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Abstract 
 

Coarse resolution quantizers are widely used in commercial GNSS receivers to reduce the 

cost and power consumption. However, when the coarse resolution quantizers are used 

nonlinear distortion is introduced to the received signals and should be taken into 

consideration. In this paper, a carrier tracking algorithm based on extended kalman filter 

(EKF) is proposed for 1-bit quantized GNSS signals. The observation model for 1-bit 

quantized signals is established theoretically. An approximation of the observation function is 

proposed and analyzed numerically. Performance of the proposed algorithm is evaluated by 

simulation, compared with both PLL using 1-bit phase discriminator and EKF using 

high-resolution samples. 

Keywords: Carrier Tracking, GNSS Receiver, Extended Kalman Filters, One-bit 

Quantization 

1. Introduction 

Due to the advantages of simplicity and low power consumption, low cost analog-to-digital 

converters (ADCs) with small quantization length, especially the 1-bit ADCs are widely used 

in commercial GNSS receivers. However, most of the current baseband processing techniques 

assume the received signals have arbitrary high precision. When a 1-bit ADC is used, the 

signal distortion introduced by nonlinear quantization operation should be taken into 

consideration. The 1-bit ADC quantization loss is up to 1.96dB [1]. In this paper, carrier 

tracking in 1-bit quantized GNSS receivers is discussed. 

Various kinds of methods were proposed to reduce the performance degradation caused by 

1-bit quantization. The effective noise model of 1-bit quantization and its effect on the 

time-delay estimation in a GNSS receiver was discussed in [2]. Adjustments in the front-end 

of a digital GNSS receiver were suggested in [3, 4]. By redesigning the front-end filter and 

quantizer, or by increasing the sampling frequency, the effective signal-to-noise ratio (SNR) 

after quantization can be improved.  

In carrier tracking, the accuracy of phase estimation degrades greatly because of 1-bit 

quantization when the traditional arctangent phase discriminator is used. To reduce the 

estimation error, some new discriminators have been proposed based on the property of the 

quantized signal [5-9]. A digital phase discriminator (DPD) using the 1-bit quantized signal 

was first proposed in [5]. The accuracy of the discriminator can be improved by increasing 

the sampling rate. Then the updated versions of the digital phase discriminator were proposed, 

including a noise balanced digital phase discriminator (NB-DPD) [6], a robust digital phase 

discriminator (RDPD) [8], and a SNR aided accuracy phase discriminator (SAPD) [9]. 

In the typical applications of GNSS receiver, the carrier phase, as well as the carrier 

frequency, is changing continuously due to the relative motion of the satellite and receiver. 

The most commonly used technologies in carrier tracking include Phase Lock Loop (PLL) 

and kalman filter. When used in carrier tracking, a kalman filter implementation is equivalent 
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to a PLL with adaptive noise bandwidth [10]. However, the kalman filter is originally 

designed for linear system. Various alterations of kalman filter have been designed for 

parameter tracking of 1-bit quantized signals. A kalman filter using the sign of innovations 

[11] was proposed to limit the quantization length requirement in wireless sensor networks. A 

kalman like particle filter [12] and an unscented kalman filter [13] were also proposed to 

solve different kinds of parameter tracking problems with quantized measurements. The 

convergence of kalman filter using quantized measurements was analyzed in [14]. The 

applications listed above indicate that the Kalman filtering technology is effective when used 

in parameter estimation of quantized signals. 

In this paper, an extended kalman filter (EKF) based carrier tracking algorithm is proposed 

for 1-bit quantized GNSS receiver. Chapter 2 describes the signal model and its relative 

property. In chapter 3, an EKF based carrier tracking algorithm is proposed. The 

approximation of the observation function is given in chapter 4, and chapter 5 shows the 

simulation results. 
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Figure 1. Typical Carrier Tracking Scheme in GNSS Receivers 

2. Problem Description 

A typical carrier tracking scheme in a GNSS receiver with 1-bit ADC is shown in Figure 1. 

The received signal after quantization is given by 

  2 2

0( ) sgn 2 cos ( )0.5c s a ss k P kT n kk T        (1) 

where P is the receiving power of GNSS signal, c  is the intermediate frequency including 

Doppler shift, sT  is the sampling interval, 0  
is the initial carrier of the received signal, 

a  is the Doppler rate caused by the acceleration of relative motion between and satellite 

and receiver. The higher order dynamics of the relative motion is ignored. n(k) is the additive 

white Gaussian noise (AWGN) with power 
2 , and sgn(x) denotes the polarity function of x. 

