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Abstract

In standard group search optimizer (GSO) algorithm, scroungers will converge to the
similar position if the producer cannot find a better position than the old one in a number of
successive iterations and the group may suffer from the premature convergence. In this
paper, a hybrid GSO with differential evolution (DE) operator named DEGSO is proposed to
enhance the diversity of standard group search optimizer. In this method, the standard GSO
algorithm and the DE operator alternate at the odd iterations and at the even iterations. The
results of the experiments indicate that DEGSO is competitive to some other evolutionary
computation (EA) algorithms.

Keywords: Group Search Optimizer (GSO); differential evolution (DE); evolutionary
computation (EC); function optimization

1. Introduction

In the past few decades, nature-inspired computations have been widely employed to solve
global optimization problems. Particle swarm optimizer (PSO) [1] gets inspiration from the
social behavior of bird flocking or fish schooling. Ant colony optimization (ACO) [2]
inspired by the behavior of real ant colonies. Artificial bee colony algorithm (ABC) [3]
motivated by the intelligent behavior of honey bees. Inspired by animal searching behavior, a
novel optimization algorithm which is called group search optimizer (GSO) [4] was proposed
recently, primarily for continuous optimization problems.

In GSO algorithm, all individuals are divided into three parts; they are called producer,
scroungers and rangers, respectively. The producer searches the food and shares information
with the rest of the population, the scroungers keep searching for opportunities to join the
resources found by the producer, and rangers walk randomly to find its new positions in the
searching space. Except the producer, more than 80% of the rest of individuals are used as
scroungers to maintain convergence speed of the algorithm. The scroungers will converge to
the similar position if the producer cannot find a better position than the old one in a number
of successive iterations. To improve the convergence performance of GSO, [5] proposed
guantum-behaved operator for scroungers with a certain probability, [6] introduced
randomness in determining the coefficients of individuals.
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Differential evolution (DE), proposed by Storn and Price [7, 8], is one of the most recent
evolutionary algorithms for solving optimization problems. It is a simple and powerful
population-based global optimizer in continuous search space. In this work, a hybrid group
search optimizer with differential evolution operator is proposed, named DEGSO. In DEGSO,
the standard GSO algorithm and the DE operator alternate at the odd iterations and at the even
iterations. Simulation results over several test functions validate DEGSO method is more
accurate compared to some other evolutionary computation methods.

The remainder of this paper is organized in the following way. General descriptions of
GSO are given in Section 2. Section 3 introduces a description of DE. Section 4 describes the
proposed DEGSO technique. Section 5 presents the experimental results conducted on several
test functions and the comparisons with some other EA methods. Finally, Section 6 concludes
this paper.

2. Group Search Optimizer

Group search optimizer (GSO) is a population based optimization algorithm, which
employs the producer-scrounger model and the animal scanning mechanism. The population
of GSO algorithm is called group and each individual in the group is called a member [9]. In
an n-dimensional search space, the i th member at the k th searching iteration has a
position X eR" and a head angle ¢ =(¢},....&,,) eR"™. The search direction of the i th

member D(¢) =(d/},... df,) €R" which can be calculated from ¢ via a polar to Cartesian
coordinate transformation [10]. It can be expressed in equations (1)-(3):

n-1
diy =] Jeos(ey) 1)
=1
n-1
df; =sin(gf ;)| Jeos(ay) j=2...n-1 2)
a=]
dilfn = Sin((pllfn—l) (3)

In GSO, the scanning field is simplified to an n-dimensional space, which is characterized
by maximum pursuit angle 6., €R* and maximum pursuit distance I, €R'. In GSO, a

group consists of three types of members: producers, scroungers and rangers. The GSO
algorithm can be simple described as four steps [9].

(1) The producer will scan at zero degree , then scan laterally by randomly sampling three
points in the scanning field [11]: one point at zero degree, one point in the right hand side
hypercube and one point in the left hand side hypercube, as follows:

X, = X5+l Dy () (4)
X, = X5 +0- o DS (@ +1, -0, 1 2) (5)
X, = X541 DL =1, O 12) (6)

286 Copyright © 2014 SERSC



International Journal of Signal Processing, Image Processing and Pattern Recognition
Vol. 7, No. 6 (2014)

where r, e R is a normally distributed random number with mean 0 and standard deviation
1, r, eR™ is a uniformly distributed random sequence in the range (0, 1).

The producer will then find the best point among the three points. If the best point has a
better fitness value than its current position, then it will fly to this point. Otherwise, it will
stay in its current position and turn its head to a new randomly generated angle

P =P A1, Oy @)
where «,, €R" is the maximum turning angle.

If the producer cannot find a better area after a iteration, it will turn its head back to zero
degree

¢k+a — (Pk (8)
where aeR' is a pre-defined constant.

(2)When the producer is determined, the scroungers will keep searching for opportunities
to join the resources found by the producer. At the k th iteration, the behavior of the i th
scrounger can be modeled as a random walk toward the producer

X{H = X+ 0 (X5 = X() 9)
where r, e R" is an uniform random sequence in the range (0,1).

