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Abstract 
 

Millimeter wave radar echo signals often contain noise and clutter because of rain and 

fog’s influence on the performance of which, and its performance drop greatly. In recent 

years, bi-stable stochastic resonance and multi-scale wavelet decomposition theory received 

great attentions in the field of signal de-noising. This paper proposed a novel mechanism of 

stochastic resonance which is induced by multi-scale noise for weak signal detection in 

millimeter wave radar signal. Firstly by multi-scale wavelet decomposition, input signal 

which is in heavy background noise was decomposed to several signals with different 

frequencies. After that they were induced by contraction factors of each noise scale, and then 

were as the input signal of bi-stable system. Simulations of different parameters show that 

under suitable contraction factors, SNR of output signal can be improved greatly. 

Keywords: millimeter wave radar signal; stochastic resonance; weak signal 

detection; multi-scale noise tuned 

1. Introduction 

Millimeter wave radar work frequency is usually selected in the range of 30-300G hertz [1]. 

The wavelength of millimeter wave is between centimeter wave and light wave, so its. 

Compared with centimeter wave radar, millimeter wave radar has smaller volume, more light 

quality, and higher spatial resolution. Also compared with micro wave radar, millimeter wave 

radar has narrower beam, stronger ability of penetrating fog, smoke, dust, and better 

performance in anti-jamming and anti-stealth. So millimeter wave radar is commonly used in 

guidance, measurement [2]. But because rain and fog has great influence on the performance 

of millimeter wave radar, its performance can drop greatly and millimeter wave echo signal 

contains noise and clutter.  In some applications, such as investigation system, useful signal 

amplitude is relatively smaller than the extent of noise or interference, and even submerged 

by them. Radar echo signal is of low signal-to-noise ratio (SNR), and detection performance 

of conventional detection methods, like spectrum analysis method [3], correlation function 

analysis method [4], and the wavelet analysis method
 
[5], are difficult to meet the actual 

needs. This article adopts the method based on wavelet transformation and stochastic 

resonance to de-noise, and experimentally numerical simulations demonstrate that the 

proposed method is feasible. 

Stochastic resonance is firstly put forward for the explanation of the fourth generation 

glacier by Benzi [6], and has been extensively studied theoretically and experimentally 
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around different power system and noise due to its vast applications in many fields [7-9]. 

Early research was mostly focus on stochastic resonance of the periodic signal and additive 

noise tuning on nonlinear systems. Recently, studies have found that stochastic resonance 

phenomena will occur in linear system tuned by multiplicative noise and periodic signals, 

even just only tuned by multiplicative noise, and have gained a great deal of attention. Guo 

Feng et al. discussed the stochastic resonance phenomena under combined effects of 

multiplicative noise and the periodic modulation noise, the amplitude and second-order 

steady-state moment of linear damping oscillator tuned by noise and system parameters [10]. 

Also, Guo found that stochastic resonance occurred in linear system with multiplicative noise, 

additive noise and modulation noise. Theory of stochastic resonance has great attention in use 

of weak signal detection and extraction of information signal under strong noise. 

As compared to traditional techniques which mainly focused on how to suppress noise; 

stochastic resonance achieved the goal of signal enhancement by the aid of the noise. From 

stochastic resonance the output signal of the nonlinear system can have greatly better signal-

to-noise ratio (SNR) by adjusting the system parameters and noise addition to the system. So, 

this phenomenon benefits weak signal detection in background noise, and attracts various 

studies, which indicates that noise enhanced signal detection has better effect than noise 

suppressed-based techniques, especially when target signal in heavy noise background.  

The noise plays an important role in the weak signal detection by use of stochastic 

resonance. During the past decades, the constructive effects of noise have been found in 

numerous nonlinear systems, changing the view of that noise is always a menace, and leading 

to a great interest for potential applications of these phenomena. The existing research mostly 

focus on linear noise, such as additive noise or a linear function of color noise, but there is 

few of review on of stochastic resonance phenomena induced by non-linear function of color 

noise. In fact, in the actual non-linear physical system, driving noise is often in the form of 

the non-linear function of color noise. X. Gu discussed when colored noise is a quadratic 

function of the pump noise, the single mode laser system responses to the amplitude 

modulation signal [11]. Yong Xu et al. found that when multiplicative noise is of binary 

quadratic function, the amplitude of the steady state responses of linear system along with the 

change of noise intensity is also generalized stochastic resonance phenomena [12]. 

