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Abstract 

 
Manifold learning is an approach for nonlinear dimensionality reduction and has been a 

hot research topic in the field of computer science. A disadvantage of manifold learning 

methods is, however, that there are no explicit mappings from the high-dimensional feature 

space to the low-dimensional representation space. It restricts the application of manifold 

learning methods in many practical problems such as target detection and classification. 

Previously, some methods have been proposed to provide linear or nonlinear mappings for 

manifold learning methods. However, a disadvantage of all these methods is that the learned 

projective functions are combinations of all the original features, thus it is often difficult to 

interpret the results. Moreover, the dense projection matrices of these approaches lead to a 

high cost of computation and storage. In this paper, a sparse polynomial mapping approach 

is proposed for manifold learning. We first get the low-dimensional representations of the 

high-dimensional input data by using a manifold learning method, and then a 𝑙1-based 

simplified polynomial regression is used to get a sparse polynomial mapping between the 

high-dimensional data and their low-dimensional representations. In particular, we apply this 

to the method of Laplacian eigenmap and derive a sparse nonlinear manifold learning 

algorithm, which is named sparse locality preserving polynomial embedding. Experimental 

results on real-world data show the effectiveness of our approach. 

Keywords: manifold learning, dimensionality reduction, sparse mapping 

1. Introduction 

Large volumes of high-dimensional data are acquired in the data processing. The high 

dimensionality of data will cause the curse of dimensionality [1], thus effective 

dimensionality reduction methods are needed. Manifold learning has become a kind of 

important dimensionality reduction method because it could obtain a low intrinsic 

dimensionality of high-dimensional data [2-4]. In recent years, manifold learning methods, 

such as isometric mapping (ISOMAP) [3], locally linear embedding (LLE) [4], Laplacian 

eigenmap (LE) [5], maximum variance unfolding [6], diffusion maps [7], and Hessian 

eigenmap [8] achieved effective performance in experiments on both synthetic and real-world 

data. However, all these methods have a disadvantage that there are no explicit mappings 

from the high-dimensional input space to the low-dimensional output space. Thus the 

dimensionality of new-come high-dimensional data cannot be reduced quickly. This restricts 

the application of manifold learning methods in many practical problems such as target 

detection and classification. 

In order to overcome the disadvantage of manifold learning, some linear or nonlinear 

methods were proposed to get approximate explicit mappings, such as locality preserving 

projections (LPP) [9], neighborhood preserving embedding (NPE) [10], and neighborhood 
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preserving polynomial embedding (NPPE) [11]. They preserve some intrinsic structures of 

high-dimensional data in the dimensionality reduction and achieve effective performance in 

experiments. However, a disadvantage of all these approaches is that the learned projective 

functions are combinations of all the original features, thus it is often difficult to interpret the 

results. Furthermore, these methods cannot get sparse projection matrices for explicit 

mappings, thus it will affect subsequent storage and computation performance. For example, 

if we use a linear mapping method such as LPP, it will require 20 million expensive floating-

point multiplications to project a feature from 20,000 dimensionalities to 1,000 

dimensionalities. Besides, storage of the projection matrix in floating-point format is 80 

million. The high cost is unaffordable in many real scenarios such as mobile applications. 

In recent years, some approaches have been proposed for learning sparse mappings. The 

sparse principal component analysis method is proposed for getting a sparse projection 

function in [12]. A spectral regression approach is proposed for sparse subspace learning in 

[13]. This approach casts the problem of learning the projective functions into a linear 

regression framework. It can get sparse mappings for subspace learning by using a 𝑙1-based 

linear regression. These approaches get sparse mappings with the assumption that there exists 

a linear mapping between the high-dimensional data and their low-dimensional embedding. 

However, this linearity assumption may be too restrictive for manifold learning. 

To address the above problems, we propose a two-step approach to obtain sparse 

polynomial mappings for manifold learning methods. In the first step, a manifold learning 

method can be applied to get low-dimensional representations of high-dimensional input data. 