The local carrier replica is a periodic square wave with I/Q branches which is given by 

    ( ) sgn cos sgn sin( )o o sr k kT j kT      (2) 

where o  is the output frequency of the numerical control oscillator (NCO). The signal after 

mixing and accumulating is given by 

 
1
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

   (3) 

where N is the number of samples during the accumulation period T. In most commercial 

applications, c , o , a  and sNT  meet the following condition when the receiver keeps 

continuous tracking of the carrier 
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Then we have 
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1 1
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where k c skT   and e  is the average phase error during the accumulation period, which 

is given by [15] 

  
2

2

0
2 6

e c o s a s

N N
T T         (6) 

DPD [5] uses the ratio of negative samples of y(k) to estimate the phase error. The ratio is 

given by 

 ,
2 2

QI
i i

N yN y

N N
 


   (7) 

where Iy  and Qy  are the real part and imaginary part of y, respectively. The DPD is 

defined by 

  sgn 0.5e q i     (8) 

For high-SNR applications, the NB-DPD was proposed to reduce estimation deviation, 

which is given by [6] 

  sgn 1
2 | | | |

I
e Q

I Q

y
y

y y




 
    

 (9) 

For moderate-SNR applications, the SAPD was proposed to compensate the noise effect 

[9], which is given by 

     22
argmine I I Q Qy E y y E y            (10) 

where E(x) is the mean value of variable x. Equation (10) can be solved by Newton’s method.  

The relationship between noise and estimation error was analyzed in [8], and the RDPD using 

iterative method was proposed to achieve higher accuracy and better noise robustness. 

In the next chapter, an extended kalman filter based tracking algorithm is proposed. Instead 

of using the phase discriminators listed above, the measurement model of the EKF is directly 

derived from the output of accumulator.  
 

3. EKF-Based Tracking Algorithm 

According to(1), the estimated parameters include phase difference, frequency difference 

and Doppler rate. The system model is given by [15] 
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 (11) 

where  0

T

c o aX       is the state vector, A is the system dynamic matrix and nW  

is the system noise mainly determined by the quality of receiver clock [16]. The spectral 

intensity matrix Q of nW  is given in [17]. 

Only the imaginary part of y (k) is used to establish the measurement model of the EKF. 

The mean value of Qy  is given by 

    
1

2
0

1 2
1 cos sgn sin

N

Q k e k
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Notice the mean value of Qy  is a function of phase error 
e  and 2SNR P  . Let 

2SNR   and ( , )e Qh E y      . The relationship between Qy  and ( , )eh    is given by 

 ( , )Q ey h v    (13) 

where v is residual error defined by 

     
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where erfc(x) is the complementary error function defined by 

  22
( ) exp

x

erfc x t dt




   (15) 

Lemma: v is white noise with zero mean when N is sufficiently large. 

Proof: it has been proved that k  is uniformly distributed in a circle when N is sufficiently 

large [5]. So the summation in (14) can be replaced by definite integral on the circle as 

follows 
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where n is the AWGN term in (1). It’s obvious from (16) that ( )v k  is time-independent. For 

different time slot i and j, we have  i j i jE v v E v E v       . The mean value of v is  
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and we have 

  ( ) ( ) ( )vE v i v j R i j   (18) 

where ( )x  is the Dirac delta function and vR is the variance of v. 
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Equation (13) is used as the measurement model with observation Qy  and the observation 

noise v. 

The prediction and update process is given as follows 

 1| 1|, T

k k k k k kX AX P AP A Q     (20) 

    1 1| 1| 1 1|, ,k k k k Qk k k k k k k k kX X L y h X P I L H P     
        (21) 

where kP  is the estimate covariance at time slot k, 2 21 2 6s sNT N T      and kH  is 

the observing matrix derived by 
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The optimal Kalman gain kL  is given by 

  
1

1| 1|

T T

k k k k k vL P H HP H R


    (23) 

 

4. Approximation of Observation Function 

Rewrite the observation function in definite integral form and we get 

       1
, 1 cos sgn sin

2
e eh erfc d





      
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

           (24) 

Equation (24) can also be represented as a power series [9]. However, both of them are 

inconvenient to be used in real time applications due to their computational complexities. In 

this chapter, an approximation of the observation function with high accuracy and slight 

computational complexity is proposed. 
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Figure 2. The Observation Function for Different SNR 

Figure 2 shows curves of the observation function versus e   for different values of 

SNR. For a certain SNR, the maximum value of ( , )eh    is obtained as 
1

2
e  . And it’s 

obvious when 
1 1

,
2 2

e  
 

  
 

, ( , )eh    is monotone to e . The maximum value of 

( , )eh    is given by  

  
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
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which defines the amplitude function of  ,eh   . When the SNR is high, the observation 

function changes linearly versus e  in the monotone area, such as the curves in Figure 2 

when SNR=10dB and SNR=20dB. For low SNR, the observation function is similar to a 

negative sine function, e.g. the curves when SNR is no more than 0dB. The linear 

approximation is given by 

 
2 ( )

( , )l e e

h
h    




  (26) 

and the trigonometric approximation is given by 

  ( , ) ( )sins e eh h     (27) 

The relative power error, also called distortion ratio, is used to evaluate the accuracy of the 

two approximations, which is defined by 
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Figure 3. The Amplitude Function and the Distortion Ratio vs. SNR 

In Figure 3, the dash line shows the distortion ratio of the linear approximation l , and the 

dot line shows the distortion ratio of the trigonometric approximation s . Both of the 

distortion ratios are measured in decibel. l  decreases as the SNR rises, while s  increases. 