 

2. Principle of Bi-stable Stochastic Resonance 

    Micro particle in medium got random collision from medium molecule due to the 

molecular thermal movement, resulting in a Brown movement. Langevin considered that 

Brownian particle with mass m  in the mediums under the external forces including gradient 

potential field force )(' xU , the damping force x , random force )(t , and the external 

signal power )(tF . Due to Newton's second law, Langevin equation can be: 

                                                     )()()(' ttFxUxxm                                                (1) 

In the over-damped cases, the acceleration term xm   can be ignored, and selecting the 

appropriate units makes 1 , so the Langevin equation can be simplified as: 

                                                   )()()(' ttFxUx                                                (2) 

It is known that Brownian motion is characterized well by a bi-stable system. In this paper, 

we deal with the case that bi-stable system induced by periodic signals, its potential function 
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is 42

42
x

b
x

a
xU )( , and external power signal is )cos()( tfAtF 02 , substituted to 

Langevin equation, we have: 

                                               )()cos( ttfAbxax
dt

dx
  0

3 2                                       (3) 

where A  and 0f  are amplitude and frequency of the periodic signal, respectively; a  and b  

are barrier parameters with positive real values.  

Let )()( tDnt 2 with )()()(  Dtt 2 , in which D is the noise intensity and 

)(tn represents a Gaussian white noise with zero mean and unit variance.  

The probability distribution function ),( tx  of random variable x is satisfied Fokker 

Planck equation (FPK): 
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where )],()sin([ txtfA
x

 02



 is a non-autonomous item, so there is no steady state 

solutions for this equation, and also can not find any exactly expression.  

The power spectral density )( fS of the system response can be used to well understand the 

stochastic resonance, which in summery contains two parts, )( fS1
and )( fS2

, corresponding 

to contribution of the driving periodic signal and the noise, respectively, as bellow: 

                                                         
)()()( 21 fSfSfS 
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    (7) 

It can be seen that )( fS contains two parts, )( fS1
and )( fS2

, corresponding to contribution 

of the periodic signal and the noise, respectively. )( fS1
is the power spectral density 

response to the driving signal, and has the delta function form at the characteristic frequency. 

)( fS2
is expressed as the response of noise and has a Lorentz distribution form, as can be 

seen in Figure1. 
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Figure 1.   Wave of Power Spectral Density )( fS2
 

Obviously, the Lorentz distribution is characterized by concentrating most of the noise 

energy in the low-frequency region, which means that from the nonlinear bi-stable system 

white noise energy that distributes uniformly in the whole spectrum will mostly be 

accumulated into low frequencies. From another point of view, the energy concentration leads 

to the stochastic resonance phenomenon for the low-frequency driving component.  

Signal-to-noise ratio (SNR) is the most commonly used measurement method for 

stochastic resonance, which is defined as the signal frequency spectrum and the ratio of 

background noise spectrum value: 
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where )(S  is the signal power, and )(NS is energy of noise in signal frequency. By (5) 

(6) (7), SNR for the system can be written as: 

                                                  
2
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                                                  (9) 

 

3. Theory of Multi-scale Wavelet Decomposition 

One of the mostly usage of stochastic resonance is in weak signal detection embedded in 

strong noise. By changing the intensity of the noise, weak signals will be clearly highlighted 

from the background noise.  

We use )()( /
, ktt jj
kj  22 2 as the “baby scaling function” )()( /

, ktt jj
kj  22 2 , 

and )()( /
, ktt jj
kj  22 2  as the “baby wavelet function”, where 

 j and  k . Any signal )(tf  in Hilbert space )(RL2
, )()( RLtf 2  

can be decomposed as [13]: 
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where the notation for the space )(RL2  is defined as: ,)()(:, 



 dxxgxfgf  

)(, RLgf 2 . 
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 , substituted to 

(10), we have 
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where j denotes the scale parameter. 

Equation (11) shows that the signal )(tf can be decomposed in different frequency, and 

each component )(txDj
 is the function of time. And if )(tf  is the band limited signal, (11) has 

the limited sum number of j , as follows: 



)()()()()()()( tDtDtDtPtDtPtf jjjj

j

jj
jj 1000

1

0

0 1  


 


For Gauss white noise, because of its very wide frequency range, after wavelet multi-scale 

decomposition, it is decomposed into different frequency bandwidth.  

As we know, for white noise of frequency spectrum energy under uniform distribution, its 

spectrum structure changed, and its frequency spectrum energy concentrated in low frequency 

region through the nonlinear bi-stable system. Therefore, for the signal contained noise, after 

the multi-scale wavelet transform, different scales of the noise has different influence on the 

stochastic resonance. Based on the above discussion, we can set up a multi-scale wavelet 

transform stochastic resonance system used to detect weak signals under strong noise, which 

is shown if Figure 2. 
 