In the second step, 𝑙1-based simplified polynomial regression is applied to get a sparse 

polynomial mapping between the high-dimensional data and their low-dimensional 

representations. Through this approach, we can get a sparse polynomial mapping for a 

manifold learning method (e.g., LE, ISOMAP, or LLE). In this paper, we concentrate on the 

LE manifold learning method and propose a sparse nonlinear manifold learning algorithm 

called sparse locality preserving polynomial embedding (SLPPE). Experiments on real-world 

data have been conducted to demonstrate the validity and effectiveness of the proposed 

approach. 

 

2. Sparse Polynomial Mapping 

In this section, we propose a novel approach to learn a sparse polynomial mapping which 

maps high-dimensional data samples to a low-dimensional subspace with a much lower 

computation and storage cost. 

As shown in Figure 1, our approach can be divided into two steps. In the first step, we 

adopt a manifold learning method to get the low-dimensional representations of the high-

dimensional input data. In the second step, we learn a sparse polynomial mapping which 

directly maps high-dimensional data to their low-dimensional representations by using the 𝑙1-

based simplified polynomial regression which is introduced below. In the training phase, the 

sparse polynomial mapping is learned by this two-step approach. In the testing phase, we get 

the low-dimensional representations by directly projecting the high-dimensional data using 

the learned sparse polynomial mapping. 
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Figure 1. Sparse Polynomial Mapping Framework 

We denote high-dimensional input data by 1 2[ , ,..., ]NX x x x , m

ix R , and their low-

dimensional representations are given by the N d  matrix 1 2[ , ,..., ]dY y y y , where the low-

dimensional representation ( ) ( )i dy R d m  is the transpose of the thi row of Y. 

It has been proven in [14] that most manifold learning methods, including ISOMAP, LLE, 

and LE, can be cast into the framework of graph embedding. Through this framework, finding 

the low-dimensional representations of the high-dimensional input data is reduced to solving 

the following optimization problem: 
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where ( , 1,2,..., )ijW i j N are weights which can be defined by the input data samples, and 

1

N

i ijj
D W , and I is an identity matrix. With some simple algebraic calculation, (1) is 

equivalent to 
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where D is a diagonal matrix whose diagonal entity is iD , and W is a symmetrical matrix 

whose entity is ijW . The optimal solutions ( 1,2,..., )N

ky R k d  are the eigenvectors of the 

following generalized eigenvalue problem corresponding to the d lowest eigenvalues: 

 

( )D W y Dy . (3) 

 

Once ( 1,2,..., )ky k d are computed, the dimensional representation ( )

1( ( ),..., ( ))i T

dy y i y i . 
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In the computing stage of a polynomial, as the polynomial degree increases, the 

computational complexity exponentially increases with the degree. Thus we define a 

simplified polynomial in the following by removing the crosswise items of the polynomial. 

We assume that the thk component k

iy of ( )iy is a polynomial of degree p in 
ix in the 

following manner: 

 
( )k T i

i k py v X      (4) 

 

where 
kv is the vector of polynomial coefficients, and ( )i

pX  is defined by 
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where stands for the Hadamard product which refers to entrywise matrix multiplication. 

We can get the sparse polynomial mapping used in Figure 1 by the following simplified 

polynomial regression with the L1 penalty. Due to the nature of the L1 penalty, some 

coefficients will be shrunk to exact zero if the penalty parameter is large enough [15]. Thus it 

produces a sparse model, which is exactly what we want. 

We compute the low-dimensional representations ( ) ( 1,2,..., )iy i N of the high-dimensional 

data samples ( 1,2,..., )ix i N  by solving the generalized eigenvalue problem (3). With a L1 

penalty on kv which is the vector of polynomial coefficients, we have 
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d N
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k i

y v X v  (5) 

 

which is called the 𝑙1-based simplified polynomial regression, where is a penalty parameter, 

and 1|| || is the L1 norm. 

The optimization problem (5) can be solved by using an efficient coordinate descent 

algorithm [16] which is initialized by the value obtained in a previous iteration. Since the L1 

penalty is applied, we can get the sparse coefficient vector of the polynomial mapping. By 

tuning the parameter , we can control the sparsity of the vector of polynomial coefficients. 

The larger the value of  is, the higher the sparsity of the coefficients. The sparse 

coefficients shall bring great convenience for subsequent storage and computation. 