Both of the two distortion ratios are lower than -10dB, which means the two approximations 

are accurate. When 4.7SNR dB , 19l s dB   . So a better way is to use different 

approximation models due to SNR.  When the SNR is higher than 4.7dB, the linear 

approximation is chosen, and when the SNR drops below 4.7dB, the trigonometric 

approximation is chosen. The overall distortion ratio is no more than -19dB and can be 

neglected. Figure 3 also shows the amplitude function in solid line. The amplitude function is 

time-invariant, and its value is only depended on the SNR. In real time applications, the value 

of amplitude function can be pre-calculated and stored in a lookup table to replace runtime 

computation. 

 

5. Simulations 

The performance of the proposed carrier tracking algorithm is tested by simulation. The 

results are compared with a traditional phase lock loop (PLL) using NB-DPD and an EKF 

using analog signals (with arbitrary high precision). The parameters of the simulated signal 

are set as follows. The sampling frequency
 
is 16.384MHz, the intermediate frequency is 

4.092MHz, and the Doppler rate is 51.5Hz/s (the relevant acceleration is 9.8m/s
2
). The 

accumulation period 1T ms . The system noise variance Q is calculated using the typical 

Allan variance parameters for crystal clocks [17]. In addition, a second-order PLL is used for 

comparison. The bandwidth of the PLL is 10Hz, and the damping coefficient of the PLL is 

0.707. 

Figure 4 shows the phase tracking error obtained under two different scenarios. The SNRs 

in the upper two subfigures are -20dB, and the SNRs in the lower subfigures are 10dB. The 

two scenarios cover two approximation models described in Section IV. The simulation time 

is 1 second. The phase error decreases if EKF is used. And for PLL, the phase error fluctuates 

with a constant maximum amplitude. The steady-state error of EKF is also significantly 

smaller than the PLL. The main reason is the equivalent noise bandwidth of the EKF in 

steady state is much smaller than PLL. When used in the PLL, the advantage of well-designed 

1-bit phase discriminators such as DPD or NB-DPD is negligible.  
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Figure 4. Tracking Error of Carrier 

 

Figure 5. Standard Deviation of Steady-state Error vs. SNR 

Figure 5 shows the relationship between standard deviation of phase error and SNR. The 

legend EKF (D) stands for the proposed EKF using 1-bit quantized signals, and the legend 

EKF (A) stands for the compared EKF using high-resolution samples. The curves are 

obtained through Monte Carlo simulations, which illustrate the levels of steady-state tracking 

error. The difference of the standard deviations by using EKF or PLL is significant. When the 

SNR is -20dB, the standard deviation of phase error using PLL is about 0.01 radius, and the 

standard deviation using the proposed EKF is about 2e-4 radius. The latter is almost 48 times 

smaller than the former. The phase error in steady-state reduces as SNR become higher. No 

matter how the SNR changes, the EKF based tracking algorithm always keeps an obvious 

superiority to PLL. When the SNR is 20dB, the standard deviation using the proposed EKF is 

still about 44 times smaller than that of using the PLL.  

The performance of quantization loss reduction can be concluded by comparing the 

steady-state phase error of EKF (D) and EKF (A). When SNR is lower than 4.7dB, the 

trigonometric approximation of the observation function is used in EKF (D), and the 
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steady-state tracking error is very close to EKF (A). The SNR loss introduced by 1-bit 

quantization is overcome. What’s more, when the SNR is higher than 4.7dB, the linear 

approximation is used, and the standard deviation using EKF (D) is even smaller than 

EKF(A). It’s because in such a case, the observation model is linear, and EKF (D) becomes a 

standard kalman filter. While EKF (A) uses a nonlinear observation model, and the 

linearization of the observation model introduces additional SNR loss. 
 

6. Conclusions 

In this paper, an extended kalman filtering base carrier tracking algorithm for GNSS 

receivers using one-bit quantizers is proposed. The mathematics model of the observation is 

established and analyzed. The derived observation function is given in integral expression. To 

simplify the calculation, an approximation of the observation function with low 

computational complexity is given. The accuracy of the approximation is evaluated by 

distortion ratio, which is calculated by relative power error method. The performances of the 

proposed approach is tested by Monte Carlo simulations, compared with PLL using 1-bit 

phase discriminators and EKF using high-resolution samples. Simulation results shows that 

the steady-state tracking error is significantly reduced in comparison with the PLL, and the 

quantization loss is also eliminated by comparing with the EKF using high-resolution 

samples.  
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