(3) The third step of GSO is to renew the positions of rangers. At the k th iteration, if the i
th member is selected as a ranger, it generates a new random head angle ¢ using equation

(7); and then it chooses a random distance |; and move to the new point
L =a-rl (10)
Xik+1 — Xik +Ii . Dik (¢k+l) (11)

At the end of k th iteration, all the members are re-evaluated. The member with the best
fitness value is chosen as a producer in the next searching iteration. All the other members,
including the producer in the previous searching iteration, will switch to be scroungers.

3. Differential Evolution Algorithm

Differential evolution (DE) is a relatively recent heuristic designed for optimization
problems over continuous domains. In DE algorithm, each decision variable in the vector is
represented by a real number. As in any other evolutionary algorithm, the NP vectors of
initial population of DE is generated randomly, and then evaluated. The i th individual vector
of the population at generation G has D components [12, 13].

Yi,G :[Xl,i,GIXZ,i,G’XSYi,G’ ...... 1XD,i,G:| (12)

Donor vector Vig is then generated by mutation as a temporary offspring.
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Vie =Xic +F(Xic—Xic) (13)

where F is scale factor. It is a real and constant factor that controls the rate at which the
population evolves. The indices rli, rzi and r3‘ are mutually different random integers chosen
from the range [1, NP] and they are also different from the base vector index i. These indices
are randomly generated once for each mutant vector. DE employs crossover to increase the
diversity of the perturbed parameter vectors. The donor vector Vis exchanges its components

with the target vector Xic to generate the trial vectorUic .

Uie :[ul,i,eiuz,i,G'US,i,G' """ ’uDyivG] (14)
_ [Vjig if(rand [0, <Cr or j= ji)
Ujie —{ o otherwise )

where rand;;[0,1] is a uniformly distributed random number, which can update every j th
component of the i th parameter vector. j...«<[1,2,...,D] is a randomly chosen index, which

ensures that trial vector Uic gets at least one component from donor vector Vig. Cr is a
predetermined crossover parameter lying in the range [0,1]. In selection procedure of DE, the
following condition decides which vector should become a member of the next generation
(G+1):

(16)

Xica =

- Uic if f(Uic)< f(Xic)
Xic otherwise

where f(.) is the objective function to be minimized. After installing the new population,
the process of mutation, crossover and selection is repeated until the optimum is obtained, or
the number of generations reaches a pre-specified maximum gpax.

4. The Improved GSO with DE

GSO is inspired by animal behavior, especially animal searching behavior. In standard
GSO, if the members of group cannot find a better position than that of the old producer in
some successive iteration, the positions of all scroungers will almost the same and the group
may suffer from the premature convergence. The diversity of the group will be decreased
because the number of scroungers is very large. To overcome its drawback, the DE algorithm
can be used to increase the diversity of group.

DE is a kind of stochastic real-parameter evolutionary algorithm for global optimization
over continuous spaces. Unlike traditional EAs, DE employs difference of the vectors of the
population at the current generation to explore the objective function space [13]. Compared to
most other EAs, no separate probability distribution has to be used for generating the
offspring, DE is much more simple and straightforward to implement. So DE can be easily
applied with GSO to enhance the ability of global search.

The procedure for the implementation of DEGSO involves the following basic steps:
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(1) In every odd iteration, performs a classical GSO algorithm on each members of the
group.
(2) For every even iteration, executes the DE algorithm.

(3) The terminating conditions are defined as obtaining a pre-specified objective function
value or attaining a preset maximum number of iterations.

By doing this, DEGSO can obtain the animal scanning mechanism of GSO and the
powerful stochastic real-parameter optimization of DE. It can significantly reduce the risk of
premature convergence.

5. Simulation and Results

In this study, eight benchmark functions are used to test the efficiency of DEGSO. To
compare the performance of DEGSO with some other methods, PSO, DE and GSO are also
simulated in this research. The initial range of the population is symmetric as shown in Table
1. The other parameters are depicted as follows.

Table 1. Test Functions

Test function Formulation Initialization  fae
’ i s ‘ o2 ¢ 1 » B
Ackley’s Function Al =—-20exp(-02,1-3>" 5 J—exp(= > \cos 2o )+204+e [B3132F 0
tal7 i i
Generalized roe -l - 11, ¢ 2 N
Rosenbrock's Fumction /105 = Z:-l (1000, —x7) +{x-1)7] [-30.30F 0
Genenlized Rastigin's 7 () ~ 5" [:¢ ~10cos(27,) +10] sisnr o
ES;E“;ZE& Grewank oy _° 57 0 =TT ees = |+1 [-600,6001F 0
400 <=~ )
Sphers Functionl fily=2" % [-100,100FF O
Schwefel's ~ e U . chp < -12369.3
tﬁhﬁ sfels  Problem oy = 3" —xsin(of]x] ) [-500,500F fnfg
Folxy=={10sin*(m)+ 3 (x, —1)*[1+10sin’ (73, |
| PR L e |
+(, =17+ 2 u(x.10,100.4)
Generalized Penalized T == _ 50508 0
Functions ( P ¥ [-30.30]
| X —a) .x.>a
'L'_.=l+zl_l’_.+]|= wlx.ak.m|=r 0—a=x=a
k(-x,-a)".x, <-a
_ A :U_llsin:I',-’-_"BJQ'I+,T_':I'A'.—l'l‘ll+sin:|'3,-’-_"x._1'| I
Generalized Penalized ™~ ! - il - : el [50.50F 5