 

3. Sparse Locality Preserving Polynomial Embedding 

It has been proven in [14] that most manifold learning methods, including LE, LLE, and 

ISOMAP, can be cast into the framework of graph embedding with different weights. Thus by 

using the sparse polynomial mapping approach proposed in Section 2 with different 

weights , , 1,2,...,ijW i j N , we can get different sparse polynomial mapping algorithms. In 

this section, we propose a new manifold learning algorithm with a sparse polynomial 
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mapping, named sparse locality preserving polynomial embedding (SLPPE), which is 

obtained by defining the weights , , 1,2,...,ijW i j N , in a way same to the LE method and 

combining them with the above sparse polynomial mapping. We also develop a supervised 

version of SLPPE in the end. 

Given N data samples 
1,..., Nx x  in mR , we construct a weighted graph with N nodes, one 

for each sample, and a set of edges connecting neighboring samples. The sparse polynomial 

mapping is now provided by solving the generalized eigenvalue problem (3) and the 

optimization problem (5). The algorithmic procedure of SLPPE is formally stated below. 

1. Step 1. Constructing the adjacency graph: We put an edge between nodes i and j if 

ix and jx are “close.” There are two variations: 

(a) -neighborhoods (parameter R ). Nodes i and j are connected by an edge 

if 2

2|| ||i jx x . 

(b) k nearest neighbors (parameter k N ). Nodes i and j are connected by an 

edge if i among k nearest neighbors of j or j is among k nearest neighbors of i. 

2. Step 2. Choosing the weights: There are two variations as well. 

(a) Heat kernel (parameter t R ).  

2
2|| ||i jx x

t
ijW e  if nodes i and j are connected; 

0ijW , otherwise. 

(b) Simple-minded (no parameters). 1ijW  if nodes i and j are connected by an 

edge, and 0ijW  otherwise. 

3. Step 3. Computing the low-dimensional representations: The low-dimensional 

representations ( ) ( 1,2,..., )iy i N  of the high-dimensional data samples can be 

computed by solving the generalized eigenvalue problem (3). 

4. Step 4. Solving the optimization problem: The optimal solutions ( 1,2,..., )kv k d  of 

the optimization problem (5) can be computed by the pathwise coordinate descent 

algorithm in [16]. 

For supervised learning, we can put an edge between nodes i and j if ix and jx are same 

class in Step 1 of the above SLPPE algorithm. This derives a supervised version of SLPPE, 

which is called supervised SLPPE. The supervised SLPPE may be more discriminate in a 

classification task.  

 

4. Experiments 

To evaluate the proposed sparse locality preserving polynomial embedding (SLPPE) 

algorithm and its supervised version, we conduct experiments on two face databases using 

them. The polynomial degree of these two algorithms is set as 2 in the experiments. 
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4.1. Datasets and Experimental Settings 

Two face databases were used in the experiment. The first one is the AR database [17], and 

the second one is the PIE database [18]. The AR database contains over 4000 color images 

corresponding to 126 people’s faces (70 men and 56 women). These face images include 

front view of faces with different expressions, illumination conditions, and occlusions (sun 

glasses and scarf). In the implementation, we use a subset of the AR database, which contains 

1400 face images corresponding to 100 people (50 men and 50 women), where each person 

has 14 different images. The PIE database contains more than 40,000 facial images of 68 

individuals. These images were acquired across different poses, with different expressions, 

and under variable illumination conditions. In the experiment, we choose near frontal poses 

and use all the images under different illumination conditions and facial expressions. Finally 

we get a subset including 2040 images with 30 images per individual. All the face images in 

the experiments are manually aligned and cropped. These images are resized to a size of 

32 32 pixels, and the gray level values are rescaled to [0, 1]. 

For these two databases, we randomly choose half of the images per class for training (i.e., 

7 and 15 images per individual for AR and PIE, respectively), and the remaining for test. The 

training samples are used to learn mappings. By using these mappings, the testing images can 

be mapped into lower dimensional subspace. For simplicity, recognitions are carried out by 

using nearest neighbor classifier in the subspace. 5-fold cross validation has been used in the 

experiments for choosing the best penalty parameter. As a baseline, we give the recognition 

results of the classifier directly using the raw data without dimensionality reduction. In 

practice, 10 training/test splits are randomly generated and the average recognition accuracies 

over these splits are illustrated below. 