 

Figure 2. Numerical Simulation Scheme via Multi-scale Wavelet Decomposition 
based Stochastic Resonance 
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The strategy of this system is presented as follows. Firstly, weak signal under strong noise 

background )(tx  is decomposed into J scales wavelet transform, as formulated in the 

following equations: 



)()()()()()()(
1000

1

0

0 1 txDtxDtxDtxPtxDtxPtx jjjj

j

jj
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

 


Secondly, each component is multiplied by a coefficient, which has the effect to adjust the 

amplitude of different components, and then affect the value of the signal-to-noise radio at the 

output of the nonlinear bi-stable system. 

The set of wavelet coefficient are obtained 

as },,,,{ 11000 jjjdj KKKKC 

. After adjusting the coefficient set C , the new reconstructed signal is then sent to the 

nonlinear bi-stable system as expressed by Langevin equation. Since the signal at different 

scales also contributes to the stochastic resonance effect as analyzed above, there would be 

the best condition of coefficient set to reach the balance among the driving force, the noise, 

and the nonlinear system for stochastic resonance. In the stochastic resonance model of with 

multi-scale wavelet decomposition, the key point is to find a suitable coefficient set for a 

given set of stochastic resonance parameter },,{ 0fJD . This model will be verified in the 

following numerical simulation and practical application. 

 

4. Numerical Experiments and Discussion 

In the simulation, millimeter wave radar signal with length of 512 and Gauss white noise. 

Firstly, multi-scale wavelet decomposition is done using Daubechies5, and 8J , as shown in 

Figure 3.  

In Figure 3, time domain waveform of ),(tP0
 ),(tD0

 ),(tD1 )(..., tD7
 is shown from left to 

right, from top to bottom, respectively. And then adjusting scale contraction 

factors },,,,{ 7100 KKKKC jjd   to change the amplitude of each scale component. Since the 

noise at different scales contributes to the stochastic resonance effect at different level, system 

output SNR can be improved greatly under suitable scale contraction factors. 

When },,.,,,,{ 00501046C , the system output SNR is improved by 27dB. Figure 4 shows the 

millimeter wave radar signal and the signal de-noised using the method proposed in this 

paper. From the figure we can see that, the weak signal submerged in strong noise can be 

detected using this method.  
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Figure 3. Multi-scale Wavelet Decomposition of Millimeter Wave Radio Meter 
Signal with Noise 

 
(a)      (b) 

Figure 4. De-noise of Millimeter Wave Radio Meter Signal (a) Millimeter Wave 
Radio Meter Signal (b) Signal after De-noising 
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On the other hand, the bi-stable system output signal to noise ratio (SNR) changes with the 

input noise variance D, as shown in Figure5. From the figure we can see that when 1D , the 

system output SNR comes to the peak value. 
 

              

Figure 5. SNR of the System Output Versus D 
 

To explain the validity of the algorithm proposed, we compared the SNR improvement 

using different methods, consisting of Wiener filter method, wavelet soft threshold de-noising 

method and wavelet hard threshold de-noising method, and under different SNR input signals. 

Here we use Daubechies5 as wavelet base function, and select layer decomposition. For each 

SNR of input signal, we conducted Monte-Carlo experiments of 200 times, and output SNR 

and RMSE (root-mean-square error) of statistical average is shown in Table1.  

Table 1. SNR and RMSE under Different De-noising Method 

 SNR RMSE 

Wiener filter method 20.3802 0.2441 

The wavelet soft threshold  de-noising method 22.3824 0.2235 

The wavelet hard threshold de-noising method 23.3572 0.2132 

Method proposed in this paper 25.7825 0.2042 

 

From Table 1 we can see that, algorithm proposed in this paper can be used to 

effectively remove noise in the millimeter wave radar signal. And compared to classical    

de-noising method, the output SNR is improved, in favor of subsequent of characteristic 

detection, identification and other signal processing.     

 

5. Conclusion 

In this paper, an algorithm for de-noising of millimeter wave radar echo signal based 

on bi-stable stochastic resonance and multi-scale wavelet decomposition is investigated. 

It is verified that the system output SNR can be further improved by adjusting the 

contraction factor of each noise scale. This research also has practical application value 

in weak signal detection, and has profound physical meaning in the investigation of 

stochastic resonance mechanism. 
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