Functions . War Y - EL . )
+( 2, =1} | 1+sin" {272, ) |]|= +3 (il x.5,100.4)
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Table 10. Comparisons between DEGSO and other algorithms on t test

294

Function Population PSO GSO DE
20 t-value -1.221717 2.042064 11.422667
P-value 0.223744 0.042909 0.000000
fl 40 t-value -1.205038 1.678673 8.135061
P-value 0.230099 0.095312 0.000000
80 t-value -1.610776 0.118205 3.573577
P-value 0.109345 0.906065 0.000475
20 t-value 24.335710 -0.262026 9.746473
P-value 0.000000 0.793663 0.000000
f2 40 t-value 19.285473 1.690112 2.866626
P-value 0.000000 0.093098 0.004750
80 t-value 15.608053 1.531470 -1.301203
P-value 0.000000 0.127774 0.195197
20 t-value 8.966227 2.268135 5.772224
P-value 0.000000 0.024758 0.000000
f3 40 t-value 7.212578 0.159883 3.171373
P-value 0.000000 0.873190 0.001842
80 t-value 6.287528 -0.400623 2.041437
P-value 0.000000 0.689272 0.042972
20 t-value 8.938207 3.982711 11.054743
P-value 0.000000 0.000106 0.000000
fa 40 t-value 6.884858 2.044084 8.701576
P-value 0.000000 0.042706 0.000000
80 t-value 5.477293 0.536656 5.514230
P-value 0.000000 0.592306 0.000000
20 t-value 7.553896 4.554961 -8.021940
P-value 0.000000 0.000011 0.000000
f5 40 t-value 6.724387 1.631126 -7.813499
P-value 0.000000 0.104976 0.000000
80 t-value 8.266626 8.750257 -4,577576
P-value 0.000000 0.000000 0.000010
20 t-value 1.973585 10.347095 16.587538
P-value 0.050279 0.000000 0.000000
6 40 t-value -0.623666 7.805620 16.938624
P-value 0.533801 0.000000 0.000000
80 t-value -0.599915 5.651904 17.166712
P-value 0.549474 0.000000 0.000000
20 t-value 9.549991 1.578502 -1.060990
P-value 0.000000 0.116571 0.290411
7 40 t-value 7.899535 0.560098 -1.016586
P-value 0.000000 0.576253 0.310998
80 t-value 5.958274 -0.651119 -1.008762
P-value 0.000000 0.515973 0.314724
20 t-value 16.108370 6.772946 2.404045
P-value 0.000000 0.000000 0.017443
s 40 t-value 14.845665 0.430336 -2.748792
P-value 0.000000 0.667573 0.006721
80 t-value 8.582779 4.907611 0.868067
P-value 0.000000 0.000002 0.386754
Better 18 5 10
Same 6 19 12
Worse 0 0 2
General merit over 18 5 8

contender
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The value of function is defined as the fitness function of algorithm in this study. For the
purpose of reducing statistical errors, each function is independently simulated fifty times. To
investigate the scalability of the algorithm, the population sizes of different algorithms are 20,
40 and 80 with maximum generations is 2000. The experiments were carried out on a PC with
a 1.80-GHz CPU and 1.0-GB RAM. All the programmers were written and executed in
MATLAB 7.0. The mean best fitness values, standard deviations and the average
computation costs of CPU for every function are displayed from Tables 2 to 9.

Table 2 shows DE has better mean solutions and standard deviations than those of
algorithms for function 1, but the average solutions of DEGSO are better than those of DE for
20 dimension function with population sizes were 10 and 20. Table 3 displays that the
performance of DE is better than DEGSO on function 2.

Table 4, 8 and 9 indicate that DEGSO has higher convergence accuracy than those of other
methods. Table 5 displays that the performances of DE and DEGSO are very closely on
function 4. From Table 6, it can conclude that DE is more efficient than other three
algorithms. Table 7 shows that the mean solutions and standard deviations of PSO with are
better than those of other methods.

For a thorough comparison of classification accuracy, one-tailed paired t test with a
significance level of 0.05 has also been carried out. In experiments, the number of that
DEGSO performs significantly better than, almost the same as and significantly worse than
the compared algorithms under different conditions is given in the Table 10. “General merit
over contender” shows that the difference between the number of better results and the
number of worse results, which is used to give an overall comparison between the two
algorithms. Moreover, Table 10 indicates that the DEGSO generally offered better
performance than those of other algorithms in this study.

6. Conclusion

In this paper, a DEGSO algorithm based on differential evolution and Group Search
Optimizer was proposed for function optimizations in continuous space. The hybrid strategy
provides animal scanning mechanism of GSO and the population diversity of DE operator.
The comparison results show that DEGSO has better optimization capability than traditional
DE and GSO. It is even more accurate compared to some other EA ensemble approaches.
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