 

4.2. Experimental Results 

The proposed SLPPE is an unsupervised dimensionality reduction method. We 

compare it with LPP, NPPE, PCA, sparse PCA [12] and LE. The recognition rates are 

shown in Figure 2. The left subfigure is recognition rate on AR, and the right one is 

recognition rate on PIE. We demonstrate the best results together with the standard 

deviations obtained by them in Table 1. The sparsity of the projection matrix is also 

shown, and it is calculated as the ratio of the number of zero entries and the total 

number of entries. As can be seen, the performances of the proposed method overtake 

the compared methods. 

The proposed supervised SLPPE is a supervised dimensionality reduction method. We 

compare it with LDA [19] and sparse LDA proposed in [13]. Note that, the upper bounds of 

the dimensions of LDA and sparse LDA are c-1 where c is the number of individuals [19, 13]. 

Thus the upper bounds of the dimensions of them on the selected datasets are 99 and 67, 

respectively. The recognition rates are shown in Figure 3. The left subfigure is recognition 

rate on AR, and the right one is recognition rate on PIE. We also show the best results 

together with the standard deviations obtained by them in Table 2. As can be seen, our 

proposed method surpasses the competitive methods. 



International Journal of Signal Processing, Image Processing and Pattern Recognition 

Vol. 7, No. 6 (2014) 

 

    

Copyright ⓒ 2014 SERSC  341 
 

0 50 100 150 200 250 300
0

20

40

60

80

100

Dimensions

R
e
c
o

g
n

it
io

n
 R

a
te

 (
%

)

 

 

Baseline

LPP

NPPE

PCA

SparsePCA

LE

SLPPE

0 50 100 150 200 250 300
0

20

40

60

80

100

Dimensions

R
e
c
o

g
n

it
io

n
 R

a
te

 (
%

)

 

 

Baseline

LPP

NPPE

PCA

SparsePCA

LE

SLPPE

 
AR                                                                    PIE 

Figure 2. Recognition Rates of Unsupervised Methods 

Table 1. Recognition Results of Unsupervised Methods on AR and PIE 

Method 
AR PIE 

accuracy (%) dim sparsity (%) accuracy (%) dim sparsity (%) 

Baseline 78.32 0.3 1024 -- 80.98 0.7 1024 -- 

LPP 78.68 0.7 238 0 82.41 0.6 220 0 

NPPE 82.62 0.6 185 0 83.53 0.6 115 0 

PCA 79.36 0.4 246 0 80.88 0.7 230 0 

SparsePCA 84.36 0.5 215 88.65 0.4 85.00 0.6 208 92.16 0.5 

LE 83.54 0.3 162 0 84.61 0.5 106 0 

SLPPE 90.67 0.2 136 90.68 0.3 95.59 0.7 92 94.53 0.6 
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Figure 3. Recognition Rates of Supervised Methods 
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Table 2. Recognition Results of Supervised Methods on AR and PIE 

Method 
AR PIE 

accuracy (%) dim sparsity (%) accuracy (%) dim sparsity (%) 

Baseline 78.32 0.3 1024 -- 80.98 0.7 1024 -- 

LDA 84.36 0.2 99 0 87.16 0.6 67 0 

SparseLDA 87.65 0.4 99 93.62 0.6 92.50 0.4 67 90.30 0.6 

SupervisedSLPPE 92.74 0.6 96 92.35 0.3 96.62 0.5 62 90.60 0.2 

 

5. Conclusion 

In this paper, a novel sparse polynomial mapping approach for manifold learning is 

proposed. Our approach is developed from the graph embedding [14] and the simplified 

polynomial regression with L1-norm regularization. This approach can obtain a sparse 

polynomial mapping from a high-dimensional input space to its low-dimensional 

representation space. Therefore, it could reasonably interpret the results of the 

dimensionality reduction. Moreover, the dimension of a new-come data sample can be 

reduced quickly, and the cost of subsequent computation and storage can be decreased 

considerably. 

Through this approach, we can get new sparse nonlinear manifold learning algorithms. In 

practice, we develop a new algorithm named sparse locality preserving polynomial 

embedding using the approach. Experimental results on face recognition show effectiveness 

of the proposed approach. 
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