energy.  
 

5. Conclusions 

For stabilization problem of wheeled mobile robot under global visual conditions, 

this paper introduces a visual servo control method based on image motion control 

of WMR. The simulation results show that the method can solve the problem of 

robot car calm, it has advantages of fast convergence and good robustness. This 

paper just in case of 1 2  presents a robust control law design. For general 

situation of 1 2  , can  use the design idea of this paper to consideration. 
. 
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